
Noname manuscript No.

(will be inserted by the editor)

How programmers read regular code: a controlled

experiment using eye tracking

Ahmad Jbara · Dror G. Feitelson

the date of receipt and acceptance should be inserted later

Abstract Regular code, which includes repetitions of the same basic pattern,
has been shown to have an effect on code comprehension: a regular function can
be just as easy to comprehend as a non-regular one with the same functionality,
despite being significantly longer and including more control constructs. It has
been speculated that this effect is due to leveraging the understanding of the first
instances to ease the understanding of repeated instances of the pattern.

To verify and quantify this effect, we use eye tracking to measure the time and
effort spent reading and understanding regular code. The experimental subjects
were 18 students and 2 faculty members. The results are that time and effort in-
vested in the initial code segments are indeed much larger than those spent on the
later ones, and the decay in effort can be modeled by an exponential model. This
shows that syntactic code complexity metrics (such as LOC and MCC) need to be
made context-sensitive, e.g. by giving reduced weight to repeated segments accord-
ing to their place in the sequence. However, it is not the case that repeated code
segments are actually read more and more quickly. Rather, initial code segments
receive more focus and are looked at more times, while later ones may be only
skimmed. Further, a few recurring reading patterns have been identified, which
together indicate that in general code reading is far from being purely linear, and
exhibits significant variability across experimental subjects.

1 Introduction

Although there is a general agreement on the importance of code complexity met-
rics, there is little agreement on specific metrics and their accuracy [42]. Syntactic
metrics like lines of code (LOC) and McCabe’s cyclomatic complexity (MCC) are

A. Jbara
School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel, and
School of Mathematics and Computer Science, Netanya Academic College, 42100, Netanya,
Israel. E-mail: ahmadjbara@cs.huji.ac.il

D. G. Feitelson
School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel.
E-mail: feit@cs.huji.ac.il

2 Ahmad Jbara, Dror G. Feitelson

commonly used mainly because they are simple. These metrics are additive and
myopic: they simply count source code elements without considering their type
and context. Therefore, they do not necessarily reflect the effective complexity of
source code, that is, that attribute of code which makes it hard to understand.
In particular, they lead to inflated measurements of well-structured long functions
that are actually reasonably simple to comprehend [20].

In previous work [20,18] we introduced regularity as a new factor that questions
the additivity of the classical syntactic metrics. Regularity is the repetition of code
patterns (e.g. a certain pattern of nested control statements), where repeated
instances of the pattern are usually successive. Figure 1 contrasts a regular and
a non-regular function of about the same length from Linux, and Figures 5 and
6 show the regular functions used in our experiments with the repeated instances
indicated by rectangles.

Regular code is generally longer than non-regular code implementing the same
functionality, and if measured by metrics like MCC it is also more complex, as
there is a strong correlation between LOC and MCC. However, our experiments
showed that long “complex” regular code is not harder to comprehend than the
shorter non-regular alternative. The speculation was that regularity helps because
repeated instances of a pattern are easier to understand once the initial ones are
understood [18].

To investigate this idea, we conducted a controlled experiment that uses eye
tracking to explore how programmers read regular code, and to quantitatively
measure the time and effort invested in the successive repetitions in such code.
The results indeed show that time and effort are focused on the initial repeated
instances, and reduced as later instance are considered. This reduction can be
modeled by an exponential function.

As a consequence additive syntax-based metrics like LOC or MCC may be
misleading, because repeated instances contribute less to complexity and compre-
hension effort. This observation was made already by Weyuker in the context of
her famed work on desirable properties of code complexity metrics [45], where she
writes “Consider the program body P; P (that is, the same set of statements re-
peated twice). Would it take twice as much time to implement or understand P;
P as P? Probably not.” Our results enable us to take an additional step, and sug-
gest a specific weighting function which can be applied to repeated code segments
so as to reflect their reduced effect. This adds a degree of context sensitivity to
previously oblivious syntactic metrics.

But overall effort modeling does not tell the whole story: it is also interesting
to observe the subjects’ reading pattern. We used the eye tracking data to analyze
the subjects’ scanpaths, namely how they scan the code they are reading. This
shows that the way programmers read regular code is far from the conventional
mostly-linear order employed in reading natural language texts. Instead, reading
code appears to be done in a sequence of patterns such as scanning it, jumping
ahead to look for ideas, jumping back to verify details, and so on.

However, the patterns employed and their order are highly individualistic. It
is therefore necessary to collect much more data in different contexts before a
general picture of code reading will emerge. Such future work can be based on
the methodological foundations which we laid in our analysis of reading regular
code, including the identified basic patterns and the use of smoothing to remove
noise from the original eye tracking data and make the patterns more evident.

