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Abstract

The conventional performance evaluation methodology
for parallel system schedulers uses an open model to gen-
erate the workloads used in simulations. In many cases
recorded workload traces are simply played back, assum-
ing that they are reliable representatives of real workloads,
and leading to the expectation that the simulation results
actually predict the scheduler’s true performance. We show
that the lack of feedback in these workloads results in per-
formance prediction errors, which may reach hundreds of
percents. We also show that load scaling, as currently per-
formed, further ruins the representativeness of the work-
load, by generating conditions which cannot exist in a real
environment. As an alternative, we suggest a novel site-
level modeling evaluation methodology, in which we model
not only the actions of the scheduler but also the activ-
ity of users who generate the workload dynamically. This
advances the simulation in a manner that reliably mimics
feedback effects found in real sites. In particular, satura-
tion is avoided because the generation of additional work is
throttled when the system is overloaded. While our experi-
ments were conducted in the context of parallel scheduling,
the idea of site-level simulation is applicable to many other
types of systems.

1. Introduction

In the conventional performance evaluation methodol-
ogy for parallel systems schedulers, a model of the sched-
uler is exercised in a simulation using a workload made of
a stream of incoming job submission requests. The source
for that stream is usually a trace that was recorded on a real
system. At the end of the simulation, performance metrics
collected for the scheduler model are used to predict the
scheduler’s performance in a real environment.

To generate the workload from the trace, the conven-
tional methodology uses an open model, where the trace is
simply replayed according to the timestamps of the submis-
sion requests, and there is no feedback between the com-
pletion of jobs and the submission of subsequent jobs. To
evaluate the scheduler’s performance under different load
conditions, the timestamps in the trace are modified before

the simulation begins; inter-submission times are reduced
or expanded to increase or decrease the load, respectively.

Whether the load is modified or not, an underlying
premise is that the generated workloads are reliable rep-
resentatives of workloads that would be observed by the
scheduler in a real environment. We argue that this is not the
case because these workloads lack the feedback effects that
naturally exist between users and the scheduler, and show
this lack of feedback may result in inaccurate performance
predictions of hundreds of percents. We also argue that load
scaling as currently performed further ruins the representa-
tiveness of the workload, by violating precedence relations
that existed in the real environment.

To get accurate performance predictions and allow for
safe load scaling, we suggest a novelsite-level modeling
evaluation methodology, in which the workload for the sim-
ulation is not generated by replaying a trace, but dynam-
ically, in a manner that reliably mimics feedback effects
found in reality. A site-level model includes not only the
scheduler but also the users who generate the workload.
When the users wait for their jobs to complete, they intro-
duce feedback to the workload generation process, because
the completion of jobs depends on the load in the system
and on the scheduler’s ability to cope with that load.

To study these feedback effects, we analyzed recorded
system traces in an attempt to understand the way users sub-
mit jobs to the scheduler. To our best knowledge, this is the
first attempt to extract such information from traces.

We found that usersjob submission behavior can be
modeled usingbatches: groups of jobs submitted asyn-
chronously, i.e. without waiting for one job to complete be-
fore submitting the next, and with short inter-submission
times between them. Furthermore, the job submission
model is independent of the characteristics of the jobs them-
selves. The latter can be derived using a separate model we
named theworkpool model. Together, the two models dy-
namically generate the stream of jobs to be scheduled.

We implemented all this in theSiteSim framework for
site-level simulations. SiteSim enables the easy develop-
ment of new job submission and workpool models, com-
bining them in various ways to change the characteristics
of the generated workload, and evaluating different sched-



uler models using these workloads in a reliable manner.
It also generates a trace of each simulation, which can be
used for conventional simulations. We use these traces to
demonstrate the differences between the conventional and
site-level approaches.

This paper is organized as follows: Section 2 describes
the conventional performance evaluation methodology, mo-
tivates a new methodology, and describes our novel site-
level modeling evaluation methodology in detail. Sections
3 and 4 describe the job submission behavior and workpool
models. SiteSim is discussed in Section 5. Section 6 de-
scribes the experiments we performed to demonstrate the
effect of feedback on evaluations. Section 7 outlines related
work, and Section 8 concludes and discusses future work.

