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Abstract—New scheduling algorithms are first evaluated using
simulation. In these simulations, the workload has a huge
influence on the measured performance of the simulated system.
Therefore, it is customary to use workload traces recorded
previously from real systems. Such open-system simulations
preserve all the jobs’ properties. However, preserving the jobs’
arrival times actually destroys the logic of the user’s workflow,
especially dependencies and think times between successive jobs.
Furthermore, performance in such simulations is measured by
the average wait time and slowdown, under the fixed load and
throughput conditions dictated by the trace. Therefore, it is
impossible to evaluate the system’s effect on throughput and
productivity.

As an alternative we propose semi-open trace based simula-
tions that include dynamic user activity and internal feedback
from the system to the users. In these simulations, like in a real
system, users adjust their job-submittal behavior in response
to system performance. As a result, the simulations produce
different loads and throughputs for different scheduling algo-
rithms or parametrizations. We implemented such a simulation
for evaluating the schedulers of parallel job systems. We also
developed a novel user-aware scheduler designed specifically
to increase users’ productivity. While conventional simulations
cannot measure this scheduler’s influence reliably, and would
suggest it is useless, our simulation evaluates it realistically and
shows its beneficial effect on the users’ productivity and the
system’s throughput.

I. INTRODUCTION

Scheduling and resource management supporting the execu-

tion of jobs on large scale systems — such as supercomputers,

clusters, and clouds — is a challenging endeavor. In such sys-

tems one cannot just put a new design into production without

first extensively evaluating it. This leads to the challenge of

faithful evaluations, which reflect all the complexities of the

real system. Our focus is on one aspect of this complexity,

which is analysing and simulating correctly the users’ behavior

and and their interaction with the simulated system.

Simulations are widely used in order to evaluate the perfor-

mance of new system designs. These simulations are usually

driven by traces recorded from a real system. Using a real

trace is an attempt to create the most realistic simulations

possible, which will lead to reliable evaluation results. In

particular, using trace data directly retains all the structure

that exists in the workload, including locality and correlations

between different workload attributes, which might be lost if a

statistical model was used instead. For example, traces of real

parallel jobs available from the Parallel Workloads Archive

[10] include data on job arrival times, parallelism, and runtime.

Note, however, that using the trace data as is implies an

open-system model in the simulation. In other words, the

arrival process is preordained, and is not affected by the state

and performance of the simulated system. As a result the

system throughput is dictated by the trace being used, so

the simulation cannot be used to measure user productivity

(where productivity is assumed to be related to the rate

of running additional jobs). Consequently it also cannot be

used to evaluate designs intended to promote productivity

or satisfy certain service-level agreements, for example user-

aware schedulers [21]. Moreover, the preordained arrivals

exclude a faithful replication of user feedback effects, which

are especially important in cloud system workloads. Finally,

each trace can only provide a single load data point to the

evaluation.

To overcome these limitations Shmueli suggested a new

simulation methodology for evaluating parallel jobs schedulers

[19], [21]. This methodology includes a feedback loop, in

which the arrival of additional jobs depends on the termination

of certain previous jobs submitted by the same user. He also

suggested an algorithm to model the think times between jobs

(the intervals from the termination of one job to the submittal

of the next one) and the possibility of aborting sessions if

performance is bad. This methodology solves the problem of

predefined load, and facilitates evaluations where the achieved

throughput (and hence productivity) in the simulation can

change. But it had the drawback of using synthetic users, and

sampling the attributes of the jobs from distributions. This is

not consistent with our goal to have a workload which is as

close to reality as possible.

In previous work we have shown how to extend this

and integrate it with trace-based simulations, by extracting

dependencies from the trace [27]. Given the dependencies, we

can now change the arrival times in the simulations to reflect

the users’ reactions to system performance, while preserving

all other properties of the recorded trace. We can also combine

this with resampling, which allows us to generate multiple

similar workloads from the same trace, and also to manipulate

the load by modifying the number of users [26]. Combining

resampling and feedback together leads to Trace-Based Users-

Oriented Simulations (TBUOS), which achieves the dual goal

of preserving as much detail as possible from the trace and



exhibiting realistic user behavior adjusted to the conditions

during the simulation.

