
On the Scalability of Centralized Control

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

Scalability of clusters and MPPs is typically discussed
in terms of limits on growth: something which grows at a
rate of O(log p) (wherep is the number of processors) is
said to be more scalable than something whose growth rate
is O(p). But in practicep does not grow without limits. We
therefore suggest that discussions of scalability should take
time into account. System sizes grow with time, so larger
systems need to be supported — but only after some time.
And in particular, there is no real need to support arbitrar-
ily large systems right now. Surprisingly, when time is thus
put into the picture, we find that centralized control is actu-
ally quite scalable. The reason is that the capabilities of a
centralized control node grow at a fast pace due to Moore’s
law. This seems to be more than enough in order to man-
age current growth patterns displayed by parallel systems.

1. Introduction

Scalability is one of the holy grails of parallel system de-
sign. The quest for scalability and the fear of lacking scala-
bility lie in the background of many design decisions, either
explicitly or implicitly. In many cases, scalability is used
as a justification for more complex designs, where a sim-
pler design would have done had scalability not been an is-
sue.

But what exactly is scalability? One definition is the sup-
port for incremental growth [19, 32]. With this definition, a
system is scalable if you can add resources incrementally to
achieve the desired level of performance. A more common
definition involves the effective use of increasingly large
resource pools. For example, a system’s scalability could
be measured by how much we should need to increase the
problem size in order to maintain the same level of effi-
ciency as on a smaller system [11]. It has also been sug-
gested to add cost into the equation, and require that pro-
ductivity scale with cost [14].

In the context of system design (as opposed to appli-
cation development) a major consideration is the control
structure. It is always simpler to use centralized control,
whereby a centralized agent has all the required informa-
tion and makes the best possible decisions. But oftentimes
it is not practical to collect timely global information, and a
centralized agent might become a bottleneck. For example,
this is the case for the control of caching in shared mem-
ory systems. Therefore, distributed alternatives have to be
designed [30].

One reason that centralized control cannot be used for
caching is the required intensity: each processor must make
caching decisions on each clock cycle. But in other con-
texts the intensity is much lower. A case in point is the man-
agement of parallel systems and clusters, including config-
uration management and job management. The most com-
monly used structure for these functions is centralized, with
examples including Condor [20, 24], Prospero [23], ScoreD
[12], Glunix in the Berkeley NoW [10], the ParPar cluster
[7], Hector [26], STORM [9], and SLURM [33].

In a centralized control structure, system management is
done by a dedicated master node (Fig. 1). Users submit jobs
to the master, and the master controls the jobs execution on
the different nodes. With this design the master is an obvi-
ous bottleneck and a single point of failure. There has there-
fore been some work on distributed and hierarchical struc-
tures, and some work on (hot swap) backups. Another alter-
native is to partition the load and have multiple masters with
different functionalities, e.g. resource management, appli-
cation support, and hardware monitoring.

In the context of scalability, the main concern is that the
master node may become a bottleneck and limit the sys-
tem. However, we make the observation that it takes time
for clusters and parallel systems to get bigger. This is due to
various technological and economic factors, e.g. the priceof
a single processor. Therefore scalability should not be con-
sidered with regard to a snapshot of technological and mar-
ket conditions, but rather along time. During this time, the
master node becomes more powerful due to Moore’s law.
We claim that this compensates for the additional burden on

control network (dedicated LAN)

high−speed data network

node node node node node node node node

LAN
institutional

user
workstation

user
workstation

node
master

Figure 1. Schematic of typical configuration of a parallel ma chine or cluster.

the master, and prevents it from becoming a noticeable con-
straint.

In the sequel we attempt to substantiate this claim by an-
alyzing collected system and workload data sets from the
last ten years. It should be noted that this is all highly spec-
ulative, as it is hard to define and measure the things we
are looking at. Nevertheless, the data seem to create a cohe-
sive general picture, that supports the above claim.

The paper is structured as follows. The next two sec-
tions discuss configuration management. Section 2 shows
that the load on the master for configuration management
is proportional to the number of nodes. Section 3 then uses
Top500 data to characterize the growth rate of typical in-
stallations. The next two sections after that discuss job con-
trol; Section 4 shows how the load on the master depends on
the workload, and Section 5 analyzes workload data to un-
earth growth patterns. Section 6 concludes by comparing
the growth of load with the growth in capabilities.

