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Abstract

The conventional performance evaluation methodology
for parallel system schedulers uses an open model to gen-
erate the workloads used in simulations. In many cases
recorded workload traces are simply played back, assum-
ing that they are reliable representatives of real workloads,
and leading to the expectation that the simulation results
actually predict the scheduler’ strue performance. e show
that the lack of feedback in these workloads results in per-
formance prediction errors, which may reach hundreds of
percents. e also show that load scaling, as currently per-
formed, further ruins the representativeness of the work-
load, by generating conditions which cannot exist in a real
environment. As an alternative, we suggest a novel site-
level modeling evaluation methodology, in which we model
not only the actions of the scheduler but also the activ-
ity of users who generate the workload dynamically. This
advances the simulation in a manner that reliably mimics
feedback effects found in real sites. In particular, satura-
tion is avoided because the generation of additional work is
throttled when the system is overloaded. While our experi-
ments were conducted in the context of parallel scheduling,
the idea of site-level simulation is applicable to many other
types of systems.

1. Introduction

the simulation begins; inter-submission times are reduced
or expanded to increase or decrease the load, respectively.

Whether the load is modified or not, an underlying
premise is that the generated workloads are reliable rep-
resentatives of workloads that would be observed by the
schedulerin areal environment. We argue that this is not the
case because these workloads lack the feedback effects that
naturally exist between users and the scheduler, and show
this lack of feedback may result in inaccurate performance
predictions of hundreds of percents. We also argue that load
scaling as currently performed further ruins the represent
tiveness of the workload, by violating precedence relation
that existed in the real environment.

To get accurate performance predictions and allow for
safe load scaling, we suggest a nosi¢¢-level modeling
evaluation methodology, in which the workload for the sim-
ulation isnot generated by replaying a trace, but dynam-
ically, in a manner that reliably mimics feedback effects
found in reality. A site-level model includes not only the
scheduler but also the users who generate the workload.
When the users wait for their jobs to complete, they intro-
duce feedback to the workload generation process, because
the completion of jobs depends on the load in the system
and on the scheduler’s ability to cope with that load.

To study these feedback effects, we analyzed recorded
system traces in an attempt to understand the way users sub-
mit jobs to the scheduler. To our best knowledge, this is the

In the conventional performance evaluation methodol- first attempt to extract such information from traces.
ogy for parallel systems schedulers, a model of the sched- We found that usergob submission behavior can be
uler is exercised in a simulation using a workload made of modeled usingoatches: groups of jobs submitted asyn-
a stream of incoming job submission requests. The sourcechronously, i.e. without waiting for one job to complete be-
for that stream is usually a trace that was recorded on a reafore submitting the next, and with short inter-submission
system. At the end of the simulation, performance metricstimes between them. Furthermore, the job submission
collected for the scheduler model are used to predict themodel is independent of the characteristics of the jobs them
scheduler’s performance in a real environment. selves. The latter can be derived using a separate model we

To generate the workload from the trace, the conven- named thenorkpool model. Together, the two models dy-
tional methodology uses an open model, where the trace isnamically generate the stream of jobs to be scheduled.
simply replayed according to the timestamps of the submis- We implemented all this in th&teSm framework for
sion requests, and there is no feedback between the comsite-level simulations. SiteSim enables the easy develop-
pletion of jobs and the submission of subsequent jobs. Toment of new job submission and workpool models, com-
evaluate the scheduler’s performance under different loadbining them in various ways to change the characteristics
conditions, the timestamps in the trace are modified beforeof the generated workload, and evaluating different sched-



uler models using these workloads in a reliable manner.
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i loads: in weeks where many jobs are submit-
2.1. Background: The Conventional M ethodology ted they tend to be small, and vice versa.

Scheduling policies for parallel systems have been the
subject of intensive research for many years. This researchhe performed by the scheduler, and there is no way to ma-
is often based on simulations, due to the impracticality of nipulate the load for the simulation. For these reasons, the
performing evaluations on real production systems, and theconventional performance evaluation methodology adopted
reduced level of detail possible with mathematical analysi the open model in generating the workload.
In a simulation, a model of the scheduler is exercised using  During the simulation statistics are recorded for each in-
a workload made of a stream of incoming job submission dividual job. These typically includes the jolvigit-time —
requests. Such a stream is often generateteplpyinga  the time the job spent in the scheduler’s queue waiting for
trace containing a list of submission request recordsjshat  processors to become available, tiesponse-time — the
records of jobs that were actually submitted to and executedtime between submission to completion (wait time + run-
on a production-use parallel machine. ning time), and thelowdown — the response time normal-

