
From Repeatability to Reproducibility and Corroboration

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

ABSTRACT
Being able to repeat experiments is considered a hallmark of the

scientific method, used to confirm or refute hypotheses and previ-

ously obtained results. But this can take many forms, from pre-

cise repetition using the original experimental artifacts, to concep-

tual reproduction of the main experimental idea using new artifacts.

Furthermore, the conclusions from previous work can also be cor-

roborated using a different experimental methodology altogether.

In order to promote a better understanding and use of such method-

ologies we propose precise definitions for different terms, and sug-

gest when and why each should be used.

1. INTRODUCTION
The title of this special issue, Repeatability and Sharing of Ex-

perimental Artifacts, emphasizes repeatability of experiments, and

sharing of experimental artifacts as a means to achieve it. But there

are many ways to redo a scientific experiment. In discussions about

scientific methodology one more often hears of “replicability” or

“reproducibility” rather than “repeatability”. While the use of the

different terms is not always consistent, it may be beneficial to try

and distinguish between them.

The ideal behind this whole discussion is the notion that if some

scientific fact is correct, and an experiment can demonstrate it, then

it shouldn’t matter who performs the experiment and how. But

sometimes the devil is in the details. On a conceptual level, this

involves the issue of whether knowledge is separate from the spe-

cific circumstances in which it was derived, and thus whether it

generalizes to other (similar) situations. On a more practical level

the question is what are the precise conditions under which the said

knowledge is valid.

Regrettably the terminology used to discuss these issues is some-

times ill-defined (see e.g. [53] and references therein). In general

discussions of the scientific method the term “reproducibility” is

typically used. In social sciences (and specifically in psychology)

the term “replication” is preferred. But some authors make a se-

mantic distinction, for example using “replicability” to denote situ-

ations where the previous experiment is redone in exactly the same

way, whereas in “reproducibility” the focus is on the result being

verified and not on the method to achieve this result [20].

Given that various distinctions can be made, it seems advisable to

use the availability of different terms to denote different things.

This may help to promote our use and understanding of experi-

mental methodology in two related ways. First, having crisp defi-

nitions will bring nuances to light, and enable a distinction between

Copyright is held by the author

Term Essence

Repetition Rerun exactly what someone else has done

using their original artifacts

Replication Precisely replicate exactly what someone

else has done, recreating their artifacts

Variation Repeat or replicate exactly what someone

else has done, but with some measured mod-

ification of a parameter

Reproduction Recreate the spirit of what someone else has

done, using your own artifacts

Corroboration Obtain the same result as someone else, us-

ing other means and experimental proce-

dures

Table 1: Suggested terminology.

variants that had sometimes been bundled under a common name.

Second, even if we disagree on what should be done and why, hav-

ing precise definitions will at least ensure that we understand each

other.

Our suggested terminology contains five levels as explained in Ta-

ble 1. The rest of the paper explains these terms and proposes a

view of when and why each should be used. This is at least partly

unique to computer science (and specifically computer systems)

where sharing of artifacts can in principle include the whole system

in the form of source code, and variability due to human subjects is

often irrelevant. The terminology proposed here attempts to lever-

age the basic meanings of the commonly used terms in English,

instead of trying to enlist new terms (e.g. [53, 55, 56]). To avoid

confusion, we use “redoing” to refer to the general notion of doing

an experiment again, without focus on one of the specific levels.

It should be noted that an orthogonal issue is the distinction be-

tween “internal” and “external” replication: Internal means that

the same researchers perform the experiment again, while external

means that the experiment is replicated by others [13]. While inter-

nal replication has its uses and is actually much more common, we

will focus nearly exclusively on external replication in this paper.

2. CONTEXT
The natural sciences are based on the assumption of stability, where

the world obeys certain laws, and science is the quest to elucidate

these laws [53]. Thus the results of experiments performed in Bei-

jing are expected to apply also in Montevideo, and experiments

from the 19th century are expected to remain valid in the 21st cen-



tury. Deviations from such validity imply one of three things:

• An error was made and the supposed result is in fact wrong.

For example it may have occurred by chance and does not

reflect an underlying principle.

• An act of malicious fraud had occurred, and again the sup-

posed result is in fact wrong.

• The result in question is valid only under certain conditions,

and these limits to validity were not known before.

The reason to replicate or reproduce experimental evidence is there-

fore a desire for verification. We want to make sure that the results

are correct, and perhaps map the exact conditions under which they

are correct. As a by product, we also ascertain that their description

is detailed and full.

A nice analogy is given by Schmidt [53]. Assume I claim to have

invented a knife that can cut stones just like a regular knife cuts

butter. If I claim to cut more and more stones of the same kind

myself this has limited value in terms of verification. If I give you

my knife and stones and let you do the cutting, it will be more

convincing; and if you use the knife to cut your own stones you

will have verified that indeed it works in a wider setting than origi-

nally demonstrated. You will probably be more convinced, but you

still don’t really know what is going on. But if I explain how the

knife works, and you manufacture your own knife and cut your own

stones, this provides a much more convincing form of verification.

This is the ideal of reproducible research.

Replicating or reproducing scientific results is also important be-

cause of a possible file-drawer effect [51]. This is the notion that

published papers are largely a biased sample of type-I errors (false

positives) while many negative results languish in laboratory filing

cabinets around the world (because it is uncommon to publish neg-

ative results). This notion is based on the common definition of

statistical significance that is often used, where a study’s result is

considered significant if it could occur by chance with a probabil-

ity of no more than 5%. So the published results may be hoped to

contain all those that uphold hypotheses that are indeed true, but

also 5% of what should have been negative results, but masquerade

as positive results due to a statistical fluke. If studies of what are

actually false hypotheses are few, this is only a small bias. But if

negative results are actually the norm (just like 9 out of 10 startups

fail), those 5% false positives can lead to a big shift in our percep-

tion of reality.