2. Support for Configuration Management

The typical software configuration for management
comprises a single master daemon running on the mas-
ter node, and an instance of a node daemon running on
every other node (the names of these daemons may dif-
fer in different systems). We are interested in the load that
configuration management places on the master. To eval-
uate this, we will use the ParPar cluster management
system as an example [7, 16]. In this system, the mas-
ter does the following.

Node integration.Upon startup node daemons contact the
master using a well-known port. The master verifies that the
nodes are in the cluster’s configuration file, and executes a
binding protocol with the node daemon. The protocol pro-
vides the master with up-to-date data about the nodes, e.g.
their hardware capabilities. As this is done once per node, it
is not a source of overhead at runtime.

Node deletion.The master keeps an open TCP link to each
node daemon. If a node fails this link is severed, the master

is notified, and it does some cleanup. The amount of work
involved in the cleanup depends on load conditions, as it af-
fects all the jobs that had a process on this node. However,
this is a rare event and not part of normal operational over-
head.

Monitoring. The simplest form of monitoring is just keep-
ing track of what nodes are up and functioning. This can
use explicit heartbeat messages among the different dae-
mons, or rely on implicit monitoring by use of TCP. Some
systems perform more comprehensive monitoring. This can
include keeping track of various hardware metrics such as
temperature or fan speed [17, 21]. In addition it can in-
clude scheduling-related metrics such as CPU utilization
and messaging activity [31, 8].

In all the above cases, the monitoring is implemented
by periodic messages between the master and the nodes.
While messages from the master to the nodes can be broad-
cast, messages from the nodes to the master often need to
be handled individually. This creates overhead that is lin-
ear in the number of nodes. This overhead is one of the rea-
sons that a centralized master is considered a potential bot-
tleneck, and motivates hierarchical designs [21].

Summarizing the above, we find that the overhead for
configuration management is proportional to the number of
nodes. We therefore need to find how the typical number of
nodes grows with time.

3. The Growth of Parallel Machines

While the idea of using parallelism is very old, it has
taken a long time for parallel machines to become com-
monly used. In terms of scalability, the interesting question
is how the “typical” degree of parallelism grows with time.
This is obviously a problematic question, because at any
given time there are many different machines, from huge su-
percomputers with very many processors to desktops with
only one.

One approach would be to select the biggest machine
in the world, e.g. by looking at the Top500 list [1]. Note
that we are not talking necessarily about the top-ranked ma-

 128

 64

 32

 16

 8

 1994 1996 1998 2000 2002 2004

pr
oc

es
so

rs

least micros in Top500
12*2**((x-1995)/2.41)

16*2**((x-1995)/3)

Figure 2. The size of the smallest
microprocessor-based parallel machine
in the Top500 list grows exponentially.

chine, which might be a vector machine with relatively few
processors — we’re interested in parallelism, so we look for
the biggest. The problem is that this is obviously not repre-
sentative, as the biggest machines are always unique. It may
also not be timely, as a big machine can dominate the list for
several years.

Due to the above considerations we suggest the alterna-
tive of using the smallest microprocessor-based machine in
the Top500 list. Again, this is not the smallest machine in
the list, as that is always a vector machine. It is also not
the lowest ranked machine, as that could be an old ma-
chine with a relatively large number of processors. Rather,
the smallest microprocessor-based machine is guaranteed to
be timely and representative of the state of the art, and also
to be of a size that is relatively common.

The results of tabulating this data is that the smallest
microprocessor-based machine in the Top500 list grows ex-
ponentially. The data for 1998 through 2002 fits a growth
rate of doubling every 3 years perfectly, as has been ob-
served previously [4, 6]. But taking the data before and af-
ter this span into account, it seems that the growth rate is
somewhat faster. A linear regression suggests a time con-
stant of doubling every 2.41 years, withR2 = 0.97.

Combined with the previous section showing that the
overhead for configuration management is linear in machine
size, this implies that the work performed by a manage-
ment machine for configuration management grows expo-
nentially with a time constant of 2.41 years. If at yeary0

the work for configuration management waswc(y0), theny

years later it will be about

wc(y0 + y) ≈ wc(y0) · 2
y/2.41

user master node 1 node p

prepare
request

queue &
schedule

run run

cleanup &
notification

collect
termination

data

Figure 3. Sequence diagram of parallel job
execution.