Within the trace, each submission request haisnas- ized by the actual runtime, which shows how much slower
tamp which specifies when the job was submitted, and also the job ran due to the load on the system. At the end of the

several attributes that specify the resources used by khe jo simulation, the means for these metrics are calculated and
For a space-sharing parallel machine executing rigid jobs,used as performance metrics.

typical attributes are the job'sze — the number of pro-
cessors used by job, and the jobistime — the interval
of time during which these processors were used, and thus We argue that workloads generated by replaying traces
were unavailable for other jobs. When the trace is used forare not reliable representatives of real workloads, bexaus
simulation, these attributes are treated as the resagarce the traces containsignature of the feedback effects which

2.2. Motivating a New M ethodology

quirements of the job. In addition, jobs may haverantime existed between the users and their scheduler when the trace

estimate — a rough estimation provided by the user and was recorded, and that replaying that signature during sim-

used by the scheduler to plan ahead. ulation leads to inaccurate performance predictions.
Replaying a trace directly implies aopen model, in Consider for example a loaded system where jobs wait

which the jobs’ submission rate is dictated by the times- for a long time in the scheduler’s queue for processors to
tamps from the trace. Sometimes these timestamps ardecome available. Because users often wait for their jobs to
scaled by a certain factor, so as to increase or decrease theomplete before submitting more jobs, such a high load will
load. In either case, there is no feedback between the comactually cause the submission rate to decrease, eventually
pletion of jobs and the submission of subsequent jobs. leading to a decrease in the load. As the load decreases,
The alternative is alosed model, having an uncondi-  jobs wait less time in the queue and respond faster, causing
tional feedback between the completion of a job and the the submission rate to increase again, eventually leading t
submission of the the next job. For this model, the times- a higher load, etc.
tamps in the trace are ignored and submission requests are Figure 1 illustrates that suctelf regulation by users
issued only after a previous job completes. The problem (avoid submitting additional jobs if the system is already
is that this leads to extreme regularity: there are no burstsoverloaded) indeed exists in real workload traces. The data
of activity — severely limiting the optimizations that can is from extensive logs of jobs executed on large scale paral-



lel machines (the original data and additional informateon | Category | Conventional | Site-Level ]

available in the Parallel Workloads Archive [14]). In these | Evaluation tool Simulation Simulation

scatter plots, each log is partitioned into weekly slices. F | Workload source | Trace replay Users sessions

ef';l_ch slice, the number of jobs submitted is counted. I_n ad-_ Job submissions | Trace timestamps Sume.SSIon

dition, the average node-seconds needed by these jobs is _ behavior model

tabulated. Plotting one against the other shows that wher| JOP characteristics Trace based Workpools model

there are many jobs, they tend to be smaller; when jobs are |oad scaling Trace (de)- Number of sessions
compression Submission model

heavy, there tend to be fewer of them.
Such feec_iback effects leave their signf_;lture in the trace in Table 1. Methodology Comparison.
the form of timestamps for each submission request record.
When replaying the trace according to these timestamps, the
generated workload matches the scheduling policy that wasfects found in real sites. This implies that we simulate not
in effect on the traced system, instead of adapting itself to only the evaluated scheduler, but also the users, who gen-
the scheduling policy being evaluated. This means that theerate the workload for the scheduler. During their activity
rate of submissions will not decrease if the scheduler modelperiods, known asessions, users may wait for their jobs to
fails to handle the load, nor will it increase if the model complete; when they do, they introduce feedback into the
handles the load easily, causing performance prediction toworkload generation process.
be underestimated or overestimated. In addition to the scheduler and user models, a complete
We also argue that load scaling, as currently performed,site-level simulation may also include a machine model.
further ruins the representativeness of the workload, be-This may be important because the performance of specific
cause it generates conditions which cannot exist in a realapplications may be affected by the machine’s architecture
environment. One example is the violation of dependencies[17], or by interference from other jobs [13]. However, such
between job completions and subsequent submissions. Asletailed simulations require much more information about
noted above, users often wait for their jobs to complete be-applications and take much longer to run. In this paper we
fore submitting more jobs, which means that some jobs sim-wish to focus on the feedback effects related to the work-
ply will not reside together in the scheduler’s queue. When load generated by the users. We therefore assume that job
scaling the load by modifying the jobs’ submission times- runtimes are not affected by the system state. This assump-
tamps, submission requests may be issued before the job#on is often made in conventional simulations.
they depend on complete. The workload observed by the modeled scheduler at any
Finally, the conventional performance evaluation given time during the simulation is a combination of work-
methodology uses metrics that are conjectured to be goodoads generated by all user sessions that are active at that