To demonstrate the importance and effect of TBUOS we

suggest the User Priority Scheduler (UPS), which attempts to

prioritize jobs belonging to users who are expected to be active

on the system. This departs from the more common approach

of prioritizing jobs according to their individual circumstances,

e.g. how long they have been waiting in the queue. Evaluation

with TBUOS shows that this scheduler can indeed improve

system throughput and thereby also user productivity.

The contributions of this paper beyond previous work are:

• A new methodology for performance evaluation. TBUOS

is a novel simulation which is the first to achieve a com-

prehensive realistic workload with controlled load (via

resampling) and throughput adjustment (via dependencies

and feedback). Previous work had suggested each of these

components in isolation.

• Advanced understanding of the interplay between load,

performance, and throughput, e.g. how throughput de-

pends on the user population and not only on feedback.

• A new user-aware scheduler called UPS. This is con-

ceptually similar to the CREASY scheduler proposed by

Shmueli, but introduces the innovation of prioritization by

users instead of treating jobs individually. This increases

the level of coordination and reduces the risk of spreading

resources too thinly across competing users.

Being the first framework to combine resampling with a

simulation of the workflow behavior of users, our suggested

approach cannot be expected to be the last word. Our focus

is on showing an example of a semi-open simulation, and

demonstrating the capabilities of such a simulation. This is

especially important for cloud systems, which serve both batch

workflows and interactive server workflows.

In the next two sections we review related work and our

previous work on resampling and feedback. Section IV then

explains how to combine feedback and resampling and shows

simulation results. This is followed by Section V, which

introduces UPS in detail and evaluates its performance, and

by the conclusions.

II. RELATED WORK

This paper touches upon three distinct concerns: the work-

loads used to evaluate parallel job schedulers, the simulation

methodology, and the policy considerations of the schedulers.

In terms of workloads, the two most common approaches

have been to replay job traces directly, or else to create

statistical models based on job traces. Models facilitate the

creation of multiple similar workloads, potentially with con-

trolled variations such as different loads, but they suffer from

not necessarily including all the important features of the real

workload [9], [2]. Resampling (explained later) improves the

representativeness of evaluation workloads by modeling only

the parts that need to be manipulated, and using real data to

fill in the remaining details [26].

The simulations typically follow an open systems model,

where jobs are submitted by some external population of users.

Therefore job arrivals are independent of system performance

and state. But a closed system model with feedback may be

more realistic [11], [19], [17], [16], [14], as poor performance

may delay the submittal of additional jobs until previous ones

have terminated, and perhaps even discourage users and cause

them to submit fewer additional jobs. Such effects have been

discussed in several different areas. In a database context,

Hsu et al. claim that replaying timestamps from a trace loses

feedback [13]. Ganger and Patt recognize the influence of the

lack of feedback in simulations of storage subsystems as part

of a larger system, and suggested giving higher priority to

critical requests even if this degrades the performance of the

storage system by itself [12]. In evaluations of networks, the

feedback is important in shaping the traffic. For example, TCP

congestion control is highly dependent on current conditions,

so using traced timestamps for packets in simulations is wrong

[23], [11]. Also, several papers dealt with a human user’s

feedback effects on the performance of applications [15],

[22], [16], [24]. For example, Yang and Veciana modeled

users that aborted their downloads due to poor performance.

Synchronous protocols were shown to naturally throttle load

due to feedback [18], [1].

In order to include feedback in evaluations one needs a

model of how users react to load. While direct experimen-

tal evidence is rare [8], some works have considered user

tolerance of delays and bandwidth limitations (e.g. [5], [15],

[22], [24]). Shmueli used synthetic workloads with a feedback

model and a user-aware scheduler designed to exploit this

feedback effect [19], [20]. Our work extends those results in

two significant ways. First, we show how to conduct more

realistic simulations (TBUOS) using both feedback and re-

sampling. This retains all the structure that exists in workload

traces, and avoids any potential over-simplifications that may

exist in synthetic workloads. Second, we propose a user-aware

scheduler (UPS) that is not based directly on the feedback

model being used. This generalizes the results and eliminates

the risk that they depend on prior knowledge.