4. Support for Job Execution

Configuration management is just one of the tasks of the
master node. The other is job management. Job execution
typically has the stages shown in Fig. 3.

User request.The user activates a job representative (typi-
cally some GUI or script) and provides all the necessary de-
tails of the job to be run. This data is then sent to the master.
The master performs an authentication protocol to ensure
that the user can indeed run this job, and to give it the ap-
propriate privileges. All this has constant overhead per job.

Scheduling.The master decides when and where the job
will run. This typically includes the calculation of a prior-
ity function and comparison with the priorities of compet-
ing jobs. It may include queueing for some time until the
required resources become available.

The overhead for scheduling may depend on the load (the
number of jobs in queue that need to be considered) and
on the size of the machine (the number of nodes to choose
from). In simple (and common) schedulers like EASY and
MAUI this dependence is typically linear in the numbers
of jobs and nodes [18, 13]. In other more involved sched-
ulers, such as the conservative, flexible, and lookahead al-
gorithms, the dependence can be quadratic or proportional
to the product of jobs and nodes [29, 22, 28]. But the con-
stants are usually small, and in practice the overhead may
be dominated by constant per-job overheads.

Startup. The master causes the job’s processes to start on
the designated nodes by sending instructions to the relevant
node daemons. This may include copying the executable file
to all the nodes [16]. The overhead involved depends on the
system implementation and the job size:

• It can be constant — for example, the small-scale
ParPar cluster uses an Ethernet as a broadcast
medium. STORM uses efficient hardware broadcast-
ing in a Quadrics network.

• It can be logarithmic — by use of a hand-crafted
broadcast tree.

• And it can be linear — if the nodes are notified in se-
quence. Note, however, that the actual sending of mes-
sages to the different nodes may be overlapped.

In any case, the overhead is no more that linear in the num-
ber of nodes used by the job.

Monitoring. Monitoring the job during execution is not
done in all systems. In systems that do in fact perform mon-
itoring, it can take different forms. One example is gang
scheduling, in which periodic messages are used to initiate
a global context switch [12]. Another is collecting commu-
nications data to possibly change scheduling behavior [31].
The overhead is at most linear in job size, or rather in the to-
tal size of all jobs running at once, i.e. the machine size.

Termination.Unlike startup, which is one-to-many, termi-
nation is many-to-one. In most cases (e.g. ParPar) this re-
quires separate messages from the different nodes, as they
terminate at unpredictable times. The master needs to han-
dle all these messages. An alternative is to build a reduction
tree, or use hardware support for reduction as in Quadrics
[9]. However, these schemes typically come at the cost of
not obtaining full data about resource usage etc. If full data
is collected, then message sizes grow as message numbers
decrease, for a total overhead that is linear in the number of
nodes.

Summarizing the above, we find that the overhead for job
management is proportional to the number of nodes used by
the job. We therefore need to find how the cumulative num-
ber of nodes used by all jobs grows with time.

5. The Growth of Workloads

We are interested in the total work the master needs
to perform in order to support all jobs. According to the
previous section support for a single job may grow lin-
early with job size. So we want the sum over all jobs
of their sizes. For this we need to know how many jobs
there are, and what their sizes are, and the relationship be-
tween these parameters and the machine size. We investi-
gate these issues using data from the Parallel Workloads
Archive (www.cs.huji.ac.il/labs/parallel/workload/).While
this does not contain data from the largest classified sys-
tems in the world, we claim that the more special-purpose
and larger a machine becomes, the more it is used as a ca-
pability machine, i.e. with a workload that is not very com-
plex or dynamic (and hence easier to control centrally).

job size
1 4 16 64 256 1024

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

KTH SP2
SDSC SP2
NASA iPSC
CTC SP2
SDSC Paragon
LANL CM−5
Blue Horizon
LANL O2K

Figure 4. Distributions of job sizes.

system size slope intercept R2

NASA 128 0.112408 0.276948 0.98
CTC 512 0.057333 0.586888 0.80
KTH 100 0.078803 0.518138 0.85
LANL-CM5 1024 0.096847 0.109356 0.88
SDSC-Par 400 0.103323 0.269385 0.89
SDSC-SP 128 0.105081 0.330007 0.93
BLUE 1152 0.045475 0.575054 0.76
LANL-O2K 2048 0.079070 0.308063 0.88

Table 1. Regression parameters for log-
uniform model of job sizes. Slope and inter-
cept are in log2 space.