Evidence that this analysis may be correct comes from focused ef-

forts to replicate previous findings, which generally lead to dismal

results [31]. For example, one industry effort to reproduce 53 basic

results in cancer successfully did so for only 6 of them [8]. But such

efforts are rare, and in general experiments are rarely replicated.

One reason is that the notion that in natural sciences experiments

are easily replicable is actually wrong. There are often very many

(technical) difficulties in setting up an experimental platform that

was developed elsewhere, and it often does not succeed. Another

reason is the misconception that repeating someone else’s results

does not count as a real contribution, and therefore such work is

harder to publish and may negatively affect employment decisions.

An exception to this occurs only when the implications are very sig-

nificant. For example this was the case with the possibility of cold

fusion due to its potentially enormous impact on energy [2]. And

indeed the original results could not be replicated, and the emerg-

ing consensus was that they were wrong. What is often done is

internal repetition: scientists repeat their own experiments at least

twice before publication, and perhaps many times as they adjust

and optimize the experimental procedure.

All the above is also valid for computer science. But in addition,

in computers the assumption of stability is sometimes (or perhaps

often) shaky, because the “world” is our infrastructure. Regret-

tably, computational infrastructure can change in strange and non-

monotonic ways [29]. Moreover, it may be hard to actually measure

the value of interest (e.g. the question of using microbenchmarks

versus complete applications [45, 9, 38]). For example, one anec-

dote recounts measurements of Java virtual machines, that turned

out to measure the quality of floating-point emulation on a certain

platform rather than the desired factors [58]. There is also a prob-

lem of noise and variability, where it is not always clear that results

really reflect the distribution of possible outcomes [27], or else they

may depend on supposedly uninteresting hidden factors [48, 18].

Recommendations for improvement often emphasize the need to

replicate research findings, and the use of rigorous statistical tech-

niques [65, 58, 10, 16]. Facilities for automated replication and

sensitivity checking have also been proposed [18]. In the follow-

ing we consider what is meant by replication, and suggest different

terms for different approaches.

An interesting case study is provided by the question of how to test

software. Two main approaches are to use static analysis, where

the code is inspected by automatic tools or code reviews, and dy-

namic testing where the code is executed and the outcome is com-

pared to the specification. But which of these is better? in 1978

Myers conducted a controlled experiment at IBM, comparing the

achievements of testers using black-box, white-box, and inspection

in finding problems in a short PL/I text-formatting program [47].

This was followed in 1987 by a study by Basili and Selby, using

essentially the same methodologies but on different programs and

with different subjects [4]. Among other things, this exposed an

interaction between method and subjects: code reading turned out

to work better only if professionals were involved. This experi-

ment was replicated by Kamsties and Lott [39] and by Wood et al.

[64] some years later, again with different programs, and focusing

exclusively on students as subjects. These exposed an interaction

between the approach used and the types of faults that are discov-

ered. These results prompted yet another version of the experi-

ments by Juristo and Vegas, which included a deeper investigation

of this interaction [36]. Later, Juristo et al. replicated these exper-

iments yet again to reveal more interactions and contextual effects

[37]. Together, this sequence of studies led to an elaboration of ex-

perimental techniques and artifacts, and to the formation of a more

complete picture of the circumstances which favor the use of each

method (rather than identifying a “winning” method which is al-

ways better than he others). Similar sequences may be expected to

improve our understanding of computer systems too.

3. MOTIVATION
At the risk of some repetition (no pun intended), let’s elaborate on

the motivation for redoing experiments. We emphasize here those

that are not related to verification per se, namely compensating for

human errors and enhancing our understanding. This discussion is

taken from [23].

In some fields the propensity for mistakes is well-documented, and

accepted as part of life. A prime example is software engineering.



Practically all software life-cycle models are based on the notion of

iteration, where successive iterations of the development correct the

shortcomings of previous iterations [52]. As mistakes are typically

found by testing the software, testing has become a major part of

development. In the Unified Process, testing is one of four main

workflows that span the duration of a software development project

[33].

But mistakes happen in all domains of human endeavor, and finding

them is a social activity that requires a time investment by multi-

ple participants. De Millo et al. list several illuminating examples

from mathematics, where proofs of theorems were later found to

be flawed [15]. The history of science has witnessed several great

controversies among eminent scholars, who can’t all be right [30].

A recent example closer to computer science is provided by the

SIAM 100-digit challenge [11]. The challenge was to compute

10 digits of the answer to each of 10 difficult computational prob-

lems. 94 groups entered the challenge, and no fewer than 20 won,

by correctly computing all 100 digits; 5 additional teams got only

one digit wrong. But still, three out of four groups made mistakes,

including groups with well-known and experienced computational

scientists. Another interesting observation was that it was not nec-

essary to known all the answers in advance: when multiple groups

from different places using different methods got the same num-

bers, they were most probably right, whereas unique results were

probably wrong.

The lesson from these examples is that we cannot really be sure

that published research results are correct, even if they were de-

rived by the best scientists and were subjected to the most rigorous

peer review. But we can gain confidence if others repeat the work

and obtain similar results. Such repetitions are part of the scien-

tific process, and do not reflect specific mistrust of the authors of

the original results. Rather, they are part of a system to support

and gain confidence in the original results, and at the same time to

delimit the range of their applicability.

While the basic reason for attempting to reproduce previous results

is to verify them, this is not the only reason. Verification takes

time, and by the time we are sure of the validity of results “beyond

a reasonable doubt” they may be no longer relevant. However, a

more important reason may be to improve our understanding of the

measured system. This is especially true in an academic setting,

where basic understanding is arguably more valuable then putting

results to actual use.

One of the arguments against requiring results to be verified is that

it is too hard to do to be practical. Michael Foster [46] writes

The difficulty with validating results is the myriad of

details in a simulation or experiment that may affect

the measurement. Reproducing a result means deter-

mining which details are important and which are in-

essential...