A parallel job contains multiple processes, which need to

run in parallel on distinct (possibly virtual) processors. The

scheduler allocates processors to such jobs and then they

run with no preemptions. A common scheduling approach is

EASY, which serves jobs in arrival order and uses backfilling

(taking jobs from the back of the queue to fill in holes in

the schedule) to pack jobs more tightly and optimize response

time and slowdown. The UPS scheduler, based on EASY, has a

similar basic structure to Shmueli’s CREASY scheduler [21],

but introduces user-based prioritization.

Scheduling on cloud platforms is a relatively young field

of research. Most papers focus on economic aspects and the

matching of requirements to resources and only a few tried to

simulate and improve their performance. For both purposes,

it is important to take into consideration the feedback and

interaction with the users’ workflows. The jobs order in a

cloud workflow is predefined and preserving it is essential

in order to produce the required results. Therefore Di et al.

have conducted extensive trace-based analyses of workloads,
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Fig. 1. Illustration of the resampling process.

and created the GloudSim trace-driven simulation environment

[7], [6]. While common simulations such as CloudSim and

GloudSim ignore dependices, some suggest a new simulation

methodology that enforces depedency preservation [4], [3].

This methodology contains a similar mechanism to ours to

enforce the preservation of dependencies, but it assumes the

dependencies are known; we need to deduce dependencies

from a recorded trace.

III. BACKGROUND

TBUOS is based on a combination of resampling and

feedback. For completeness, we review these two mechanisms.

A. Workload Resampling

Replaying a trace provides only a single data point of

performance for one workload, while in evaluations several

related workloads may be needed, e.g. to compute confidence

intervals. Resampling is a way to achieve this [26]. It is done

by partitioning workload traces into their basic independent

components, and re-grouping them in different ways to create

new workloads. Thus resampling combines the realism of real

traces with the flexibility of models.

In the context of parallel job scheduling resampling is done

at the level of users. We first partition the workload into

individual subtraces per user. We then sample from this pool

of users to create a new workload trace.

Analysis of real traces suggests the identification of two

types of users. Temporary users are those that interact with

the system for a limited time, for example while conducting a

project. After a short duration they leave the system never to

return. Long-term users, in contrast, appear to be active during

much of the trace, and may be expected to have been active

before logging started, and to send more jobs also after the

end of the recording period.

During simulation we handle the dynamics of these user

types differently. The simulation is built in units of one week,

so as to preserve not only daily but also weekly cycles of

activity. In the beginning of each week, a random number of

temporary users is chosen such that the accumulated number

will be distributed around the original average number of

temporary users. The arrival times of the jobs of these users

are shifted so that their first recorded job will arrive in this

week. A user may be chosen multiple times or zero times.

Long term users are assumed to be active continuously. To

create a variation between simulations, we start each such user

from an arbitrary week in the trace and shift all subsequent

jobs accordingly. If the simulation is supposed to continue

after their last job has terminated, we just duplicate their whole

sequence of jobs again. Note that the population of long term

users is constant throughout the simulation.

An illustration of the resampling process appears in Figure

1. In this example, user K was chosen twice, and the long

term user E was chosen to start from his 4th job, and after

his 7th one we start again from the first one.

Due to the regeneration of the long term users’ jobs and

the addition of new temporary users each week, resampling

simulations can continue indefinitely. We usually stop the sim-

ulation at a time that corresponds to the length of the original

trace. Hence the number of jobs is approximately the same as

in the original trace. Resampling produces workloads that are

similar to the original workload [26]. However, it is also easy

to induce modifications, such as extending a trace or changing

its average load. Importantly, while the resampled workloads

differ from the original in length, statistical variation, or load,

they nevertheless retain important elements of the internal

structure such as sessions and the relationship between the

sessions and the daily work cycle.

B. Simulations with Internal Feedback

Commonly used simulations are trace driven, and use an

open-system model to play back the trace and generate the

workload. This means that new requests get issued during

simulation exactly according to the timestamps from the trace,

irrespective of the logic behind the behavior of the users and

of the system state. As a result the throughput of the system

being evaluated is also dictated by the timestamps, instead of

being affected by the actual performance of the scheduler.