2. Site-Level Modeling

2.1. Background: The Conventional Methodology

Scheduling policies for parallel systems have been the
subject of intensive research for many years. This research
is often based on simulations, due to the impracticality of
performing evaluations on real production systems, and the
reduced level of detail possible with mathematical analysis.
In a simulation, a model of the scheduler is exercised using
a workload made of a stream of incoming job submission
requests. Such a stream is often generated byreplaying a
trace containing a list of submission request records, thatis,
records of jobs that were actually submitted to and executed
on a production-use parallel machine.

Within the trace, each submission request has atimes-
tamp which specifies when the job was submitted, and also
several attributes that specify the resources used by the job.
For a space-sharing parallel machine executing rigid jobs,
typical attributes are the job’ssize — the number of pro-
cessors used by job, and the job’sruntime — the interval
of time during which these processors were used, and thus
were unavailable for other jobs. When the trace is used for
simulation, these attributes are treated as the resourcere-
quirements of the job. In addition, jobs may have aruntime
estimate — a rough estimation provided by the user and
used by the scheduler to plan ahead.

Replaying a trace directly implies anopen model, in
which the jobs’ submission rate is dictated by the times-
tamps from the trace. Sometimes these timestamps are
scaled by a certain factor, so as to increase or decrease the
load. In either case, there is no feedback between the com-
pletion of jobs and the submission of subsequent jobs.

The alternative is aclosed model, having an uncondi-
tional feedback between the completion of a job and the
submission of the the next job. For this model, the times-
tamps in the trace are ignored and submission requests are
issued only after a previous job completes. The problem
is that this leads to extreme regularity: there are no bursts
of activity — severely limiting the optimizations that can
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Figure 1. The effect of feedback in real work-
loads: in weeks where many jobs are submit-
ted they tend to be small, and vice versa.

be performed by the scheduler, and there is no way to ma-
nipulate the load for the simulation. For these reasons, the
conventional performance evaluation methodology adopted
the open model in generating the workload.

During the simulation statistics are recorded for each in-
dividual job. These typically includes the job’swait-time —
the time the job spent in the scheduler’s queue waiting for
processors to become available, theresponse-time — the
time between submission to completion (wait time + run-
ning time), and theslowdown — the response time normal-
ized by the actual runtime, which shows how much slower
the job ran due to the load on the system. At the end of the
simulation, the means for these metrics are calculated and
used as performance metrics.

2.2. Motivating a New Methodology

We argue that workloads generated by replaying traces
are not reliable representatives of real workloads, because
the traces contain asignature of the feedback effects which
existed between the users and their scheduler when the trace
was recorded, and that replaying that signature during sim-
ulation leads to inaccurate performance predictions.

Consider for example a loaded system where jobs wait
for a long time in the scheduler’s queue for processors to
become available. Because users often wait for their jobs to
complete before submitting more jobs, such a high load will
actually cause the submission rate to decrease, eventually
leading to a decrease in the load. As the load decreases,
jobs wait less time in the queue and respond faster, causing
the submission rate to increase again, eventually leading to
a higher load, etc.

Figure 1 illustrates that suchself regulation by users
(avoid submitting additional jobs if the system is already
overloaded) indeed exists in real workload traces. The data
is from extensive logs of jobs executed on large scale paral-



lel machines (the original data and additional informationis
available in the Parallel Workloads Archive [14]). In these
scatter plots, each log is partitioned into weekly slices. For
each slice, the number of jobs submitted is counted. In ad-
dition, the average node-seconds needed by these jobs is
tabulated. Plotting one against the other shows that when
there are many jobs, they tend to be smaller; when jobs are
heavy, there tend to be fewer of them.

Such feedback effects leave their signature in the trace in
the form of timestamps for each submission request record.
When replaying the trace according to these timestamps, the
generated workload matches the scheduling policy that was
in effect on the traced system, instead of adapting itself to
the scheduling policy being evaluated. This means that the
rate of submissions will not decrease if the scheduler model
fails to handle the load, nor will it increase if the model
handles the load easily, causing performance prediction to
be underestimated or overestimated.