This claim is perfectly true. But a central point in studying the per-

formance of a system is just this: finding out what are the impor-

tant parameters that affect performance, the mechanisms by which

they affect performance, and the degree to which they affect perfor-

mance. If we manage to do this, we have learned something from

the study. And if verification is the means to achieve such a level

of understanding, this is a good reason to perform verification.

A rare example of actually trying to repeat measurements done

by others is presented by Clark et al. [14]. Despite being essen-

tially successful, this example underscores the difficulties of repro-

ducibility, as the reproducing authors seem to have needed signif-

icant help from the original authors in order to achieve similar re-

sults. One of their findings was that disabling SMP support in the

operating system turned out to be crucial for the reported perfor-

mance. This interesting observation would not have been made if

they were not attempting to repeat previous measurements.

4. REPEATABILITY
Repeatability concerns the exact repetition of an experiment, using

the same experimental apparatus, and under the same conditions.

In fields ranging from psychology to software engineering repeti-

tions are typically not really 100% exact, because experiments are

done with human subjects. The expertise and behavior of subjects

at different locations may vary, the recruitment policies may vary,

and even with the same subjects their behavior may exhibit statis-

tical fluctuations or change with time and experience [13, 43]. In

natural sciences and computer performance evaluations repetitions

may also not be 100% exact, due to statistical or environmental

variations and measurement error [42, 1]. Therefore repetitions are

often used as an important element of experimental design, allow-

ing for confidence intervals to be calculated [34]. But under certain

conditions in computer systems exact repetitions are in principle

possible.

It is important to note that exact repetition does not provide in-

creased confidence in the experimental result [20]. At best it shows

that the setting is indeed identical for all intents and purposes. Con-

sider this analogy: if you receive a program from a colleague, and

you manage to compile and execute it and get the same result, this

does not mean that the program is correct. So if the program is a

simulator or even a complete system, and you have all the needed

inputs and get the same result, this does not verify the result — it

just verifies that you managed to repeat the original execution [53].

The only exception is when non-trivial claims were made about the

execution itself, e.g. about its power consumption being unusually

low, and therefore repeating the execution itself is of value. Putting

it more bluntly, exact repetition can expose fraudulent representa-

tion of results.

But what are the other reasons to perform repetitions?

The first reason is that while the actual repetition has no value,

preparing for it does. Packaging all the artifacts used in the simu-

lation and listing all the configuration options are necessary steps

in order to prepare the material for archiving. And given this mate-

rial, others will be able to study the details of what you have done

if needed. In effect, the experimental artifacts serve as the ultimate

operational documentation of the experiment.

Conversely, failure to achieve exact repeatability can expose hidden

assumptions about the experiment or the environment [49]. For ex-

ample, in web-based systems one may perform A/A experiments

(comparing version A to itself, instead of the usual A/B experi-

ments comparing to alternative designs) to verify that the achieved

results are consistent [41]. When using a workload trace as input

to a simulation, one may divide the trace in two and compare the



results obtained from each half. This helps to increase our under-

standing of the scope and limitations of the experimental results.

Another reason is that repeatability provides a baseline for future

studies [58]. When a new system design is proposed, it needs to be

compared against previous designs that represent the state of the

art. It is unwise and inefficient to expect the developers of the

new design to do so from scratch, because of the effort needed

to replicate the earlier designs, and the danger that their replica-

tion will not do justice to them [60]. A much better alternative

is to provide the definitive implementation of the earlier designs,

which can then serve for comparisons with newer competing de-

signs. In a related vein, a collection of repeatable measurements

can serve as a foundation for learning about how tunable param-

eters of the system affect performance, thereby facilitating mod-

eling and machine-learning approaches to performance prediction

and auto-tunning [26].

Finally, it should be noted that some experiments are inherently not

exactly replicable. In such cases repetition is used to assess the in-

herent variability and compute confidence intervals [34]. Also, it is

usually not really important to reproduce exactly the same data —

it is more important to reproduce the patterns that lead to conclu-

sions, e.g. about relative performance [17].

As noted above, in the context of computer systems exact repeti-

tions are in principle possible. Conditions for such exact repeata-

bility are

• Using the same platform.

This can be achieved if the experimental platform is com-

pletely standard, such as an Intel-based computer of a known

model from a reputable brand. Alternatively, non-standard

infrastructure can be reused. An example may be a certain

cluster or supercomputer, which is one-of-a-kind, but open

to access by others.

Note that the same needs to apply also to the software infras-

tructure, e.g. using a Linux kernel of known version with all

default configuration settings. Furthermore, all this needs to

be specified unambiguously.

• Using common experimental artifacts.

This refers to community-developed or shared facilities that

are widely used and serve as a de-facto standard. This in-

cludes both software and data.

In terms of software, one class of artifacts is the software

used to run experiments. Examples include simulators such

as the ns2 network simulator [12] or the SimpleScalar ar-

chitecture simulator [3]. Importantly, by working within a

common framework individual additions (e.g. the implemen-

tation of a new feature) also become available to all [49].

Another class is benchmarks used to assess systems, such as

SPEC and TPC.

In terms of data, an important artifact is the description of

the workload that is used to evaluate a system. For example,

the Parallel Workloads Archive contains workload traces for

evaluating job scheduling on parallel systems [25].

• Sharing all unique experimental artifacts.

Each individual experiment adds its own unique elements to

the common ones identified above. In order to enable exact

repeatability these should be shared.

The unique artifacts can be quite minimal, such as a configu-

ration file for some common experimental infrastructure. On

the other hand they may include large-scale software systems

that were developed specifically for this experiment.

In particular, when a new system design is the focus of the

experiment, the full implementation of the system needs to

be shared. This is often done by making it open-source, using

a site such as GitHub.

• The experiment is completely self-contained.

This means that the experiment is isolated from the world,

and does not depend on any random inputs (e.g. external

network activity which may interfere with the system being

studied). In particular, if random numbers are used, the ran-

dom number generator can be seeded to reproduce exactly

the same sequence.