proxies for user satisfaction, such as the wait time or time (Figure 2). A session model has two components: a
response time. It does not support a metric that directly job submission behavior model and a workpool model. The

quantifies productivity, such as throughput. This is an job submission behavior defines thiructure of the session,

inherent problem with open system models, because ini-e. when the user submits more jobs and when he waits for

such models the throughput is dictated by the workload iobs to complete. The workpool model specifies ther-

and is not affected by the scheduler (at least as long as thecteristics of the jobs. Importantly, we found that these

system is not overloaded). two models are independent of each other. This contributes
The methodology we suggest below incorporates feeg-to the flexibility of the simulation, allowing to experiment

back into the workload generation processes to get accuratd/ith different models and modify the workload generated

performance predictions, but unlike the pure closed modelPY €ach session. _
discussed above, it postulates bursts of jobs, allowing the Table 1 summarized the difference between the conven-

scheduler to perform optimizations. Load scaling is per- fional and site-level evaluation methodologies.
formed in a safe manner that preserves the workload repre3, M odeling User s Job Submission Behavior
sentativeness, and throughput (and hence productivity) be
comes a metric that can be measured. 3.1. The Structure of Sessions
Users interact with computer systems in periods of con-
tinuous activity known as sessions [8, 1, 18]. For parallel
We suggest a novekite-level modeling evaluation  systems schedulers, a session is made of one or more job
methodology to accurately predict the true performance of submissions.
parallel system schedulers. The essence of this methodol- Zilber et al. [18] analyzed several parallel system sched-
ogy is that workloads are generated dynamically during the uler traces and classified user sessions. A preliminary step
simulation in a manner that reliably mimics feedback ef- to extracting sessions data was to determine the session

2.3. Site-Level Modeling Details
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Figure 3. CDF of “think times”. Negative val- the fact that a major fraction of the think-times (over 50%
ues indicate that one job started before the for some traces) is below zero. These negative values re-
previous one completed. sult from the definition of think-time athe time between

the completion of the previousjob and the submission of the
current job; they indicate that jobs were submitted before
bqund.aries.. This was done by §ettipg a threshold. on thethe previous job completed.
think-time distribution: shorter think times are consielgr With respect to users job submission behavior this means
to be think times within a session, while longer ones are {5t within sessions, users submit jobs eityyachronously
periods of inactiv_ity after which a subsequent submission or asynchronously. Synchronous submissions are those that
starts a new session. may depend on the completion of previous jobs, as identi-
The CDF of think-times for the different traces is shown fied by a positive think time. These submissions thus effec-
in Figure 3 (the data is again from the Parallel Workloads tively depend on the load on the system and the scheduler’s
Archive [14]). The plots show that at about twenty minutes ability to handle that load, and provide the desired feed-
the CDF stops its steep climb, which means that a large por-back. Asynchronous submissions are those that do not wait
tion of the jobs are submitted within twenty minutes of the for the previous job to complete. These submissions occur
completion of a previous job — indicating continuous activ- regardless of the state of the system.
ity periods by the users. Furthermore, beyond twenty min-  For the purpose of modeling the users’ job submission
utes and for rest of the time scale the think-times are evenlypehavior, we define hatch to be a set of jobs submitted
distributed, without any features indicating a naturad - asynchronously to one another, and the tdaatch-width
old. Zilber et al. therefore defined sessions to be sets sf job to denote the number of jobs in the batch. Using this def-

submitted within twenty minutes from the completion ofthe inition, a single job submitted synchronously is simply a

previous job. In our work we adopt this definition. special case batch that has a width of one.
Another feature of the think time distribution, which has Batches provide a convenient way to model the way
little importance for session classification, but is higimhy users submit their jobs: a session is made of a series of one

portant for understanding users’ job submission behaigior, or more batches, where each batch contains one or more



jobs. The time between the termination of the last job in a CDF of Batch-Width
batch and the submission of the first job in the next batch ! e

must not exceed twenty minutes — the session’s think-time
boundary. Within a batch, all jobs except the first are sub-
mitted before the previous job completes. All this is illus-
trated in Figure 4.