We also argue that load scaling, as currently performed,
further ruins the representativeness of the workload, be-
cause it generates conditions which cannot exist in a real
environment. One example is the violation of dependencies
between job completions and subsequent submissions. As
noted above, users often wait for their jobs to complete be-
fore submitting more jobs, which means that some jobs sim-
ply will not reside together in the scheduler’s queue. When
scaling the load by modifying the jobs’ submission times-
tamps, submission requests may be issued before the jobs
they depend on complete.

Finally, the conventional performance evaluation
methodology uses metrics that are conjectured to be good
proxies for user satisfaction, such as the wait time or
response time. It does not support a metric that directly
quantifies productivity, such as throughput. This is an
inherent problem with open system models, because in
such models the throughput is dictated by the workload
and is not affected by the scheduler (at least as long as the
system is not overloaded).

The methodology we suggest below incorporates feed-
back into the workload generation processes to get accurate
performance predictions, but unlike the pure closed model
discussed above, it postulates bursts of jobs, allowing the
scheduler to perform optimizations. Load scaling is per-
formed in a safe manner that preserves the workload repre-
sentativeness, and throughput (and hence productivity) be-
comes a metric that can be measured.

2.3. Site-Level Modeling Details

We suggest a novelsite-level modeling evaluation
methodology to accurately predict the true performance of
parallel system schedulers. The essence of this methodol-
ogy is that workloads are generated dynamically during the
simulation in a manner that reliably mimics feedback ef-

Category Conventional Site-Level

Evaluation tool Simulation Simulation
Workload source Trace replay Users sessions

Job submissions Trace timestamps
Submission
behavior model

Job characteristics Trace based Workpools model

Load scaling
Trace (de)-
compression

Number of sessions
Submission model

Table 1. Methodology Comparison.

fects found in real sites. This implies that we simulate not
only the evaluated scheduler, but also the users, who gen-
erate the workload for the scheduler. During their activity
periods, known assessions, users may wait for their jobs to
complete; when they do, they introduce feedback into the
workload generation process.

In addition to the scheduler and user models, a complete
site-level simulation may also include a machine model.
This may be important because the performance of specific
applications may be affected by the machine’s architecture
[17], or by interference from other jobs [13]. However, such
detailed simulations require much more information about
applications and take much longer to run. In this paper we
wish to focus on the feedback effects related to the work-
load generated by the users. We therefore assume that job
runtimes are not affected by the system state. This assump-
tion is often made in conventional simulations.

The workload observed by the modeled scheduler at any
given time during the simulation is a combination of work-
loads generated by all user sessions that are active at that
time (Figure 2). A session model has two components: a
job submission behavior model and a workpool model. The
job submission behavior defines thestructure of the session,
i.e. when the user submits more jobs and when he waits for
jobs to complete. The workpool model specifies thechar-
acteristics of the jobs. Importantly, we found that these
two models are independent of each other. This contributes
to the flexibility of the simulation, allowing to experiment
with different models and modify the workload generated
by each session.

Table 1 summarized the difference between the conven-
tional and site-level evaluation methodologies.

3. Modeling Users Job Submission Behavior

3.1. The Structure of Sessions

Users interact with computer systems in periods of con-
tinuous activity known as sessions [8, 1, 18]. For parallel
systems schedulers, a session is made of one or more job
submissions.

Zilber et al. [18] analyzed several parallel system sched-
uler traces and classified user sessions. A preliminary step
to extracting sessions data was to determine the session



Figure 2. In site-level sim-
ulation the workload ob-
served by the scheduler
model is dynamically gener-
ated by several concurrent
user sessions. Each ses-
sion has a workpool model
that defines the characteris-
tics of the submitted jobs,
and a job submission model
that defines when they are
submitted and introduces
feedback to the workload
generation process.
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Figure 3. CDF of “think times”. Negative val-
ues indicate that one job started before the
previous one completed.

boundaries. This was done by setting a threshold on the
think-time distribution: shorter think times are considered
to be think times within a session, while longer ones are
periods of inactivity after which a subsequent submission
starts a new session.