Conversely, impediments for exact repeatability include

• The experimental platform is unique and access to it cannot

be obtained.

• The precise configuration of the experimental system is hard

to ascertain and the details induce an effect. This includes

elements like the exact version of all software libraries, the

underlying BIOS and chipset, etc.

• Unique experimental artifacts cannot be shared due to intel-

lectual property rights or other considerations [44].

• Shared artifacts suffer from portability problems. If the in-

frastructure is indeed the same this should not happen. But

seemingly innocuous variations, such as using a different

compiler that supports the same language standard, may still

lead to unintended consequences.

• The experiments are complex in the sense that thousands of

simulations or measurements were performed with different

parameters. This problem can be alleviated by automatic

tools that perform all the individual steps and record their

details, but still it may happen that some details are lost.

• The experimental platform cannot be isolated from the world.

For example, this is the case in platforms like PlanetLab,

whose performance characteristics are affected by cross-traffic

on the Internet [7].

As a result of such impediments, repeatability is not at all as straight

forward and trivial as may be assumed [44].

5. REPLICATION
Replicability is the recreation of the same experimental apparatus,

and using it to perform exactly the same experiment.

Replicability, or at least partial replicability, is widely used in the

natural sciences. The basis is that the natural world is the same ev-

erywhere, so experimental procedures used to study bacteria in one

place will work in the same way on other bacteria in other places.

This leads to the establishment of experimental protocols which are

described in laboratory manuals and replicated by everyone (e.g.

[50]). It also leads to the common structure of research papers,

where experimental techniques and methods (which are common)

are described separately from the experimental results (which are

unique to the application of the said methods to a particular situa-

tion).



Replicability is more meaningful in terms of experimental valida-

tion in fields that involve humans, such as psychology or software

engineering. Here variability always exists between the subjects,

so we cannot expect to get precisely the same results [43]. Thus

replications can provide important data about the robustness of the

original experiments in the face of such variability [40]. In partic-

ular, replications that fail to produce the same result are actually a

success because they teach us something new [55].

However, replicability does not add much to our confidence in re-

ported results. The essence is to repeat or replicate as exactly as

possible what others have done. Regrettably this includes replicat-

ing their flaws as well. But on the other hand it can serve to eluci-

date the precise conditions under which certain results hold. This

is a consequence of imperfect replication, where the unintended

differences actually turn out to make a difference.

In more detail, replication hinges on having a full and detailed de-

scription of the original experiments [10]. But descriptions are

never really full. A recurring problem is tacit knowledge: important

things that are not verbalized in the recipe of what to do because

they are taken to be self-evident, but may not be so for whoever

is doing the replication [54]. Another problem is parameteriza-

tion and configuration settings that are hardcoded rather than being

accessible [44]. As a consequence of such problems, replications

may fail to achieve the expected results. And such failures, once

their cause is found, can provide potentially important information

about the scope and applicability of these results. Alternatively,

they can provide interesting information about the volatility of the

infrastructure being used and its possible effects [29].

6. VARIATIONS
Variations on an experiment are replications with some intended

modification.

In both repetition and replication the goal is to rerun exactly the

same experiment. We may fail to create an exact replication, and

we may learn something from that failure, but the goal was to be

exact. The first step away from exact replication is to induce a con-

trolled modification. For example, if the original experiment mea-

sured the bandwidth of a network using message sizes that are pow-

ers of two, the variation may use message sizes in jumps of 10KB.

This may expose fragmentation effects that were not seen before.

In the context of software engineering, using multiple teams leads

to replication — essentially the same experiment, but with statis-

tical variations due to subjects [5]. Using multiple projects as test

cases, in contrast, is an explicit variation. And using both allows

for better analysis, including different assignments of projects to

teams, different randomized orders of performing the tasks, and so

on.

The motivation for running variations is to extend our understand-

ing of the experiment and the system being studied. In particular,

the original experiment made some claim about system behavior

under certain circumstances. In many cases there is an implicit no-

tion that this behavior is not unique to these specific circumstances,

but that it generalizes to other circumstances as well. Variations on

the experiment are meant to check this notion and make it explicit.

Thus variations help to establish the scope of the result.

A special case of establishing scope is establishing persistence.

This is achieved when the modifications are time-based, as when

new versions of environmental artifacts are used. In the physical

world, once a fact is established it is expected to remain valid. But

in computer systems, updating to a new version of an operating

system kernel or software library may cause unanticipated conse-

quences [29]. In this sense the digital world is more brittle, and

persistence cannot be taken for granted.

A subtle point is the difference between generalization or persis-

tence and verification. Variations essentially use the original exper-

imental artifacts, or an exact replica. Thus, if there was some flaw

in the experiment, this flaw will propagate to the variations. So es-

tablishing the scope of the result does not necessarily increase the

confidence in the result — it just provides a better characterization

of exactly what the result is.

That being said, variations can at least help ensure us that the orig-

inal result is not a complete fluke. A single experiment is a sample

of size 1. We tend to think that this is in some vague way repre-

sentative in general, but of course this is not necessarily the case.

Performing several variations can provide a distribution of results,

and establish whether the original result is “in the middle” of this

distribution or in its tail. For example, inducing random variations

in the workload is a good way to turn a single point estimate into a

point estimate with a confidence interval, where the new point es-

timate is not the original one but rather the average of all the mea-

surements in the different variations [57, 66]. Importantly, such

variations should not change the main independent variables, so as

not to lead to a systematic (and expected) change in the results.

Thus inducing variations by changing job runtimes is a bad idea if

the performance metric is response time.

An important class of variations is variations in the experimental

procedure, not in parameters of the experiment. Thus a family of

replicated experiments with variations can facilitate a better char-

acterization of the phenomenon being studied than any single ex-

periment could [6]. This is discussed next.

7. REPRODUCIBILITY
Reproducibility is the reproduction of the gist of an experiment:

implementing the same general idea, in a similar setting, with newly

created appropriate experimental apparatus.