The problem with this approach is that each trace contains a

signature of the scheduler that was used on the traced system

[19]. In other words, the users actions reflect their reactions

to the scheduler’s decisions. And real users would react

differently to the decisions of another scheduler. Therefore,

when we want to evaluate a new scheduling policy using

a representative workload, the simulation should reflect user

reactions to the evaluated scheduler rather than to the original

scheduler. It is more important to preserve the logic of the

users’ behavior than to repeat the exact timestamps.

The way to integrate such considerations into trace-driven

simulations is by manipulating the timing of job arrivals. In

other words, the sequence of jobs submitted by each user

stays the same, but the submittal times are changed [27].



Specifically, each job’s submit time is adjusted to reflect

feedback from the system performance to the user’s behavior.

The first step in creating such a feedback based simulation

is to regenerate the dependency relations between the users’

batches of jobs. Session are defined based on inter-arrival

times between jobs [25]. Batches are jobs within the same

session that run in parallel without waiting for each other,

as when a user submits a new job before the previous one

had terminated. But a batch can depend on the arrival or

termination of previous ones, and these constraints can be

tracked and enforced. A batch then arrives to the simulated

system only when it has no pending constraints.

However, a batch cannot arrive immediately when all its

constraints are removed. Rather, its arrival should reflect

reasonable user behavior. One possible model of user behavior

is the “fluid” user model. The idea of this model is to retain the

original session times of the users, but allow batches of jobs to

flow from one session to another according to the feedback. To

do that, we keep each session’s start and end timestamps from

the original workloads. Batches are given think times from the

distribution of intra-session think times, but if this leads to an

arrival beyond the end of the session, the batch will arrive at

the beginning of the next session. If a session is skipped, it is

reinserted the following week. This model creates workloads

that have very similar distributions to the original [27].

IV. TRACE-BASED USERS-ORIENTED SIMULATION

Our goal is to develop a simulation methodology which

supports features such as increasing the load and obtaining

multiple data points for each setting, uses realistic workloads,

and simulates the effect of a system’s design reliably, including

its influence on the users’ behavior (which may result in a

different throughput). In the previous section we described

the two main components, namely resampling and feedback.

In this section we will show how to combine them into a

trace-based user-oriented simulation (TBUOS). We start with

a description of the technicalities of TBUOS. Then, we explain

how this leads to more realistic simulations. Finally, we ana-

lyze the dynamics of TBUOS, and show how TBUOS supports

simulations where system performance affects throughput.

A. Integrating Resampling and Feedback

The description of TBUOS is quite short (Figure 2). First,

we preserve all the elements of resampling as they were. This

includes:

1) Building the long term users and the temporary users pools.

2) Sampling a few temporary users each week (according to

the original rate).

3) Regenerating the long term users when their traced activity

is finished.

By not changing anything we retain all the benefits of resam-

pling, such as the ability to extend a trace or increase the load

(as was shown in [26]).

The main difference from conventional simulations using

resampling is that when a user arrives to the system (whether a

temporary user or the regeneration of a long term user), all his
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jobs are not immediately inserted into the simulation’s queue

of pending jobs. Rather, we use the feedback mechanism in an

integrated manner within the resampling so that job arrivals

will reflect the user behavior model. But the Feedback itself

remains without any change. This includes:

1) Building the batches structures from the users’ sub-traces.

2) Deducing the relations between the batches of each user.

3) Removing constraints as batches arrive and terminate.

4) Releasing to the simulation only the independent batches.

5) Using the user model to choose each batch’s arrival time.

The combination of resampling and feedback simply means

that jobs that are created by the resampling are then passed

through the feedback mechanism. This divides them into

batches, tracks each batch’s constraints, and sends to the queue

of pending jobs only the independent batches at each time step.

Temporary users in TBUOS arrive at the same average rate

as in the trace, and each one has the same jobs as in the trace.

When the last job of the user terminates, the user leaves the

system. Therefore, each temporary user contribute the same

load in TBUOS as in conventional simulations. However, due

to the feedback effects, the jobs of each individual user may

be spread out differently in simulated time.