3.2. Simple Job Submission Behavior Model
2 4 6 8 10 12

To model the users job submission behavior we thus need Number of Jobs
three sets of data
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alyzing workload traces from different parallel machines. CDF of Inter-Batch Thinktimes

Given the data, one can model it by fitting appropriate prob- 1

ability distribution. Alternatively, one can use the enigat

data directly. As fitting distributions is secondary to our

primary goal of demonstrating the importance and effect of

feedback, we use empirical distributions from the SDSC-

SP2, CTC-SP2 and KTH-SP2 traces in the simulations re-

ported in this paper. o
Figure 5 shows the distribution of batch-widths for the

three workloads. Obviously the distributions are quiteisim

lar in all the traces, indicating that this data is represtare Figure 5. Distributions of batch-widths, jobs’

of user job submission behavior in general. The dominat-  jnter-submission times within batches, and

ing fraction of batches are of width one. Batches of width2  think times between batches.

are the second most common, accounting for about 10% in

each trace. Larger batches are progressively rarer. A basic workpool model is essentially composed of two
The distributions of inter-submission times for asyn- distributions, corresponding to the two main attributes of
chronous job submissions within a batch is also shown. parallel jobs:
Note that this refers to the time froome submittal to the
next, and is therefore non-negative (as opposed to the think
time, which is the interval from a termination to a submit-
tal). These and the distributions of think-times between
batches favor short times, and are also consistent acr@ss th
three traces. Analyzing the traces also indicates that jobs display a “lo-
. cality of sampling”: successive jobs tend to be very similar
4. Modeling Workpools to each other. This may be because users actually submit
We claim that the users job submission behavior is the same jobs repeatedly. To capture this effect, we also
largely independent of the characteristics of the jobs thattabulate the distribution of such repetitions.
are submitted. Modeling flexibility is enhanced by asseciat ~ Just like for the job submission behavior model, we
ing each session with distinct job submission and workpool model workpools using empirical data drawn from the three
models, which define the characteristics of the batches andraces. The distribution of the jobs sizes for the threestsac
jobs submitted during that session. In principle, the medel is shown in Figure 6. As has been observed before, this
should be statistically different, e.g. one model for lighy is a modal distribution with most jobs using power-of-two
jobs and another for heavy night jobs. However, in our cur- nodes [5]. The distributions of runtimes and repetitiores ar
rent implementation, they all draw from the same empirical also shown. Again we see that they are reasonably similar
distributions. across the three traces.
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e Size: the number of processors required for the job to
execute, assuming pure space slicing.

e Runtime: the actual time it will execute once all pro-
cessors have been allocated



CDF of Jobs Size In the simulations reported here, we typically define 10

< 1 j——= users, who all use the same job submission and workpool
5 os /‘ models. At the end of a simulation, SiteSim generates per-
B user and system-wide statistics, and a standard format trac
2 o8 7 L. Yy . .
o containing full data for each job. This can be used for post-
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§ T mortem analysis or for other simulations.
E 02 | sdscspz cin As noted above, the submission behavior and workpool
a ‘ ctc_sp2_cln ..
o k”;:”fzgzse - models we use are based on empirical data from real traces.
We used distributions generated by combining the data from
Processors
CDF of Runtimes _all thre_e traces. In the sim_ulgtion_s, we randomly generated
1 ob attributes from these distributions, and repeated gmbs
c / J p
2 s 7 cording to the distribution of repetitions. To validatesthi
= d approach we plotted the resulting distributions of workloa
L 06 . / . . . .
S / ’ attributes, which were indeed found to be very similar to the
£ 04 original distributions.
: / g
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5 L / | cespen \ 6. The Effect of Feedback on Evaluations
oot o 1000 10000 100000 6.1. I naccur ate Performance Predictions
Seconds
CDF of Size-Repetitions Users often wait for their jobs to complete before sub-
5 = mitting more jobs. If they use a low-end scheduler, that
g 08 fails to optimize the machine’s resource usage, their jobs
B osl will spend a long time in its queue waiting for resources to
° become available. As a result, new job submissions will be
2 04 . J .
5 delayed. On the other hand, if the machine’s resources are
§ 0271 F“ﬁﬁ:i,‘;%:ﬁlﬂ managed by a high-end scheduler, queuing times shorten
0 = h sp2 o and jobs complete earlier, causing new submissions to be
Sequence Length issued earlier.
When recording job submissions in a trace, the sub-
Figure 6. Distributions of job sizes, runtimes, mission timestamps form a signature of the feedback ef-
and repetitions that cause locality effects. fects between the users and the scheduler, and as explained
above, different schedulers would result in different sign
5. Simulation Framework tures. Later, when the trace is replayed during a simulation