The essence of reproducibilty is to reproduce the result that oth-

ers have obtained, where the term “result” is restricted to mean the

outcome of a certain procedure, not a scientific fact. Thus repro-

ducibility implies using essentially the same procedure. This shows

that this procedure indeed leads to this result, which is what we typ-

ically want in order to confirm or refute previously obtained results.

An alternative is obtaining evidence supporting the same hypothe-

sized scientific fact by other means. This is obviously useful for

increasing confidence in the result, by providing corroborating ev-

idence. But it only provides indirect support for the procedure, so

we don’t call it reproduction.

The focus in reproduction is on concepts rather than artifacts —

we try to recreate the essence of the experiment rather than the ex-

periment itself. This is the difference between reproduction and

replication. As a consequence reproduction will typically include

some change of details or circumstances. But these changes are not

pre-conceived modifications intended to map out the scope of the

result. Rather, they are a result of how different people interpret and

implement the experimental idea. Nevertheless, this enables us to

learn something about the limitations and scope of the experimen-

tal approach. However, a problem may occur if the reproduction



fails to produce the expected result. In that case we do not know

exactly what changed, so it is hard to understand the source of the

difference [55]. To identify the source, controlled variations of the

original experiment (or the new one) are needed.

Reproducibility also allows for meta studies, where the results of

multiple independent studies are combined and patterns are sought.

This is the way to find whether different reincarnations of the ex-

periment support each other, and to weed out specific instances that

are outliers that may be suspected to be flawed.

While reproducibility fundamentally implies the recreation of ex-

perimental artifacts, the original artifacts of previous work may still

be extremely important. Specifically, such artifacts enable a de-

tailed comparison with that work, and a precise examination of the

differences. And these small differences may turn out to be crucial.

This is again a difference between the brittle digital world and the

more continuous physical one.

Finally, a special case of reproducibility is competitions. Compe-

titions are used to accelerate progress in a certain field by creating

a common evaluation framework, and inviting researchers to sub-

mit systems to be evaluated (e.g. [32, 59]). Strictly speaking this

is not really reproducibility, because the element being changed is

the system itself. However, it does emphasize the use of the same

experimental procedures.

8. CORROBORATION
Corroboration is providing evidence in support of a hypothesis or

result, but using a different approach from the one used originally.

Importantly, using a different approach has the best potential not

only to corroborate a given result, but also to refute it. Such nega-

tive results are extremely important for identifying the limits to the

scope of both results and experimental techniques.

In terms of increasing our confidence in a scientific result, corrobo-

ration is the best approach [20]. The reason is that it focuses on the

result, and intrinsically steers clear of all potential flaws and short-

comings of the original experimental procedure. But in doing so it

dissociates from the concept of reproducibility.

Another advantage of corroboration studies is that they skirt the

problem of being “just a replication” [35], and therefore may have

a better chance of getting published. This depends on the degree to

which the new experimental technique is innovative.

9. AN EXAMPLE
To illustrate all the above definitions, consider the question of how

performance depends on the relationship between a program’s work-

ing set size and the available cache. The underlying hypothesis is

that caching works best when the working set of the program fits in

the cache.

The basic experiment demonstrating this uses direct measurements

of the execution of a test program that can be configured to operate

on different amounts of data (hence changing the working set size),

and produces the expected result.

A repetition just does this again. Due to measurement noise we may

expect the results to be slightly different, even if qualitatively the

conclusions are the same. The repetitions nevertheless contribute

to a characterization of the variability in the measurements, and

enable an assessment of statistical significance.

A replication can be achieved by providing a description of the sys-

tem and the test program to allow others to run the same simulation.

This can demonstrate that the provided artifacts include all the de-

tails that may be needed about the experiment. It may also provide

some additional support for the results if a slightly different system

is used for the measurements.

Variations on the original experiment can use different data sizes

than those used in the original study. This may improve the preci-

sion of the result, and better identify the threshold beyond which

performance changes.

A reproduction of the result would use different test programs or

perform the measurement on a different architecture altogether. Such

extensions stay within the original framework, but remove any sus-

picion that the results depend in some unknown way on the original

experimental artifacts.

Finally, a corroboration can be achieved by using alternative method-

ologies. For example one can use hardware counters of cache ac-

tivity when running the test program. We can then see the effect

of the working set size on the caching activity and not only on the

overall performance, thereby supporting the notion that the perfor-

mance changes are due to caching activity. Alternatively, we can

use a simulator such as SimpleScalar to simulate the execution of

the program with different cache sizes, thereby corroborating the

results obtained from the measurements.

10. CONCLUSIONS
Good experimentation is the best and fastest way to make progress

in both science and technological development [23]. In particu-

lar, it avoids the hobbling effect of baseless assumptions. The ele-

ments of experimentation are observation and measurement, which

ground us in reality, modeling and hypothesis formulation, which

encapsulate the obtained knowledge, and reproducibility, which al-

lows for verification and refutation, and helps steer us in the right

direction.

But using “reproducibility” as a catch-all term loses fidelity. There

are actually several levels of redoing previous experimental work,

with differences in generalizability and scope (see Table 2). Thus a

mere repetition of previous work has no claim for generalizability.

If replication or reproduction are employed then there is some mod-

est or perhaps even significant generalizability in terms of method.

And if a result is corroborated by other means then we have evi-

dence for wider scope of the theory. Repeatability is an important

step, but generally not ambitious enough. We need reproducibil-

ity and corroboration to really make progress. And we also need

to recognize these activities as being significant research contribu-

tions, worthy of publication in top scientific venues.