The number of long term users in TBUOS is constant and

equal to their number in the trace. However, unlike temporary

users, they are all generated during the initialization, and they

never leave the system. Instead, they are regenerated after the

termination of their last job. Due to the feedback effect, the

end time of the last job is not predefined but rather depends

on the terminations of previous jobs. This means that the

number of jobs submitted by simulated long term users will be

different from the number in the original trace, depending on

the performance of the system in the simulation. For example,



if the the new design leads to better service, the user will send

his next batches earlier. Therefore, the users’ traced activity

will be finished earlier, and the user will be regenerated and

send more jobs, contributing to increased throughput.

Figure 3 illustrates the behavior of the two types of users,

and shows why TBUOS is a semi-open system. The temporary

users are the open part. They arrive independently of system

state, send their jobs (using internal feedback between the

jobs), and eventually leave the system. The long term users

are the closed part. They remain in the system for the duration

of the simulation. It is worth mentioning that only up to about

20% of the jobs in our workloads belong to temporary users,

and in average much less than that [26]. Therefore, a very big

part of the workload comes from the closed part.

B. Improved Realism of Simulations

As stated our goal is to develop a simulation methodology

which supports features such as increasing the load and

obtaining multiple data points for each setting, but at the same

time maintains realistic workloads with all the features that

exist in real traces. TBUOS achieves this by inheriting the

characteristics of resampling and feedback. For example, each

user submits the same jobs in the same sequence with the

same dependencies between them, as in the original workload

[26], [27].

However, resampling by its very nature does mix up the

users from the original trace. Thus user activity that was

originally performed when the system was highly loaded may

be matched up with activity of another user that was originally

performed when the system was lightly loaded [19]. This is an

unnatural combination. When the system is highly loaded jobs

take longer to execute and therefore come at longer intervals.

When the system is lightly loaded jobs run immediately,

leading to a higher rate of submitting new jobs. These different

behaviors are not expected to coexist at the same time.

TBUOS solves this problem by using feedback in addition

to resampling. The feedback preserves all the properties of

the workload (including internal dependencies and think-times

between the jobs) except the arrival times of the jobs, which

are adapted to the system’s performance. In particular, it

adjusts the job arrival rate to match the momentary conditions

in the simulated system. As a result, the simulated workload

in TBUOS is a more representative workload than the original

traced workload in the context of the simulated system.

To demonstrate this effect we compare an evaluation of the

EASY scheduler using conventional simulations with resam-

pling and using TBUOS, based on traces from the Parallel

Workloads Archive1 (Figure 4). The first observation is that

1The traces used in this paper are from the following systems: the San
Diego Supercomputer Center Blue Horizon (BLUE), the Seth cluster from
the High-Performance Computing Center North in Sweden (HPC2N), the Los
Alamos National Lab Connection Machine CM-5 (CM5), the Cornell Theory
Center IBM SP2 (CTC), the Argonne National Laboratory BlueGene/P system
Intrepid (Intrepid), the Swedish Royal Institute of Technology IBM SP2
(KTH), the San Diego Supercomputer Center DataStar (SDSC-DS), and the
San Diego Supercomputer Center IBM SP2 (SDSC-SP2). Full details about
these logs are available at http://www.cs.huji.ac.il/labs/parallel/workload/.
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the average and maximum wait times for each log are usually

much lower in TBUOS. Indeed, in some simulations the

average wait time was more than 100,000 seconds, which is

27.8 hours, meaning that the average wait time came out to be

more than a day. Under TBUOS there was no simulation with

an average wait time of more than 8 hours, and the common

values are smaller than 20,000 seconds (5.6 hours), which is

much more realistic.

We conjecture that the reason for this effect is that the

resampling loses the synchronization between the users as

exists in reality. An interesting question is how TBUOS avoids

the unrealistic long wait times. To analyze this, we compared

the relevant user behavior properties, including the number of

weeks in which the users were active and the average session

lengths (Figure 5). In TBUOS users are active during more

weeks and their session lengths tend to be shorter. This may

be interpreted as evidence that in TBUOS users react to the

system state, and if the system is overloaded, they send less

jobs during the session and delay the next session to another

time.

Another interesting difference between the distributions in

Figure 4 is their shapes. In most cases the conventional



TABLE I
AVERAGE WAIT TIME MAX/MIN RATIO WITH AND WITHOUT FEEDBACK.