We start with the size distribution. This is shown for sev-
eral machines in Fig. 4. All have somewhere between 20%
and 40% serial jobs, except for machines where the min-
imal size is larger than 1, which have more than 50% at
the minimal size. For larger sizes the distribution is roughly
log-uniform [2], but with a strong preference for powers of
two, leading to a step-like shape of the CDF. The maximum
size used is much smaller than the machine size, but pro-
portional to it, so in large machines the maximum is larger.

To find the size of the largest jobs and how exactly it re-
lates to machine size we perform a linear regression on log-
arithmically transformed job size data, i.e. on the distribu-
tions shown in Fig. 4, for all the machines. This is reason-
able because log-uniform distributions look like a reason-
able model for this data. The results are given in Table 1.
From these regression models we extract the maximal job
sizes — where the regression line hits 1: given a slopeα

and interceptβ, the maximal sizem satisfiesα m + β = 1,
or

machine size
100 400 1024

re
gr

es
si

on
 m

ax
 jo

b

60

200

600

CC=0.93
R^2=0.86

Figure 5. Maximal job size according to re-
gression model of data from Fig. 4 as a func-
tion of machine size. Note the use of logarith-
mic axes.

m =
1 − β

α

Together with the machine sizep this provides a data point
(p, m) for each machine for which we have data. Taking the
data from all the machines leads to the scatter plot shown
in Fig. 5. Performing a linear regression on these points
gives slope of 0.74 in log-log space withR2 = 0.86, i.e.
log(m) = 0.74 log(p). The model of how the maximal job
size depends on machine size is therefore

m ≈ p0.74

Recall that what we actually need to estimate is the total
number of processes in all jobs. If we stick to the assump-
tion that the distribution of job sizes is indeed log-uniform,
we can divide the processes in all the jobs into three groups:

1. processes in the largest jobs,
2. processes in serial jobs, and
3. processes in all other jobs (the middle jobs).

Given the log-uniform distribution there are an equal num-
ber of jobs in each binary order of magnitude, except the
first (serial jobs), which has more. This can be visualized
as in the left side of Fig. 6. By reorganizing as shown on
the right of that figure, we find that the total processes in
all jobs (and hence the work to support them) is approxi-
mately twice the number of processes in the largest jobs.
This can be found as twice the product of the size of the
largest jobs and their number.

We already know the sizem of the largest jobs and how it
relates to machine size. So we need to estimate the number
of jobs of sizem, and how it is related to machine size. This
will be done by calculating how many jobs are needed to
achieve a given utilization of the machine. Given this num-
ber, multiplying it by2m will give an approximation of the
total number of processes.

machine size
100 512 1024 2048

av
er

ag
e

ut
ili

za
tio

n

0

0.2

0.4

0.6

0.8

1

CC=0.18
R^2=0.03

Figure 7. Utilization seems to be unrelated to
machine size or period.

But what is the target utilization we should strive for?
Tabulating utilization data for different machines (Fig. 7)
indicates that it seems to have no relation with time or with
machine size (the CTC and Paragon numbers may actually
be slightly higher than indicated, as the batch partition was
smaller than full machine, but this would not cause a qual-
itative change of these results). While some improvements
in utilization have been reported in the past when sched-
ulers were improved [15], utilization now seems rather sta-
ble at around 70% of capacity for different machines. This
is probably about what is achievable with current systems
for current workloads [25].

Utilization is actually the used resources as a fraction of
the available resources. The resources used by a jobj are
the product of its size and runtime:j.size × j.runtime.
The overall resource usage is then the sum over all jobs:

load =
∑

j

j.size · j.runtime

We will approximate this by considering each job size inde-
pendently, and focusing on sizes that are powers of 2 (which
is reasonable based on the job size distribution data of Fig.
4). Assumingni jobs of sizesi, wheresi = 2i for i = 0 to
log m, denote the average runtime of jobs of this size byt̄i.
This leads to

load =

log m∑

i=0

∑

j.size=si

j.size · j.runtime

=

log m∑

i=0

ni si t̄i

To estimatet̄i we return to the workload data. Previ-
ous work has identified a weak correlation of runtime and
size [5, 3]. The data is shown in Fig. 8 for jobs grouped by
ranges that are powers of 2, such that they have approxi-
mately equal numbers of jobs; this means that the top class
includes all jobs in the tail of the distribution.