The CDF of think-times for the different traces is shown
in Figure 3 (the data is again from the Parallel Workloads
Archive [14]). The plots show that at about twenty minutes
the CDF stops its steep climb, which means that a large por-
tion of the jobs are submitted within twenty minutes of the
completion of a previous job — indicating continuous activ-
ity periods by the users. Furthermore, beyond twenty min-
utes and for rest of the time scale the think-times are evenly
distributed, without any features indicating a natural thresh-
old. Zilber et al. therefore defined sessions to be sets of jobs
submitted within twenty minutes from the completion of the
previous job. In our work we adopt this definition.

Another feature of the think time distribution, which has
little importance for session classification, but is highlyim-
portant for understanding users’ job submission behavior,is

Job

TT TTTT TimeTT TT

Session 1 Session 2

ISG

TT − Thinktime (20 minutes max)

ISG − Inter−Session GapSession

Batch

Figure 4. Sessions and batches.

the fact that a major fraction of the think-times (over 50%
for some traces) is below zero. These negative values re-
sult from the definition of think-time asthe time between
the completion of the previous job and the submission of the
current job; they indicate that jobs were submitted before
the previous job completed.

With respect to users job submission behavior this means
that within sessions, users submit jobs eithersynchronously
or asynchronously. Synchronous submissions are those that
may depend on the completion of previous jobs, as identi-
fied by a positive think time. These submissions thus effec-
tively depend on the load on the system and the scheduler’s
ability to handle that load, and provide the desired feed-
back. Asynchronous submissions are those that do not wait
for the previous job to complete. These submissions occur
regardless of the state of the system.

For the purpose of modeling the users’ job submission
behavior, we define abatch to be a set of jobs submitted
asynchronously to one another, and the termbatch-width
to denote the number of jobs in the batch. Using this def-
inition, a single job submitted synchronously is simply a
special case batch that has a width of one.

Batches provide a convenient way to model the way
users submit their jobs: a session is made of a series of one
or more batches, where each batch contains one or more



jobs. The time between the termination of the last job in a
batch and the submission of the first job in the next batch
must not exceed twenty minutes — the session’s think-time
boundary. Within a batch, all jobs except the first are sub-
mitted before the previous job completes. All this is illus-
trated in Figure 4.

3.2. Simple Job Submission Behavior Model

To model the users job submission behavior we thus need
three sets of data

• The distribution of batch-widths

• The distribution of job inter-submission times within
batches

• The distribution of (positive, inter-batch) think-times
of up-to twenty minutes

Data for these distributions can naturally be obtained by an-
alyzing workload traces from different parallel machines.
Given the data, one can model it by fitting appropriate prob-
ability distribution. Alternatively, one can use the empirical
data directly. As fitting distributions is secondary to our
primary goal of demonstrating the importance and effect of
feedback, we use empirical distributions from the SDSC-
SP2, CTC-SP2 and KTH-SP2 traces in the simulations re-
ported in this paper.

Figure 5 shows the distribution of batch-widths for the
three workloads. Obviously the distributions are quite simi-
lar in all the traces, indicating that this data is representative
of user job submission behavior in general. The dominat-
ing fraction of batches are of width one. Batches of width 2
are the second most common, accounting for about 10% in
each trace. Larger batches are progressively rarer.

The distributions of inter-submission times for asyn-
chronous job submissions within a batch is also shown.
Note that this refers to the time fromone submittal to the
next, and is therefore non-negative (as opposed to the think
time, which is the interval from a termination to a submit-
tal). These and the distributions of think-times between
batches favor short times, and are also consistent across the
three traces.

4. Modeling Workpools

We claim that the users job submission behavior is
largely independent of the characteristics of the jobs that
are submitted. Modeling flexibility is enhanced by associat-
ing each session with distinct job submission and workpool
models, which define the characteristics of the batches and
jobs submitted during that session. In principle, the models
should be statistically different, e.g. one model for lightday
jobs and another for heavy night jobs. However, in our cur-
rent implementation, they all draw from the same empirical
distributions.
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Figure 5. Distributions of batch-widths, jobs’
inter-submission times within batches, and
think times between batches.