Sim type BLUE CM5 CTC HPC2N Intrepid KTH SDSC-DS SDSC-SP2
conv + res 17.31 7.08 5.48 12.52 2.68 6.59 9.29 13.47
TBUOS 2.25 1.42 1.58 2.99 2.37 2.04 2.27 2.05

simulations with resampling create skewed distributions with a

tail to high values, whereas TBUOS creates a much narrower

and less skewed distribution. This is quantified using the

ratio of maximal to minimal average wait time results in

Table I. This reflects the same effect as above: resampling

can create unrealistic load conditions, but TBUOS avoids

them. To appreciate the significance of this finding, recall

that these figures show the distribution of results from 100

independent simulations. If you run only one simulation, you

can get any of these results. In particular, without TBUOS your

simulation may happen to be from the tail of the distribution,

and therefore non-representative in general. with TBUOS the

danger is much reduced, because all simulations are reasonably

similar.

C. Enabling an Effect on Throughput

Throughput is probably the best indicator for user produc-

tivity, and testifies to the scheduler’s capacity for keeping its

users satisfied and motivating them to submit more jobs. In

conventional simulations, the throughput of the system being

evaluated is dictated by the job arrival timestamps, instead

of being affected by the actual performance of the scheduler.

Even when feedback is used, this alone does not change the

throughput.

It is worth mentioning that feedback-based simulations do

change the throughput per user. In other words, the throughput

of each user does depend on the simulated system’s per-

formance, which is an important step forward. But this is

an uncommon performance metric, and more research about

its impact is needed. The more common metric of global

throughput is not changed by feedback alone, because the

number of users and the number of jobs that each one of

them submits are dictated by the trace.

TBUOS, which combines resampling and feedback, is

unique in facilitating dynamically changing throughputs. The

large number of long term users operate as a closed-system

model, and lead to throughput that depends on the system’s

performance. If the scheduler allows a user to send jobs earlier,

this user will actually send more jobs during the simulation.

Therefore, in TBUOS the scheduler is able to influence the

users’ productivity, and the simulation will actually produce

different throughputs for different system designs.

To demonstrate the ability of the scheduler to change

the throughput in TBUOS we consider the simulation of

a poor first-come, first-serve scheduler (FCFS) and a more

effective EASY scheduler. For each simulation type (conven-

tional+resampling or TBUOS) and scheduler (FCFS or EASY)

we run a hundred simulations and tabulate the throughputs

achieved. Figure 6 shows the results. Using conventional

simulation with resampling, the end time and the intervals

between the jobs are preserved. As a result, the distributions

of throughput under FCFS and EASY are similar to each other

and to the original value.

On the other hand, it is easy to see that in TBUOS the

EASY scheduler led to increased throughput relative to the

FCFS scheduler for all the traces. The difference testifies to

the more realistic simulation of the users in TBUOS, including

a logical response to a poor system performance. This results

in reduced throughput with the FCFS scheduler, somtimes less

than in the original trace.

An important observation regarding Figure 6’s results is that

the throughput with TBUOS can be quite different from the

throughput of the original trace. This indicates that each trace

includes a signature of the original scheduler from the traced

system, and may not be suitable for the direct evaluation of

other schedulers. But TBUOS compensates for this mismatch,

and can even compensate for gaps in the evaluation, as actually

happened to us in the following example. The CTC trace was

initially simulated using a system size of 430 nodes. But later

it was discovered that the correct size was 336 nodes [10],

implying that the simulation had an artificially low load. With

such low load good performance is easy to achieve, and when

using TBUOS the throughput was increased considerably to

“fill the system”. Once we identified the source of the problem

and used the correct size, the change in load was reduced

significantly (Figure 7).

Note that TBUOS is not specifically designed to handle

workloads with unrealistic low load and create a realistic

simulation. For example, if the recorded trace has only one

session per week, TBUOS will also have one session per

week (and therefore extremely low load). However, when we

use a recorded workload with realistic users’ properties, if the

simulated system has good performance, the users may send

more jobs and use the system’s resources better. This enables

the evaluation to overcome the potential deficiencies of the

recorded trace in the context of this specific simulation.