 in each binary

largest job size

largest jobs

serial jobs
about 30%

middle jobs

same number

order of magnitude

reorganize

Figure 6. Estimation of number of processors in all jobs base d on the log-uniform size model.

job size
1 4 16 64 256

av
er

ag
e

ru
nt

im
e

0

2500

5000

7500

10000

12500

15000

17500

20000

KTH SP2
SDSC SP2
NASA iPSC
CTC SP2
SDSC Paragon
LANL CM−5
Blue Horizon
LANL O2K

Figure 8. Average runtime as function of job
size.

system slope intercept R2 CC
NASA 260.4 83.07 0.57 0.75
CTC 263.7 7491 0.05 0.23
KTH 1347 4241 0.47 0.68
LANL-CM5 1071 −3761 0.92 0.96
SDSC-Par 2931 −3326 0.83 0.91
SDSC-SP 1844 1458 0.86 0.93
BLUE 2316 −5538 0.98 0.99
LANL-O2K −683.3 8442 0.29 −0.54

Table 2. Regression parameters for log-
uniform model of average job runtimes, ex-
cluding serial jobs. Slope and intercept are in
log2 space.

The results are somewhat noisy, but they do show an in-
creasing trend, except for the smallest (serial and sometimes
also size 2) jobs, and the LANL O2K log. Excluding serial
jobs, which often have unique statistics, and computing cor-
relation coefficients, four logs have a correlation coefficient
higher than 0.9, and another two around 0.7 (Table 2). Re-
grettably, the magnitude of the slope varies considerably.
However, for our purposes it suffices to assume some arbi-
trary factorα, and use the log-uniform modelt̄i = α log si.
But si = 2i andlog si = i. Plugging all this into the above
derivation leads to

load = α

log m∑

i=0

i ni 2i

As the average runtime is correlated with job size, the
time frame is set by the largest jobs. Specifically, this
load (measured in node-seconds) is for the timeframe of
the largest jobs, whose average runtime is proportional to
log m. During this time, the available resources are there-
fore proportional top log m. As the ratio (the utilization) is
supposed to be a constant, the two expressions should be
proportional to each other, so

α

log m∑

i=0

i ni 2i
≈ p log m

(whereα is some constant, possibly different from the one
defined above).

By the assumption of the log-uniform size distribution,
there are equal number of jobs in each binary order of mag-
nitude. We’ll use the number of maximal-size jobs as a rep-
resentative:ni = nm for all i. As this is the same for each
term in the sum, it can be taken out. We are then left with∑

i2i. Using a geometrical constructions similar to the one
used above in Fig. 6, we find that

log m∑

i=0

i 2i
≈ 2m(logm − 1)

machine size
100 512 1024 2048

av
er

ag
e

jo
bs

/m
on

th

0

4000

8000

12000

16000

20000

24000

CC=0.88
R^2=0.77

CC=0.59
R^2=0.35

Figure 9. Larger machines tend to run more
jobs per month.

Plugging this into the above expression leads to

2αnmm(log m − 1) ≈ p logm

Discounting constants (2α), and assuminglog m−1 is close
enough tolog m to be factored out, we are left with

nm ≈

p

m
= p0.26

indicating that the number of jobs grows slowly with ma-
chine size.

As a coarse qualitative check of this result a scatter plot
of number of jobs vs. machine size is shown in Fig. 9. There
indeed seems to be some positive correlation between these
two parameters — larger machines do run more jobs. Calcu-
lating the correlation coefficient leads to a respectable value
of 0.875. However, the LANL O2K is off the scale, and has
a strong effect on this correlation coefficient. Repeating the
calculation without this data point leads to a value of 0.595;
somewhat lower, but still significant.

We are now ready to put all the components together and
find the total work to support the processes in all jobs. Re-
call that this is the sum over all jobs of their sizes. This was
shown to be approximately equal to twice the sum of all pro-
cesses in the largest jobs, that is2nmm. But we just showed
thatnm ≈ p0.26, and we previously showed thatm ≈ p0.74.
The end result is therefore that

wj ≈ 2p

i.e. the work to support all jobs is directly proportional to
the machine size. This happens because larger machines run
more jobs, and these jobs are larger, but they also run longer,
and in the end all these effects tend to cancel out.