) ) ) . it is the original signature that determines the rate of sub-
Our site-level simulation frameworlGiteSm, enables  mjssions. A trace from a high-end scheduler will contain

easy development and combination of job submission g signature that, when replayed, will generate higher loads
and workpool models, and reliable evaluation of different compared to a trace from a low-end scheduler.

scheduler models using dynamically generated workloads. T, quantify how inaccurate performance predication us-
SiteSim defines two types of entitiessers and sched- ing the conventional methodology may be, we designed an
ulers. Users generate the workload in periods of activity experimentin which a low-end scheduler is evaluated using
called sessions. At present, only a static set of sessions trace from a high-end scheduler, and vice-versa (Figure
is supported, and there are no user arrivals or departuresy), The idea is that the trace of the high-end scheduler will
As explained in Section 2.3, simulating a detailed machine generate a load that will be too much for the low-end sched-
model is not required, and therefore the machine model isuler to handle; due to the lack of feedback the submission
embedded in the scheduler model. SiteSim supports mul-rate will not decrease, and the simulation results will indi
tiple schedulers (and machines) in the same simulation, tocate extremely poor performance for the low-end scheduler,
allow the modeling of machines with multiple partitions.  underestimating its true performance. Similarly, the high
SiteSim can also run conventional simulations, sim- end scheduler will handle the low-load trace of the low-end
ply by replaying standard workload format traces (See scheduler easily, but because the submission rate wilhrot i
http://www.cs.huji.ac.il/labs/parallel/workload/swwfml). crease as happens in a real environment, the simulation will
For these simulations only one user is defined, with a indicate very good performance for this scheduler, overest
job submission model that uses the jobs' submission mating it's true performance.
timestamps from the trace, and a workpool model that takes To generate the two traces we used SiteSim to run a
job characteristics from the trace. site-level simulation of 10 concurrently active users {ses
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the prediction inaccuracy. Performancess underestimated performance <Performanc

Metrics  >> overestimated performance >> Prediction

sions). For the high-end scheduler we used the EASY | Metric EASY | FCFS| FCFS | Prediction

scheduler [11], which employs backfilling (executing jobs | (average) || Site-lev. | Conv. | Site-lev. || inaccuracy
from the back of the queue) to reduce fragmentation and | Response [s]| 8571 | 87370 | 11897 634%
improve responsiveness. For the low-end scheduler we used_Wait [s] 2283 | 81082| 5611 1345%
FCFS (first-come-first-served). For the runtime estimates | Slowdown 214 | 1127 | 787 1332%
(required by EASY) we used the actual jobs runtime, that
is, our estimates were perfectly accurate. The machine we
simulated had 128 processors.

Table 2. Underestimated performance.

. . . Metric FCFS | EASY | EASY Prediction
queresgmated Performance We ran a §|te—level simu- (average) Site-lev. | Conv. | Site-lev. || inaccuracy
lation using the EASY scheduler as the high-end scheduler.

. . . . : Response [s]| 11897 | 7695 8571 -10%
We then ran a conventional simulation using the resulting .
¢ but this ti d the ECES schedul Th Wait [s] 5611 1409 2283 -38%
race, but this time we used the scheduler. The re-——- =87 173 514 9%

sults of the simulation indicate very poor performance ef th
FCFS scheduler: over 24 hours on average for the jobs to re- Table 3. Overestimated performance.

spond, and 22.5 hours of waiting in the queue. Obviously,

given these performance predictions, one would never con-

sider using an FCFS scheduler, especially when comparingOver estimated Performance Repeating the above exper-
with EASY that achieves an average response of less thanment methodology in the opposite direction, we ran a 10
2% hours. users, site-level simulation with the FCFS scheduler man-

Next, we repeated the site-level simulation for the same aging the machine, and then ran a conventional simulation
user population, this time using FCFS. The results indicateon the generated trace, using the EASY scheduler. The re-
that FCFS actually performs reasonably considering its lim sults indicate excellent performance for EASY: two hours
itations; the jobs respond (ﬁ% hours (just 39% more than on average for the jobs to respond, and just 23 minutes of
EASY), and their mean wait is about hours. The re-  waiting in the queue. However, these performance predic-
sults for FCFS are still worse than those of EASY, but not tions are actually far too good. A site-level simulation of
as poor as predicted using the trace with the EASY signa-EASY for the same user population indicates its mean re-
ture. In fact, FCFS mean response time was overestimatedgponse time was underestimated by 10%, the mean wait by
by 634%, mean wait time by 1345%, and mean slowdown 38%, and the mean job slowdown by 19%. These results
by 1332%! These results are summarized in Table 2. are summarized in Table 3.