How programmers read regular code: a controlled experiment using eye tracking 3

extractedLnx/linux-2.6.32/drivers/staging/rt2860/common/rtmp_init .c_RTMPReadTxPwrPerRate.c.ready

Legend: if e l se swi tch for while
goto

Fig. 1: Code-structure diagrams of two functions from the Linux kernel. Both have
similar MCC values (117 and 127, respectively), but the first is obviously much
more regular. See [19] for an explanation of the diagrams.

4 Ahmad Jbara, Dror G. Feitelson

It is expected that these methodological innovations will be relevant not only for
regular code but also for studying code reading in general.

2 Motivation and Research Questions

An important aspect of code complexity is the complexity of individual functions,
because developers typically focus on a small set of functions for each program-
ming or debugging task. A large number of metrics for measuring the complexity
of a function have been proposed, but none of them is capable of fully reflecting the
complexity of source code [10,26]. In previous work we have suggested regularity

as an additional factor that affects code comprehension, especially in long func-
tions, and provided experimental evidence for its significance [20,18]. Specifically,
we conducted several experiments where developers were required to understand
functions and to perform maintenance tasks on them, where different subjects
were actually working on different versions of the same function. Thus we could
evaluate the relationship between developer performance and the style in which
the function was coded.

Before we continue, a clarification about terminology is in place. Regularity
refers to sequences of code segments that have the same structure in terms of
(possibly nested) control statements. Such sequences are most probably produced
by developers who use copy-paste and then edit each instance in the sequence for its
specific role. This can be considered a special case of code cloning. Code cloning
is often considered bad practice because of the need to maintain the separate
clones consistently, and because it may lead to code bloat. These concerns are
irrelevant for regular code, because the instances are typically relatively small and
co-located. We therefore argue that regularity should be considered as a distinct
coding practice, and not be confused with cloning.

Regular functions by definition contain repetitive code segments, which usually
come one directly after another. This suggests that understanding one of these
segments would help understanding subsequent ones. Based on this we hypothesize
that the cognitive effort needed for the second segment is lesser than that for the
first, and as the developer proceeds in the sequence of repetitive segments the
effort needed becomes smaller. After several segments it may be expected that the
additional effort would even be negligible.

Our main purpose is therefore to study the way developers read regular code,
and whether they invest equal effort in repetitive code segments. Moreover, if the
efforts are indeed not the same and decreasing, we want to find a model that
reflects the relation between the serial location of the segment and the amount
of effort needed to comprehend it. Making the reasonable assumption that the
invested effort reflects the encountered difficulty, such a model can then serve as a
good context-dependent weighting function for metrics that consider all repeated
segments to have equal impact and hence yield exaggerated measures.

In addition, we use this study to verify that our previous work is reproducible.
Specifically, this is an “internal replication”, as it is being conducted by the same
researchers [4]. We also used exactly the same functions as in our previous study,
and compared the performance of subjects when reading regular programs versus
their non-regular counterpart. However, the experimental context is different (one-

How programmers read regular code: a controlled experiment using eye tracking 5

on-one experiments using an eye tracker versus a paper-based group experiment),
and of course the experimental subjects themselves are different.

To recap, the specific research questions this paper addresses are:

1. Do developers follow any pattern when they are required to comprehend regular
code? In particular, are their efforts equally divided among regular segments?

2. Assuming there is a pattern that governs the investment of effort, which model
might fit and describe it?

3. Does the distribution of effort tell the whole story? In other words, is code
read linearly and only the time spent on repetitions perhaps changes, or is the
reading pattern more complicated?

4. In terms of correctness and completion time, are the results consistent with
those of our previous work [18]?

Based on answering these research questions, the paper makes the following
major contributions. The first and perhaps the most obvious is the methodologi-
cal contribution in relation to code complexity metrics, and specifically common
metrics like LOC and MCC. In this context we make two innovative contributions:

– To the best of our knowledge our work on regularity (in this and the previous
paper) is the first empirical study of MCC and LOC in terms of explicitly
measuring comprehension and its relation with such metrics.

– This paper also suggests the first empirically-grounded revision to just count-
ing constructs. Specifically, if the code is regular and includes repetitions of
the same pattern, we suggest that their contribution to the overall function
complexity should have diminishing weights based on their location in the se-
quence.

Second, in terms of a take-home message and how practitioners can leverage
our results, we note that regular code often “looks bad” and seems to defy the
accepted best practices of writing short functions, reducing clones, and extracting
functions. But we demonstrated experimentally that such code does not necessarily
have adverse implications. As a result practitioners can feel confident that a regular
style (if they believe that this is the natural style for their given programming
task) may be used without ill-effects on code comprehension. Contrariwise, in
those cases where the programming task suggests a solution with regular style,
if programmers are convinced that regular solutions are not recommended they
might feel compelled to use a non-natural non-regular one instead, which might
contribute to the difficulty of comprehending the code in future maintenance tasks.