A basic workpool model is essentially composed of two
distributions, corresponding to the two main attributes of
parallel jobs:

• Size: the number of processors required for the job to
execute, assuming pure space slicing.

• Runtime: the actual time it will execute once all pro-
cessors have been allocated

Analyzing the traces also indicates that jobs display a “lo-
cality of sampling”: successive jobs tend to be very similar
to each other. This may be because users actually submit
the same jobs repeatedly. To capture this effect, we also
tabulate the distribution of such repetitions.

Just like for the job submission behavior model, we
model workpools using empirical data drawn from the three
traces. The distribution of the jobs sizes for the three traces
is shown in Figure 6. As has been observed before, this
is a modal distribution with most jobs using power-of-two
nodes [5]. The distributions of runtimes and repetitions are
also shown. Again we see that they are reasonably similar
across the three traces.
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Figure 6. Distributions of job sizes, runtimes,
and repetitions that cause locality effects.

5. Simulation Framework

Our site-level simulation framework,SiteSim, enables
easy development and combination of job submission
and workpool models, and reliable evaluation of different
scheduler models using dynamically generated workloads.

SiteSim defines two types of entities:users andsched-
ulers. Users generate the workload in periods of activity
called sessions. At present, only a static set of sessions
is supported, and there are no user arrivals or departures.
As explained in Section 2.3, simulating a detailed machine
model is not required, and therefore the machine model is
embedded in the scheduler model. SiteSim supports mul-
tiple schedulers (and machines) in the same simulation, to
allow the modeling of machines with multiple partitions.

SiteSim can also run conventional simulations, sim-
ply by replaying standard workload format traces (See
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html).
For these simulations only one user is defined, with a
job submission model that uses the jobs’ submission
timestamps from the trace, and a workpool model that takes
job characteristics from the trace.

In the simulations reported here, we typically define 10
users, who all use the same job submission and workpool
models. At the end of a simulation, SiteSim generates per-
user and system-wide statistics, and a standard format trace
containing full data for each job. This can be used for post-
mortem analysis or for other simulations.

As noted above, the submission behavior and workpool
models we use are based on empirical data from real traces.
We used distributions generated by combining the data from
all three traces. In the simulations, we randomly generated
job attributes from these distributions, and repeated jobsac-
cording to the distribution of repetitions. To validate this
approach we plotted the resulting distributions of workload
attributes, which were indeed found to be very similar to the
original distributions.

6. The Effect of Feedback on Evaluations

6.1. Inaccurate Performance Predictions

Users often wait for their jobs to complete before sub-
mitting more jobs. If they use a low-end scheduler, that
fails to optimize the machine’s resource usage, their jobs
will spend a long time in its queue waiting for resources to
become available. As a result, new job submissions will be
delayed. On the other hand, if the machine’s resources are
managed by a high-end scheduler, queuing times shorten
and jobs complete earlier, causing new submissions to be
issued earlier.

When recording job submissions in a trace, the sub-
mission timestamps form a signature of the feedback ef-
fects between the users and the scheduler, and as explained
above, different schedulers would result in different signa-
tures. Later, when the trace is replayed during a simulation,
it is the original signature that determines the rate of sub-
missions. A trace from a high-end scheduler will contain
a signature that, when replayed, will generate higher loads
compared to a trace from a low-end scheduler.

To quantify how inaccurate performance predication us-
ing the conventional methodology may be, we designed an
experiment in which a low-end scheduler is evaluated using
a trace from a high-end scheduler, and vice-versa (Figure
7). The idea is that the trace of the high-end scheduler will
generate a load that will be too much for the low-end sched-
uler to handle; due to the lack of feedback the submission
rate will not decrease, and the simulation results will indi-
cate extremely poor performance for the low-end scheduler,
underestimating its true performance. Similarly, the high-
end scheduler will handle the low-load trace of the low-end
scheduler easily, but because the submission rate will not in-
crease as happens in a real environment, the simulation will
indicate very good performance for this scheduler, overesti-
mating it’s true performance.