Note that the comparison of EASY to FCFS when us-
ing a site-level simulation is no longer based on serving the
samejobs (as in conventional simulations), but on serving
the sameausers. As a result of the feedback FCFS actually
served fewer jobs, but the difference was less than 10% for
a load of 10 sessions. Throughput is further discussed in
Section 6.3.

In summary, underestimated performance is much larger
than overestimated performance. Also, the response time
seems to be the least sensitive to performance prediction in
accuracy due to lack of feedback, and the waiting time the
most sensitive; the slowdown is in between. This is because
the wait time is the most direct measure of the system’s ef-
fect on job performance.
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n Ordering Violations
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One of the important features of a performance evalua-
tion methodology is the ability to examine performance at
different load levels. In the conventional methodologgdo
scaling is typically done by modifying the jobs’ submission
timestamps before replaying the traces in the simulation.
By multiplying job submission timestamps from the origi- 0o O3 O ST o 05 o o o6s
nal traces by a constant load scaling factor, the time betwee Offered load
subsequent submissions either increases or decreases, de- (a) FCFS trace / FCFS scheduler
pending on whether the factor is greater or smaller than one, 07 E S
respectively. This either decreases or increases the submi 06 B /
sion rate, and hence the load observed by the scheduler. 05

Modifying the original traces may effect the representa- 04
tiveness of the workload, by generating conditions which
cannot exist in a real environment. One example is the vi-
olation of dependencies between job submissions. As ex- o P
plained above, users may wait for their jobs to complete %z o3 o4 oS 408 07 08 09
before submitting more Jobs_, vyh|ch means that there is a (b) FCFS trace / EASY scheduler
dependency between submissions; jobs that are dependent o
cannot reside together in the scheduler’s queue. 06 | Blecuion Ordenng Vinaons ——

When scaling the load by modifying jobs’ submission
timestamps, it may well occur that when replaying the trace,
submission requests will be issued before the jobs they de-
pend on have completed, and even worst — before the jobs
they depend on even start executing. This raises the risk -
that the scheduler being evaluated will choose to execute 0= ;_3 ]
jobs that depend on the completion of other jobs which still Offered load
reside in the queue, totally violating the original job arde (c) EASY trace / FCFS scheduler

To quantify these effects, we used SiteSim to monitor 07 SE s
submission dependency and execution ordering violations 06 B e s
which occur during a conventional simulation. We ran two
site-level simulations, both with 10 concurrently active user
sessions. In the first simulation we used the FCFS sched-
uler, and in the second we used EASY. For each sched-
uler SiteSim generated a trace containing all job submissio !
requests, their time-stamps, and dependency information. %2 o5 o4 oS 08 07 08 0o
These traces. are different because they include the signa- (d) EASY trace / EASY scheduler
tures of the different schedulers.

We then ran conventional simulations using these traces. Figure 8. Submission-dependency and
For each trace we simulated both the FCFS and EASY  Execution-ordering violations.
schedulers, at varying load levels ranging from 0.2 to 0.7 )
for FCFS and 0.2 to 0.9 for EASY (as EASY can sustain a !0ad scaling.
higher load). We instrumented SiteSim to count the num-  For the FCFS trace in sub-figures (a) and (b), we see that
ber of submission dependency violations — the number of ~ for both schedulers, the percentage of submission depen-
times a job is submitted to the scheduler, but actually de- dency violations starts to increase at 0.5 offeredteadhe
pends on the Comp|etion of ajob that has not Comp|eted yet_original |Oad in the trace. For the FCFS SCheduIer the pel’-
We also count the number of times the scheduler chooses t¢entage of submission violations increases almost ligearl

start executing a job that depends on the completion of a job'®aching 100% at 0.7 offered load — a load at which the
that still remains in the queue. We call the latteecution ~ Simulated system is saturated. Obviously, because FCFS