V. SIMULATING A USER-AWARE SCHEDULER

The performance metrics used in conventional trace-based

simulations are the average response time and slowdown. This

led researchers to focus on the packing of jobs in the schedule

as a means to improve the average values in simulation. The

suggested justification is that decreasing the average wait time

will improve user satisfaction and productivity. However, this

reasoning is debatable, and it may even be that increased

wait times correspond to higher user productivity. This can

be demonstrated by a simple hypothetical example. Assume

that the system is highly loaded and all the processors are

being used. In this situation, using a FCFS scheduler ensures

fairness, but also guarantees that all users have to wait long

times for their jobs to run. This risks users becoming frustrated

and aborting their sessions, thereby reducing their productivity.

An alternative LIFO scheduler can perhaps reduce this effect

by prioritizing the most recently active users at the expense

of the users who had submitted jobs longer ago.
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More generally, user-aware schedulers try to anticipate user

behavior. The scheduler’s goal is then to improve productivity

by facilitating more effective use of the system, allowing users

to submit more jobs. This is done by trying to assess whether

users are still active, and prioritizing those who have the

highest probability of submitting more jobs. This may increase

the average wait time, because jobs belonging to users who

are thought to be inactive are delayed, but will hopefully also

increase the system throughput and the productivity of active

users. Evaluating such schedulers requires methodologies like

TBUOS, because under conventional simulations the through-

put is fixed in advance.

A. The User Priority Scheduler

In this section we describe a simple new scheduler named

the User Priority Scheduler (UPS). This is a user aware

scheduler intended to motivate users to submit more jobs.

It’s general structure is similar to the CREASY scheduler

suggested by Shmueli [21]. Jobs submitted to UPS are kept

in a priority queue. When a scheduling decision has to be

made (e.g. when some job terminates and processors become

available) the highest priority job is selected for execution.

The priorities are based on a weighted sum of two terms, one

of which reflects the probability that a user will submit more

jobs, and the other reflecting the waiting time of the job.

In more detail, the operation of UPS is based on EASY.

Selecting jobs for execution is done as follows. First the queue

is scanned in job priority order, and all jobs that can run

(because enough processors are available) are dispatched. Then

a reservation is made for the first queued job in order to ensure

that it will not be starved. Finally the remainder of the queue is

scanned in user priority order and jobs are backfilled provided

they do not violate the reservation for the first job.

The differences from EASY are as follows. In EASY jobs

are prioritized by their arrival time, and both the original

scheduling and the backfilling are done in this order. In UPS

the original scheduling is done according to job priorities,

which reflect a weighted sum of wait time and user priority.

The backfilling is done in a slightly different order: first

according to user priority, and then according to waiting time

for all the jobs of each user.

Given a job J submitted by a user u its job priority is

calculated by the following expression:

Jpri(J) = αuser · Upri(u) +
αarr · J.wait

4 · (SECONDS IN HOUR)

Jpri and Upri are the job and user priorities, respectively.

Upri represents the scheduler’s “user awareness” as explained

below. αuser and αarr are the weights of the two terms, where

αuser + αarr = 1. They determine the balance between the

user awareness and the waiting time. If αarr = 1 then we only

consider the wait time and ignore the user, so this is similar to

EASY (but with backfilling order based on the user priority).

If αuser = 1 all the weight is placed on user awareness, at the

risk of starving jobs submitted by low-priority users.

The user priority Upri(u) reflects the scheduler’s goal to

give higher priority to users who are assumed to be active and

therefore have the potential to submit additional jobs. As an

initial suggestion, we consider two metrics for user activity:



Fig. 8. Distribution of throughput results in simulations without feedback
of EASY and UPS (recency based on left and load based on right) with
αuser = 0 or 1. The scheduler doesn’t have a significant effect on the
throughput.

1) Load based: priority is determined by the estimated work

(requested runtime×processors) in waiting jobs, where

more work implies lower priority. The idea is that if users

have dependencies between their jobs, we will be able to

run quickly the jobs of the user that needs less resources,

and then he will be able to send the following jobs sooner,

maybe even in the same session.

2) Recency based: priority is determined by the last job arrival

from this user, where more recent activity leads to higher

priority. The hypothesis of this approach is that maybe the

user is still within an active session, and if he will see the

results rapidly, he may decide to continue the session.