To generate the two traces we used SiteSim to run a
site-level simulation of 10 concurrently active users (ses-



Figure 7. Experiment illustration:
(1) Site level simulation generates
a trace with a signature of one
scheduler. (2) Conventional sim-
ulation using this trace predicts
another scheduler’s performance.
(3) Site-level simulation of this
other scheduler produces perfor-
mance metrics used to quantify
the prediction inaccuracy.
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sions). For the high-end scheduler we used the EASY
scheduler [11], which employs backfilling (executing jobs
from the back of the queue) to reduce fragmentation and
improve responsiveness. For the low-end scheduler we used
FCFS (first-come-first-served). For the runtime estimates
(required by EASY) we used the actual jobs runtime, that
is, our estimates were perfectly accurate. The machine we
simulated had 128 processors.

Underestimated Performance We ran a site-level simu-
lation using the EASY scheduler as the high-end scheduler.
We then ran a conventional simulation using the resulting
trace, but this time we used the FCFS scheduler. The re-
sults of the simulation indicate very poor performance of the
FCFS scheduler: over 24 hours on average for the jobs to re-
spond, and 22.5 hours of waiting in the queue. Obviously,
given these performance predictions, one would never con-
sider using an FCFS scheduler, especially when comparing
with EASY that achieves an average response of less than
2

1

2
hours.
Next, we repeated the site-level simulation for the same

user population, this time using FCFS. The results indicate
that FCFS actually performs reasonably considering its lim-
itations; the jobs respond in3 1

3
hours (just 39% more than

EASY), and their mean wait is about1
1

2
hours. The re-

sults for FCFS are still worse than those of EASY, but not
as poor as predicted using the trace with the EASY signa-
ture. In fact, FCFS mean response time was overestimated
by 634%, mean wait time by 1345%, and mean slowdown
by 1332%! These results are summarized in Table 2.

Note that the comparison of EASY to FCFS when us-
ing a site-level simulation is no longer based on serving the
samejobs (as in conventional simulations), but on serving
the sameusers. As a result of the feedback FCFS actually
served fewer jobs, but the difference was less than 10% for
a load of 10 sessions. Throughput is further discussed in
Section 6.3.

Metric
(average)

EASY
Site-lev.

FCFS
Conv.

FCFS
Site-lev.

Prediction
inaccuracy

Response [s] 8571 87370 11897 634%
Wait [s] 2283 81082 5611 1345%
Slowdown 21.4 1127 78.7 1332%

Table 2. Underestimated performance.

Metric
(average)

FCFS
Site-lev.

EASY
Conv.

EASY
Site-lev.

Prediction
inaccuracy

Response [s] 11897 7695 8571 -10%
Wait [s] 5611 1409 2283 -38%
Slowdown 78.7 17.3 21.4 -19%

Table 3. Overestimated performance.

Overestimated Performance Repeating the above exper-
iment methodology in the opposite direction, we ran a 10
users, site-level simulation with the FCFS scheduler man-
aging the machine, and then ran a conventional simulation
on the generated trace, using the EASY scheduler. The re-
sults indicate excellent performance for EASY: two hours
on average for the jobs to respond, and just 23 minutes of
waiting in the queue. However, these performance predic-
tions are actually far too good. A site-level simulation of
EASY for the same user population indicates its mean re-
sponse time was underestimated by 10%, the mean wait by
38%, and the mean job slowdown by 19%. These results
are summarized in Table 3.

In summary, underestimated performance is much larger
than overestimated performance. Also, the response time
seems to be the least sensitive to performance prediction in-
accuracy due to lack of feedback, and the waiting time the
most sensitive; the slowdown is in between. This is because
the wait time is the most direct measure of the system’s ef-
fect on job performance.



6.2. Safe Load Scaling

One of the important features of a performance evalua-
tion methodology is the ability to examine performance at
different load levels. In the conventional methodology, load
scaling is typically done by modifying the jobs’ submission
timestamps before replaying the traces in the simulation.
By multiplying job submission timestamps from the origi-
nal traces by a constant load scaling factor, the time between
subsequent submissions either increases or decreases, de-
pending on whether the factor is greater or smaller than one,
respectively. This either decreases or increases the submis-
sion rate, and hence the load observed by the scheduler.