ordering violations. executes jobs according to queue order, there are no execu-

Flgqre 8 shows th.e fre.lCtlon of JObS Wh.ose submission or 1The offered load is the load imposed on the system in an opefeino
exet_:utpn involved V|0Iat.|o.ns. Inall .SUb'ﬂgureSv the debh e accepted load is what the system manages to handle, grisbrtwaver
vertical line shows the original load in the trace, withomga  than the offered load if it is saturated or requests are drdpp
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Figure 10. Load scaling in conventional sim- often seen in open-system models, which tend to infinity
ulations. The graphs for wait time and slow- when the load approaches the saturation point, see Figure
down are very similar. 10, here the degradation in performance is much milder, due

_ o to the feedback that curbs the generation of additional work
tion ordering violations.

For the EASY trace in sub-figures (c) and (d), we see 6.3. Quantifying Productivity
that when using the FCFS scheduler the percentage of sub-
mission dependency violations starts to increase far befor  Increasing overall site productivity is a primary goal of
reaching the original load in the trace. The reason is thatany parallel system scheduler, but the conventional evalu-
the EASY trace contains such a high-load signature, whichation methodology lacks a metric for quantifying produc-
is too much for the FCFS scheduler to handle, even if the tivity. The only metric that correlates with productivity i
load is scaled below the original load in the trace. In fact, the average machine utilization — the fraction of the ma-
some submission dependency violations occur even for thechine that got utilized over its activity period. Intuitiye
EASY scheduler under reduced load. There are no viola-the larger this fraction is, the more work that was per-
tions only at an offered load of 0.55 (the original load from formed, implicitly indicating a higher productivity. How-
the EASY trace), because at this point the lack of feedbackever, in conventional simulations this is dictated by tre ra
of the conventional simulation has no effect on the repre- new jobs are submitted, so it does not really reflect on the
sentativeness of the workload. performance of the scheduler.

For site-level simulations, load scaling is performed by  In contradistinction, our site-level evaluation methoedol
simulating different numbers of users, which effectively ogy provides a metric that quantifies productivity directly
changes the number of concurrently active sessions — in-the systenthroughout, which is defined as the number of
creasing or decreasing the load. There is no problem withjobs processed in a given time frame. Figure 11 shows the
violating any dependency because the workload is dynam-throughput, measured as the average number of jobs exe-
ically generated which means that a submission which de-cuted in a 24 hours timeframe, for the FCFS and the EASY
pends on the completion of a previous job will only com- schedulers. For comparison, it also shows the utilization.
mence after a that job has completed and following a period The results indicate that the two metrics are highly corre-
of think-time. lated. They also show how the throughput levels out when

Figure 9 shows how the value of performance metrics the system becomes saturated. Beyond this point adding
changes, when the load is scaled for site-level simulations user sessions does not contribute to the throughput, byt onl
As can be expected, the performance of EASY is alwaysincreases the average response time. Also, the onset of sat-
better than that of FCFS, but the more interesting phe-uration is gradual rather than being sharp as in converitiona
nomenon is the shape of the curves; instead of the curvesimulations.



7. Related Work ferent characteristics. Finally, our new methodologyscall
for new performance metrics. One such metric, the sched-
blger’s throughput as a quantifier for the site’s produdivit
was introduced in Section 6.3. An interesting research di-
rection is to find new metrics that measure the users’ satis-
faction of the scheduler performance even more directly.

Most of the work on workload modeling for parallel su-
percomputers has been based on the open model, where jo
arrive at a given rate irrespective of how the scheduler han-
dled previousjobs [10, 5, 4, 3, 12]. However, there has been
some workload modeling work in other contexts that did in-
volve feedback. One example is the study of gaming traffic Acknowledgments This work was supported in part by
[2]. Ganger and Patt observe the neither the open nor thethe Israel Science Foundation (grant no. 167/03).
closed model are satisfactory in their pure form, because Many thanks are due to all those who provided workload
real workloads are a mix with only some items being criti- data to the Parallel Workloads Archive. In particular, we
cal for progress [6]. This led to work by Hsu and Smith who mainly used logs from the San Diego Supercomputer Center
added feedback to 1/0 traces, similarly to our own work [9]. (SDSC), from the Cornell theory Center (CTC), and from
It has also been suggested to try to use feedback in networkhe Royal Institute of Technology in Stokholm (KTH).
design to avoid congestion [15].
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