Either of these metrics can be used to define an order on

users, and then we assign user i in this order the priority

Upri(ui) = 1/i. Consequently the effective range of Upri(u)
is [0, 1]. Users with no waiting jobs are assigned Upri(u) = 0.

J.wait is the waiting time of job J in seconds, so a job’s

priority grows linearly with the time it waits in the queue.

The dividing factor of four hours normalizes this with respect

to the user priorities, such that a value of 1 is reached after

4 hours. Thus if αuser = αarr = 0.5 a newly arrived job

belonging to the highest priority user will have Jpri = 0.5,

and any job by any other user that is waiting for 4 hours or

more will have a higher priority than it. But if αuser = 0.2
and αarr = 0.8 then any other job that is waiting more than

1 hour will already have a higher priority.

The UPS avoids starvation when αarr > 0 because Upri ≤
1, so eventually every job can become the highest priority

job. It then gets a reservation due to the EASY algorithm, and

subsequently gets an allocation of processors.

B. Simulation Results

First we analyze the performance of UPS using a simula-

tion without feedback. We compare the UPS scheduler with

αuser = 0 and αuser = 1 for both approaches for prioritizing

Fig. 9. Distribution of throughput results in TBOUS Simulations comparing
EASY with UPS with different values of αuser (left: recency based; right:
load based). Different logs lead to different effects of the user awareness, from
significant differences at top, through noticeable differences in the middle, to
minor differences at bottom.

the users (Figure 8). The throughput does not change notice-

ably between the different schedulers. In particular, αuser = 1
does not lead to higher throughput, which means that user

awareness does not seem to provide any benefits.

However, we claim that the user aware scheduler is actually

better. To demonstrate this, we show in Figure 9 the results

obtained using TBUOS for different values of αuser , and both

approaches for prioritizing the users. We can see that with

feedback UPS facilitates higher throughputs in average than

EASY, and the gap grows with higher emphasis on user pri-

oritization (larger αuser). Moreover, load-based prioritization

appears to be more effective than recency based prioritization.

However, the improvement of using user aware schedulers

actually depends on the workload. In some logs, such as

BLUE, there is a very significant effect. In others, such as

HPC2N, there is only a minor effect. The logs shown in the

figure were selected to demonstrate the range of effects we

saw with the 8 logs used.

VI. CONCLUSIONS AND FUTURE WORK

Conventional open-model trace-based simulations, which

are commonly used to evaluate the performance of a new

system designs, do no adjust the simulated workload to the

system state. As a result they are unable to measure the true

throughput with the new system design.

We suggest an alternative methodology named TBUOS.

TBUOS also uses a recorded trace, and retains all the attributes



of the recorded workload except one: instead of keeping job

arrival times it keeps job dependencies and think-times, and

adjusts the arrival times to reflect dependencies and perfor-

mance. The simulation doesn’t simulate only the scheduler, but

also the users’ behavior, namely how users would respond to

the new system. As a consequence, simulations may produce

different throughputs depending on the simulated system.

Moreover, scheduling algorithms which are based on affect-

ing the input workload can’t be evaluated with conventional

simulations. The UPS is such a scheduler, and requires an

evaluation with TBUOS to demonstrate its ability to increase

the throughput.

Creating a user-oriented simulation is a new world, and

there is no single correct approach for doing so. While

TBUOS provides a proof-of-concept for user-based semi-open

simulation, other approaches are possible. Specifically, several

assumptions may be changed depending on the modeler’s point

of view. For example, maybe the temporary users should also

have a dynamic number of jobs? Maybe some of the long

term users may leave if the performance is too poor? Maybe

even the jobs properties (such as the requested number of

processors) should be adapted to the system?

In future work we intend to continue the development of

TBUOS and UPS. More work is needed to better characterize

user behavior and create better user feedback models. We also

intend to consider more advanced models of the user popula-

tion dynamics, including session aborts and system abandon-

ment. Furthermore, we need to evaluate UPS more deeply, and

compare it to other approaches, such as Shmueli’s CREASY

scheduler. Finally, A long-term goal is to implement this work

also in additional domains, demonstrating this methodology to

be effective in general in performance evaluation, and not only

in the context of parallel jobs scheduling.
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