Modifying the original traces may effect the representa-
tiveness of the workload, by generating conditions which
cannot exist in a real environment. One example is the vi-
olation of dependencies between job submissions. As ex-
plained above, users may wait for their jobs to complete
before submitting more jobs, which means that there is a
dependency between submissions; jobs that are dependent
cannot reside together in the scheduler’s queue.

When scaling the load by modifying jobs’ submission
timestamps, it may well occur that when replaying the trace,
submission requests will be issued before the jobs they de-
pend on have completed, and even worst — before the jobs
they depend on even start executing. This raises the risk
that the scheduler being evaluated will choose to execute
jobs that depend on the completion of other jobs which still
reside in the queue, totally violating the original job order.

To quantify these effects, we used SiteSim to monitor
submission dependency and execution ordering violations
which occur during a conventional simulation. We ran two
site-level simulations, both with 10 concurrently active user
sessions. In the first simulation we used the FCFS sched-
uler, and in the second we used EASY. For each sched-
uler SiteSim generated a trace containing all job submission
requests, their time-stamps, and dependency information.
These traces are different because they include the signa-
tures of the different schedulers.

We then ran conventional simulations using these traces.
For each trace we simulated both the FCFS and EASY
schedulers, at varying load levels ranging from 0.2 to 0.7
for FCFS and 0.2 to 0.9 for EASY (as EASY can sustain a
higher load). We instrumented SiteSim to count the num-
ber of submission dependency violations — the number of
times a job is submitted to the scheduler, but actually de-
pends on the completion of a job that has not completed yet.
We also count the number of times the scheduler chooses to
start executing a job that depends on the completion of a job
that still remains in the queue. We call the latterexecution
ordering violations.

Figure 8 shows the fraction of jobs whose submission or
execution involved violations. In all sub-figures, the dashed
vertical line shows the original load in the trace, without any
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Figure 8. Submission-dependency and
Execution-ordering violations.

load scaling.
For the FCFS trace in sub-figures (a) and (b), we see that

for both schedulers, the percentage of submission depen-
dency violations starts to increase at 0.5 offered load1 — the
original load in the trace. For the FCFS scheduler the per-
centage of submission violations increases almost linearly,
reaching 100% at 0.7 offered load — a load at which the
simulated system is saturated. Obviously, because FCFS
executes jobs according to queue order, there are no execu-

1The offered load is the load imposed on the system in an open model.
The accepted load is what the system manages to handle, and may be lower
than the offered load if it is saturated or requests are dropped.
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Figure 9. Load scaling in Site-level simula-
tions. The results for wait time are like re-
sponse time, shifted down.
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Figure 10. Load scaling in conventional sim-
ulations. The graphs for wait time and slow-
down are very similar.

tion ordering violations.
For the EASY trace in sub-figures (c) and (d), we see

that when using the FCFS scheduler the percentage of sub-
mission dependency violations starts to increase far before
reaching the original load in the trace. The reason is that
the EASY trace contains such a high-load signature, which
is too much for the FCFS scheduler to handle, even if the
load is scaled below the original load in the trace. In fact,
some submission dependency violations occur even for the
EASY scheduler under reduced load. There are no viola-
tions only at an offered load of 0.55 (the original load from
the EASY trace), because at this point the lack of feedback
of the conventional simulation has no effect on the repre-
sentativeness of the workload.

For site-level simulations, load scaling is performed by
simulating different numbers of users, which effectively
changes the number of concurrently active sessions — in-
creasing or decreasing the load. There is no problem with
violating any dependency because the workload is dynam-
ically generated which means that a submission which de-
pends on the completion of a previous job will only com-
mence after a that job has completed and following a period
of think-time.