In parallel to reproducibility work, there is a need for complemen-

tary work to publish, archive, and curate artifacts, mainly software

and data. For example, a study of recent papers published in lead-

ing psychology journals found that for 3/4 of them the necessary

data cited in the paper were not obtainable [61]. This is in gen-

eral also the problem with independent repositories, which seldom

survive beyond the interest or funding of their originators. A bet-

ter approach is to establish repositories that are curated by profes-

sional organization, and to link them directly to publications. For



Approach Requirements Use

Repetition Access to equivalent (or possibly similar) in-

frastructure and original artifacts

Share artifacts to enable others to ascertain details of your work,

to compare directly with it, and possibly to assess its sensitivity

to infrastructure and environment variations

Replication Access to equivalent or similar infrastructure

and a full detailed description of artifacts

Verify that your description is detailed enough to allow others

to replicate your setup, and possibly increase confidence that

result is robust against minute variations

Variation Access to equivalent or similar infrastructure

and artifacts or their description

Map out the effect of measured variations to assess the scope

and generality of the result

Reproduction Access to similar infrastructure and conceptual

description of artifacts

Increase confidence in both procedure and result by replicating

it in a similar (but not identical) setup, identify scope for gener-

alization, and provide inputs for meta studies

Corroboration Conceptual understanding of the original hy-

pothesis and result

Increase confidence in a result by obtaining it with different

means, and increase scope of result

Table 2: Uses of different approaches.

example, biologists have GenBank, an annotated collection of pub-

lished DNA sequences maintained by the NIH, and submitting data

to GenBank is typically a pre-requisite for publishing a paper in

a leading journal. Ideally such a repository will also include raw

results for alternative analysis and possible reinterpretation, rather

than just the artifacts needed for reprodicibility.

That being said, it is important to realize that reproducibility in and

by itself is not enough, and perhaps also not the most important

activity. For example, it may be more important to perform a deep

analysis drilling down to the root causes of observed results (e.g.

[22, 29]). This cannot be done by mere reproduction, but failure to

reproduce a result can help to flag a problem if one exists.

One also needs to consider other dimensions of experimental method-

ology, which may be even more problematic than reproducibility. A

recurring problem with computer systems is that performance may

be brittle, inconsistent, or even chaotic [57, 48, 41, 18]. A related

problem is the effect of human factors, which we typically like to

ignore [19, 28]. Another is lack of using sufficient statistical and

experimental procedures such as randomization to eliminate mea-

surement bias [65, 48, 58]. In particular, computer systems work-

loads and performance are often characterized by modal, skewed,

or heavy-tailed distributions, and perhaps also long-range corre-

lations [24]. As such they tend to violate common assumptions

which underlie classical parametric statistical methods, so modern

non-parametric methods should be learned and used [21, 62, 63,

16].

Experimental procedures are described, among others, in the books

by Jain [34] and Lilja [42]. But having books is not enough if

the research culture does not promote the use of experimental ap-

proaches. In psychology, for example, study programs typically

include courses in experimental methodology, and students are re-

quired to participate in experiments themselves. In computer sci-

ence, in contradistinction, there are typically no such courses, and

the study programs emphasize the mathematical and theoretical

approach, without any explicit grounding in reality. However, it

seems that awareness of experimental approaches is increasing, and

it may be hoped that this will herald the needed cultural change

[23].

11. REFERENCES
[1] A. Abedi, A. Heard, and T. Brecht, “Conducting repeatable

experiments and fair comparisons using 802.11n MIMO

networks”. Operating Syst. Rev. 49(1), Jan 2015.

[2] I. Amato, “Pons and Fleischmann redux?” Science

260(5110), p. 895, 14 May 1993,

DOI:10.1126/science.260.5110.895.

[3] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An

infrastructure for computer system modeling”. Computer

35(2), pp. 59–67, Feb 2002, DOI:10.1109/2.982917.

[4] V. R. Basili and R. W. Selby, “Comparing the effectiveness

of software testing strategies”. IEEE Trans. Softw. Eng.

SE-13(12), pp. 1278–1296, Dec 1987,

DOI:10.1109/TSE.1987.232881.

[5] V. R. Basili, R. W. Selby, and D. H. Hutchens,

“Experimentation in software engineering”. IEEE Trans.

Softw. Eng. SE-12(7), pp. 733–743, Jul 1986,

DOI:10.1109/TSE.1986.6312975.

[6] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge

through families of experiments”. IEEE Trans. Softw. Eng.

25(4), pp. 456–473, Jul/Aug 1999, DOI:10.1109/32.799939.

[7] A. Bavier, N. Feamster, M. Huang, L. Peterson, and

J. Rexford, “In VINI veritas: Realistic and controlled

network experimentation”. In ACM SIGCOMM Conf., pp.

3–14, Sep 2006, DOI:10.1145/1151659.1159916.

[8] C. G. Begley and L. M. Ellis, “Raise standards for preclinical

cancer research”. Nature 483(7391), pp. 531–533, 29 Mar

2012, DOI:10.1038/483531a.

[9] S. M. Blackburn et al., “The DaCapo benchmarks: Java

benchmarking development and analysis”. In 21st

Object-Oriented Prog. Syst., Lang., & Appl. Conf. Proc., pp.

169–190, Oct 2006, DOI:10.1145/1167473.1167488.

[10] S. M. Blackburn et al., Can You Trust Your Experimental

Results? Tech. Rep. #1, Evaluate Collaboratory, Feb 2012.

URL http://evaluate.inf.usi.ch/sites/default/files

/EvaluateCollaboratoryTR1.pdf.

[11] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel, The

SIAM 100-Digit Challenge: A Study in High-Accuracy

Numerical Computing. SIAM, 2004.

[12] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,

A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and

H. Yu, “Advances in network simulation”. Computer 33(5),

pp. 59–67, May 2000, DOI:10.1109/2.841785.



[13] A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood,

Replication’s Role in Experimental Computer Science. Tech.

Rep. EFoCS-5-94 [RR/94/172], University of Strathclyde,

1994.

[14] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,

J. Herne, and J. N. Matthews, “Xen and the art of repeated

research”. In USENIX Tech. Conf., Jun 2004.

[15] R. A. De Millo, R. J. Lipton, and A. J. Perlis, “Social

processes and proofs of theorems and programs”. Comm.