Plugging the exponential growth rate ofp into this re-
sult we get an approximation of how the work to support
job management grows with time:

wj(y0 + y) ∝ 2p0 · 2
y/2.41

As with the work for configuration management, it grows
exponentially with a time constant of 2.41 years.

6. Conclusions

The previous sections made the case that the work re-
quired of the master node in a parallel system grows expo-
nentially, doubling every 2.4 years or so. The question then
is whether its capabilities grow at a commensurate rate.

According to Moore’s law they should, as compo-
nent density doubles approximately every 18 months
[27]. However, this does not translate directly to perfor-
mance. To get an estimate of performance, we turn again to
the Top500 data, and look at the Rmax values of the small-
est microprocessor-based machines we considered in
Section 3. Performing a linear regression (in log space) in-
dicates that this doubles every 1.09 years, withR2 = 0.998.
But this includes both the improvement in node perfor-
mance and the increase in number of nodes. Therefore we
actually have

Rmax(p, y0 + y) ≈ Rmax(p, y0) · 2
y/1.09

≈ p(y0) · 2
y/2.41

· Rmax(1, y0) · 2
y/X

Factoring out the increase in number of nodes allows us to
solve forX , and leads to a node capability that doubles ev-
ery 1.98 years — slightly faster than the requirements. And
since this is based on running the Linpack benchmark on
parallel systems, we can claim that it also includes the con-
sideration of improvements in network performance.

Thus it seems that using centralized control, in the form
of a master node that is responsible for all system-wide
management activities, is actually not a major bottleneck.

Acknowledgments

Thanks to Eitan Frachtenberg for his comments on an
earlier draft of this paper. Many thanks are due to all those
who deposited their workload logs in the Parallel Workloads
Archive. It is great data to play with...

References

[1] J. J. Dongarra, H. W. Meuer, H. D. Simon, and
E. Strohmaier, “Top500 supercomputer sites”. URL
http://www.top500.org/. (updated every 6 months).

[2] A. B. Downey, “A parallel workload model and its impli-
cations for processor allocation”. Cluster Computing1(1),
pp. 133–145, 1998.

[3] A. B. Downey and D. G. Feitelson, “The elusive goal of
workload characterization”. Performance Evaluation Rev.
26(4), pp. 14–29, Mar 1999.

[4] D. G. Feitelson, “On the interpretation of Top500 data”.
Intl. J. High Performance Comput. Appl.13(2), pp. 146–153,
Summer 1999.

[5] D. G. Feitelson, “Packing schemes for gang scheduling”. In
Job Scheduling Strategies for Parallel Processing, pp. 89–
110, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol.
1162.

[6] D. G. Feitelson, “The supercomputer industry in light of the
Top500 data”. Comput. in Sci. & Eng.7(1), pp. 42–47,
Jan/Feb 2005.

[7] D. G. Feitelson, A. Batat, G. Benhanokh, D. Er-El, Y. Etsion,
A. Kavas, T. Klainer, U. Lublin, and M. A. Volovic, “The
ParPar system: a software MPP”. In High Performance Clus-
ter Computing, Vol. 1: Architectures and Systems, R. Buyya
(ed.), pp. 754–770, Prentice-Hall, 1999.

[8] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernan-
dez, “Flexible coscheduling: mitigating load imbalance and
improving utilization of heterogeneous resources”. In 17th
Intl. Parallel & Distributed Processing Symp., Apr 2003.

[9] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and
S. Coll, “STORM: lightning-fast resource management”. In
Supercomputing, Nov 2002.

[10] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat,
and T. E. Anderson, “GLUnix: a global layer Unix for a net-
work of workstations”. Software — Pract. & Exp.28(9),
pp. 929–961, Jul 1998.

[11] A. Y. Grama, A. Gupta, and V. Kumar, “Isoefficiency:
measuring the scalability of parallel algorithms and archi-
tectures”. IEEE Parallel & Distributed Technology1(3),
pp. 12–21, Aug 1993.

[12] A. Hori, H. Tezuka, Y. Ishikawa, N. Soda, H. Konaka, and
M. Maeda, “Implementation of gang-scheduling on worksta-
tion cluster”. In Job Scheduling Strategies for Parallel Pro-
cessing, pp. 126–139, Springer-Verlag, 1996. Lect. Notes
Comput. Sci. vol. 1162.