Figure 9 shows how the value of performance metrics
changes, when the load is scaled for site-level simulations.
As can be expected, the performance of EASY is always
better than that of FCFS, but the more interesting phe-
nomenon is the shape of the curves; instead of the curves
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Figure 11. Utilization and throughput: implicit
and explicit productivity measures.

often seen in open-system models, which tend to infinity
when the load approaches the saturation point, see Figure
10, here the degradation in performance is much milder, due
to the feedback that curbs the generation of additional work.

6.3. Quantifying Productivity

Increasing overall site productivity is a primary goal of
any parallel system scheduler, but the conventional evalu-
ation methodology lacks a metric for quantifying produc-
tivity. The only metric that correlates with productivity is
the average machine utilization — the fraction of the ma-
chine that got utilized over its activity period. Intuitively,
the larger this fraction is, the more work that was per-
formed, implicitly indicating a higher productivity. How-
ever, in conventional simulations this is dictated by the rate
new jobs are submitted, so it does not really reflect on the
performance of the scheduler.

In contradistinction, our site-level evaluation methodol-
ogy provides a metric that quantifies productivity directly:
the systemthroughout, which is defined as the number of
jobs processed in a given time frame. Figure 11 shows the
throughput, measured as the average number of jobs exe-
cuted in a 24 hours timeframe, for the FCFS and the EASY
schedulers. For comparison, it also shows the utilization.
The results indicate that the two metrics are highly corre-
lated. They also show how the throughput levels out when
the system becomes saturated. Beyond this point adding
user sessions does not contribute to the throughput, but only
increases the average response time. Also, the onset of sat-
uration is gradual rather than being sharp as in conventional
simulations.



7. Related Work
Most of the work on workload modeling for parallel su-

percomputers has been based on the open model, where jobs
arrive at a given rate irrespective of how the scheduler han-
dled previous jobs [10, 5, 4, 3, 12]. However, there has been
some workload modeling work in other contexts that did in-
volve feedback. One example is the study of gaming traffic
[2]. Ganger and Patt observe the neither the open nor the
closed model are satisfactory in their pure form, because
real workloads are a mix with only some items being criti-
cal for progress [6]. This led to work by Hsu and Smith who
added feedback to I/O traces, similarly to our own work [9].
It has also been suggested to try to use feedback in network
design to avoid congestion [15].

Our model of sessions built of batches of jobs is related
to other generative hierarchical workload models, which use
several layers to try and mimic the process that generates
the workload. Hlavacs et al. [8] presented a framework for
modeling user behavior in interactive computer systems, us-
ing sessions, applications, and commands, which are initi-
ated synchronously. An implementation of the framework
for generating workload for network traffic simulation was
presented in [7]. Arlitt [1] analyzed user sessions for the
1998 World Cup Web server. Zilber et al. [18] analyzed par-
allel systems traces and classified users and sessions based
on their characteristics. Their work can be incorporated in
ours by defining diverse submission behavior and workpool
models.

8. Conclusions
We have shown that user sessions on parallel super-

computers can be modeled as a sequence of batches of
jobs, where the jobs within each batch are submitted asyn-
chronously, but each new batch is only started a certain time
(the think time) after the last job in the previous batch com-
pleted. This imparts a measure of feedback on the work-
load generation process, leading to a better match between
the workload and the scheduler’s capabilities. Ignoring this
feedback effect leads to exaggerated evaluations, that mix
performance results related to the evaluated scheduler with
results that are due to the scheduler that was used when the
workload data was traced.

The simulations presented in this paper are limited to us-
ing a static number of active sessions. In a real site, users
arrive and depart at different times, so the number of ac-
tive sessions changes dynamically. A natural extension to
our work would be to model the users population [16] and
use that model in the simulation, to dynamically change the
number of user sessions that are active at different times.
Furthermore, not all user sessions generate similar work-
loads for the scheduler. Our next challenge is therefore to
develop a library of workpools and submittal models, and
combine them in various ways to produce sessions with dif-

ferent characteristics. Finally, our new methodology calls
for new performance metrics. One such metric, the sched-
uler’s throughput as a quantifier for the site’s productivity,
was introduced in Section 6.3. An interesting research di-
rection is to find new metrics that measure the users’ satis-
faction of the scheduler performance even more directly.
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