ACM 22(5), pp. 271–280, May 1979,

DOI:10.1145/359104.359106.

[16] A. B. de Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth,

and P. F. Sweeney, “Why you should care about quantile

regression”. In 18th Intl. Conf. Architect. Support for Prog.

Lang. & Operating Syst., pp. 207–218, Mar 2013,

DOI:10.1145/2451116.2451140.

[17] A. B. de Oliveira, J.-C. Petkovich, and S. Fischmeister,

“How much does memory layout impact performance? a

wide study”. In Intl. Workshop Reproducible Research

Methodologies, pp. 23–28, Feb 2014.

[18] A. B. de Oliveira, J.-C. Petkovich, T. Reidemeister, and

S. Fischmeister, “DataMill: Rigorous performance

evaluation made easy”. In 4th Intl. Conf. Performance

Engineering, pp. 137–148, Apr 2013,

DOI:10.1145/2479871.2479892.

[19] P. A. Dinda, G. Memik, R. P. Dick, B. Lin, A. Mallik,

A. Gupta, and S. Rossoff, “The user in experimental

computer systems research”. In Workshop Experimental

Comput. Sci., art. no. 10, Jun 2007,

DOI:10.1145/1281700.1281710.

[20] C. Drummond, “Replicability is not reproducibility: Nor is it

good science”. In 4th Workshop Evaluation Methods for

Machine Learning, Jun 2009.

[21] D. M. Erceg-Hurn and V. M. Mirosevich, “Modern robust

statistical methods: An easy way to maximize the accuracy

and power of your research”. Am. Psych. 63(7), pp.

591–601, Oct 2008, DOI:10.1037/0003-066X.63.7.591.

[22] D. G. Feitelson, “Experimental analysis of the root causes of

performance evaluation results: A backfilling case study”.

IEEE Trans. Parallel & Distributed Syst. 16(2), pp. 175–182,

Feb 2005, DOI:10.1109/TPDS.2005.18.

[23] D. G. Feitelson, “Experimental computer science: The need

for a cultural change”. URL

http://www.cs.huji.ac.il/˜feit/papers/exp05.pdf, 2005.

[24] D. G. Feitelson, Workload Modeling for Computer Systems

Performance Evaluation. Cambridge University Press, 2015.

[25] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with

using the Parallel Workloads Archive”. J. Parallel &

Distributed Comput. 74(10), pp. 2967–2982, Oct 2014,

DOI:10.1016/j.jpdc.2014.06.013.

[26] G. Fursin, R. Miceli, A. Lokhmotov, M. Gerndt,

M. Baboulin, A. D. Malony, Z. Chamski, D. Novillo, and

D. Del Vento, “Collective Mind: Towards practical and

collaborative auto-tuning”. Scientific Prog. 22(4), pp.

309–329, 2014, DOI:10.3233/SPR-140396.

[27] J. Y. Gil, K. Lenz, and Y. Shimron, “A microbenchmark case

study and lessons learned”. In SPLASH’11 Workshops, pp.

297–308, Oct 2011, DOI:10.1145/2095050.2095100.

[28] S. Hanenberg, “Faith, hope, and love: An essay on software

science’s neglect of human factors”. In Object-Oriented

Prog. Syst., Lang., & Appl. Conf. Proc., pp. 933–946, Oct

2010, DOI:10.1145/1932682.1869536. (Onward track).

[29] A. S. Harji, P. A. Buhr, and T. Brecht, “Our troubles with

Linux kernel upgrades and why you should care”. Operating

Syst. Rev. 47(2), pp. 66–72, Jul 2013,

DOI:10.1145/2506164.2506175.

[30] H. Hellman, Great Feuds in Science: Ten of the Liveliest

Disputes Ever. John Wiley & Sons, 1998.

[31] J. P. A. Ioannidis, “Why most published research findings are

false”. PLOS Medicine 2(8), pp. 0696–0701, Aug 2005,

DOI:10.1371/journal.pmed.0020124.

[32] L. D. Jackel, D. Hackett, E. Krotkov, M. Perschbacher,

J. Pippine, and C. Sullivan, “How DARPA structures its

robotics programs to improve locomotion and navigation”.

Comm. ACM 50(11), pp. 55–59, Nov 2007,

DOI:10.1145/1297797.1297823.

[33] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified

Software Development Process. Addison Wesley, 1999.

[34] R. Jain, The Art of Computer Systems Performance Analysis.

John Wiley & Sons, 1991.

[35] B. E. John, “Avoiding “it’s JUST a replication””. In

CHI2013 Workshop on Replication of HCI Research, pp.

3–7, Apr 2013.

[36] N. Juristo and S. Vegas, “Functional testing, structural

testing and code reading: What fault type do they each

detect?” In Empirical Methods and Studies in Software

Engineering: Experiences from ESERNET, R. Conradi and

A. I. Wang (eds.), pp. 208–232, Springer-Verlag, 2003,

DOI:10.1007/978-3-540-45143-3_12. Lect. Notes Comput.

Sci. vol. 2765.

[37] N. Juristo, S. Vegas, M. Solari, S. Abrahao, and I. Ramos,

“Comparing the effectiveness of equivalence partitioning,

branch testing and code reading by stepwise abstraction

applied by subjects”. In 5th Intl. Conf. Software Testing,

Verification, & Validation, pp. 330–339, Apr 2012,

DOI:10.1109/ICST.2012.113.

[38] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. Titzer, and

J. Vitek, “A family of real-time Java benchmarks”.

Concurrency & Computation — Pract. & Exp. 23(14), pp.

1679–1700, Sep 2011, DOI:10.1002/cpe.1677.

[39] E. Kamsties and C. M. Lott, “An empirical evaluation of

three defect-detection techniques”. In 5th European Softw.

Eng. Conf., pp. 362–383, Springer-Verlag, Sep 1995,

DOI:10.1007/3-540-60406-5_25. Lect. Notes Comput. Sci.

vol. 989.