[13] D. Jackson, Q. Snell, and M. Clement, “Core algorithms of
the Maui scheduler”. In Job Scheduling Strategies for Par-
allel Processing, pp. 87–102, Springer Verlag, 2001. Lect.
Notes Comput. Sci. vol. 2221.

[14] P. Jogalekar and M. Woodside, “Evaluating the scalability
of distributed systems”. IEEE Trans. Parallel & Distributed
Syst.11(6), pp. 589–603, Jun 2000.

[15] J. P. Jones and B. Nitzberg, “Scheduling for parallel su-
percomputing: a historical perspective of achievable utiliza-
tion”. In Job Scheduling Strategies for Parallel Processing,
pp. 1–16, Springer-Verlag, 1999. Lect. Notes Comput. Sci.
vol. 1659.

[16] A. Kavas, D. Er-El, and D. G. Feitelson, “Using multicast to
pre-load jobs on the ParPar cluster”. Parallel Comput.27(3),
pp. 315–327, Feb 2001.

[17] R. Libby, “Effective HPC hardware management and fail-
ure prediction strategy using IPMI”. In Proc. Linux Symp.,
pp. 291–300, Jul 2003.

[18] D. Lifka, “The ANL/IBM SP scheduling system”. In Job
Scheduling Strategies for Parallel Processing, pp. 295–303,
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[19] G. J. Lipovski and M. Malek,Parallel Computing: Theory
and Comparisons. John Wiley & Sons, 1987.

[20] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor - a
hunter of idle workstations”. In 8th Intl. Conf. Distributed
Comput. Syst., pp. 104–111, Jun 1988.

[21] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: design, implementation, and
experience”. Parallel Comput.30(7), pp. 817–840, Jul 2004.

[22] A. W. Mu’alem and D. G. Feitelson, “Utilization, pre-
dictability, workloads, and user runtime estimates in schedul-
ing the IBM SP2 with backfilling”. IEEE Trans. Parallel &
Distributed Syst.12(6), pp. 529–543, Jun 2001.

[23] B. C. Neuman and S. Rao, “The prospero resource manager:
a scalable framework for processor allocation in distributed
systems”. Concurrency — Pract. & Exp.6(4), pp. 339–355,
Jun 1994.

[24] J. Pruyne and M. Livny, “Interfacing Condor and PVM to
harness the cycles of workstation clusters”. Future Genera-
tion Comput. Syst.12(1), pp. 67–85, May 1996.

[25] L. Rudolph and P. Smith, “Valuation of ultra-scale comput-
ing systems”. In Job Scheduling Strategies for Parallel Pro-
cessing, pp. 39–55, Springer Verlag, 2000. Lect. Notes Com-
put. Sci. vol. 1911.

[26] S. H. Russ, J. Robinson, B. K. Flachs, and B. Heckel, “The
Hector distributed run-time environment”. IEEE Trans. Par-
allel & Distributed Syst.9(11), pp. 1102–1114, Nov 1998.

[27] R. R. Schaller, “Moore’s Law: past, present, and future”.
IEEE Spectrum34(6), pp. 52–59, Jun 1997.

[28] E. Shmueli and D. G. Feitelson, “Backfilling with looka-
head to optimize the performance of parallel job schedul-
ing”. In Job Scheduling Strategies for Parallel Processing,
pp. 228–251, Springer-Verlag, 2003. Lect. Notes Comput.
Sci. vol. 2862.

[29] D. Talby and D. G. Feitelson, “Supporting priorities and im-
proving utilization of the IBM SP scheduler using slack-
based backfilling”. In 13th Intl. Parallel Processing Symp.,
pp. 513–517, Apr 1999.

[30] S. Thakkar et al., “New directions in scalable shared-
memory multiprocessor architectures”. Computer23(6),
pp. 71–83, Jun 1990.

[31] Y. Wiseman and D. G. Feitelson, “Paired gang scheduling”.
IEEE Trans. Parallel & Distributed Syst.14(6), pp. 581–592,
Jun 2003.

[32] M. Yang and L. M. Ni, “Incremental design of scalable in-
terconnection networks using basic building blocks”. IEEE
Trans. Parallel & Distributed Syst.11(11), pp. 1126–1140,
Nov 2000.

[33] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: sim-
ple Linux utility for resource management”. In Job Schedul-
ing Strategies for Parallel Processing, pp. 44–60, Springer
Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