[40] R. A. Klein et al., “Investigating variation in replicability: A

“many labs” replication project”. Social Psychology 45(3),

pp. 142–152, 2014, DOI:10.1027/1864-9335/a000178.

[41] R. Kohavi and R. Longbotham, “Unexpected results in

online controlled experiments”. SIGKDD Explorations

12(2), pp. 31–35, Dec 2010, DOI:10.1145/1964897.1964905.

[42] D. J. Lilja, Measuring Computer Performance: A

Practitioner’s Guide. Cambridge University Press, 2000.

[43] J. Lung, J. Aranda, S. Easterbrook, and G. Wilson, “On the

difficulty of replicating human subjects studies in software

engineering”. In 30th Intl. Conf. Softw. Eng., pp. 191–200,

May 2008, DOI:10.1145/1368088.1368115.

[44] I. Manolescu et al., “The repeatability experiment of

SIGMOD 2008”. ACM SIGMOD Record 37(1), pp. 39–45,

Mar 2008, DOI:10.1145/1374780.1374791.

[45] L. McVoy and C. Staelin, “lmbench: Portable tools for

performance analysis”. In USENIX Ann. Technical Conf., pp.

279–294, Jan 1996.

[46] T. Mudge, “Report on the panel: How can computer

architecture researchers avoid becoming the society for

irreproducible results?” Comput. Arch. News 24(1), pp. 1–5,



Mar 1996.

[47] G. J. Myers, “A controlled experiment in program testing

and code walkthroughs/inspections”. Comm. ACM 21(9), pp.

760–768, Sep 1978, DOI:10.1145/359588.359602.

[48] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,

“Producing wrong data without doing anything obviously

wrong!” In 14th Intl. Conf. Architect. Support for Prog.

Lang. & Operating Syst., pp. 265–276, Mar 2009,

DOI:10.1145/2528521.1508275.

[49] L. Peterson and V. S. Pai, “Experience-driven experimental

systems research”. Comm. ACM 50(11), pp. 38–44, Nov

2007, DOI:10.1145/1297797.1297820.

[50] J. Sambrook and D. W. Russell, Molecular Cloning: A

Laboratory Manual. Cold Spring Harbor Laboratory Press,

3rd ed., 2001.

[51] J. D. Scargle, “Publication bias: The “file-drawer” problem

in scientific inference”. J. Sci. Explor. 14(1), pp. 91–106,

2000.

[52] S. R. Schach, Object-Oriented and Classical Software

Engineering. McGraw-Hill, 6th ed., 2005.

[53] S. Schmidt, “Shall we really do it again? the powerful

concept of replication is neglected in the social sciences”.

Rev. General Psychology 13(2), pp. 90–100, Jun 2009,

DOI:10.1037/a0015108.

[54] F. Shull, V. Basili, J. Carver, J. C. Maldonado, G. H.

Travassos, M. Mendonça, and S. Fabbri, “Replicating

software engineering experiments: Addressing the tacit

knowledge problem”. In Intl. Symp. Empirical Softw. Eng.,

pp. 7–16, Oct 2002, DOI:10.1109/ISESE.2002.1166920.

[55] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of

replications in empirical software engineering”. Empirical

Softw. Eng. 13(2), pp. 211–218, Apr 2008,

DOI:10.1007/s10664-008-9060-1.

[56] D. J. Simons, “The value of direct replication”. Perspective

on Psychological Sci. 9(1), pp. 76–80, Jan 2014,

DOI:10.1177/1745691613514755.

[57] D. Tsafrir, K. Ouaknine, and D. G. Feitelson, “Reducing

performance evaluation sensitivity and variability by input

shaking”. In 15th Modeling, Anal. & Simulation of Comput.

& Telecomm. Syst., pp. 231–237, Oct 2007,

DOI:10.1109/MASCOTS.2007.58.

[58] J. Vitek and T. Kalibera, “Repeatability, reproducibility and

rigor in systems research”. In 9th Intl. Conf. Embedded

Software, pp. 33–38, Oct 2011,

DOI:10.1145/2038642.2038650.

[59] E. M. Voorhees, “TREC: Continuing information retrieval’s

tradition of experimentation”. Comm. ACM 50(11), pp.

51–54, Nov 2007, DOI:10.1145/1297797.1297822.

[60] S. Wartik, “Are comparative analyses worthwhile?”

Computer 29(7), p. 120, Jul 1996.

[61] J. M. Wicherts, D. Borsboom, J. Kats, and D. Molenaar,

“The poor availability of psychological research data for

reanalysis”. Am. Psych. 61(7), pp. 726–728, Oct 2006,

DOI:10.1037/0003-066X.61.7.726.

[62] R. Wilcox, Introduction to Robust Estimation & Hypothesis

Testing. Academic Press, 3rd ed., 2012.

[63] R. R. Wilcox, Fundamentals of Modern Statistical Methods:

Substantially Improving Power and Accuracy. Springer, 2nd

ed., 2010.

[64] M. Wood, M. Roper, A. Brooks, and J. Miller, “Comparing

and combining software defect detection techniques: A

replicated empirical study”. In European Softw. Eng. Conf.

& Intl. Symp. Foundations of Softw. Eng., pp. 262–277,

Springer-Verlag, Sep 1997, DOI:10.1007/3-540-63531-9_19.

Lect. Notes Comput. Sci. vol. 1301.

[65] J. J. Yi, D. J. Lilja, and D. M. Hawkins, “Improving

computer architecture simulation methodology by adding

statistical rigor”. IEEE Trans. Comput. 54(11), pp.

1360–1373, Nov 2005, DOI:10.1109/TC.2005.184.

[66] N. Zakay and D. G. Feitelson, “Workload resampling for

performance evaluation of parallel job schedulers”.

Concurrency & Computation — Pract. & Exp. 26(12), pp.

2079–2105, Aug 2014, DOI:10.1002/cpe.3240.