Third, on a scientific level, this paper augments our previous work on regularity
in partly explaining how developers cope with high MCC functions in real systems.
Very long functions do in fact exist (the largest we have observed so far is a function
with MCC=1316 in the FreeBSD operating system). We now know that developers
can handle them, inter alia, by not scrutinizing all the code rigorously when the
code includes repeated patterns.

And fourth, we make advances in the field of studying general code reading
patterns. This includes two independent contributions:

– One is to reconfirm the occurrence of various code reading patterns that have
been identified before, and suggest some additional ones. This is an additional
step in the direction of being able to describe code reading using a basis of
primitive patterns.

6 Ahmad Jbara, Dror G. Feitelson

Table 1: Attributes of the two versions of the programs used in the experiment.
“Reg.” reflects regularity using the compression ratio.

Regular version Non-regular version

Program LOC MCC Reg. LOC MCC Reg. Description
Median 53 18 79.3% 34 13 60.7% Calculate medians of all 3×3

neighborhoods
Diamond 46 17 82.8% 26 14 43.8% Find max Manhattan-radius

around point with all same value

– The other is to suggest smoothing of the raw eye tracking data to bring out the
patterns more clearly. The smoothing procedure is non-arbitrary, and based on
analyzing dwell times in distinct areas of interest.

3 Methodological Approach

3.1 Test Programs

We use two programs from the image processing domain (Table 1). Each program
has two versions: regular and non-regular. The specifications of the programs used
are: calculate the medians of 3×3 neighborhoods around all pixels and find the

maximal Manhattan-radius around a point such that all pixels within this radius

have the same value. The programs were taken from our previous work [18], and
they meet the following experimental criteria:

– Realistic programs of known domain.
– Reasonable regular and non regular implementations of the same specification.
– Non trivial specifications.

We could use one program with its two implementations, but we prefer two pro-
grams to avoid program-specific conclusions. We do not use more because then it
becomes hard to enlist enough experimental subjects for each version.

To quantify the level of regularity of the different versions, we use an opera-
tional definition that is based on compression. This choice is based on the recog-
nition that compression algorithms identify repetitions in their inputs and replace
them with shorter encodings. We have systematically investigated different com-
pression schemes and code preprocessing levels [17,20], and found that different
combinations yield different results. The combination that gave the best correla-
tion with perceived complexity (how developers subjectively rate the complexity
of a function) was to strip the code down to a skeleton of keywords and formatting,
and use the gzip compression routine. Regularity is then quantified by the com-
pression ratio. Possible alternative metrics and their evaluation are left to future
work.

3.2 Eye-tracking Apparatus

We use the Eye Tribe eye tracker (www.theeyetribe.com) in this work. The device
uses a camera and an infrared LED. It operates at a sampling rate of 60Hz, latency
less than 20ms at 60Hz mode, and accuracy of 0.5◦–1◦. The device supports 9,

How programmers read regular code: a controlled experiment using eye tracking 7

12, or 16 points for the calibration process. We used 9 points mode. The screen
resolution was set to 1280 by 1024, and the source code was presented in a full
screen window using the Consolas 11 font. The left margin was about 120 pixels
and the top one is about 35.

The Eye Tribe is a remote eye tracker and as such it provides the subjects
a non-intrusive work environment which is essential for reliable measurements.
Furthermore, the device allows head movements during the real experiment but
not while calibrating.

To analyze the tracking data we use OGAMA (www.ogama.net). It is an open
source software designed for analyzing eye and mouse movements. OGAMA sup-
ports many commercial eye trackers like Tobii. In its last version (4.5) support for
the Eye Tribe has been added. This builtin support makes the process easier and
saves the import of the data between systems.

3.3 Task Design

Basically, we adopted the programs and the task of experiment 2 from our previous
work [18] with one difference. In our previous work, each subject sequentially
performed the same task (understanding what does a program do) for the regular
version of one program and the non-regular version of the other. In this work
we follow a between-subject design where each subject performs the task on one
version only. This design decision has been taken on the basis of a pilot study
where subjects claimed that performing two programs is hard especially when you
have to keep your gazes within the screen for a long time [43].

In addition to answering the comprehension question what does the program

do, the subjects were asked to evaluate the difficulty of the code on a 5-point scale,
and state the reasons for their evaluation.

A post-experiment question was presented to each participant regarding the
way they approach the programs, with the goal of understanding how their effort
was distributed in the code and why. Retrospectively, it turned out that this post-
experiment question was important as there were cases where the eye tracking
data did not fit the participant’s opinion.

3.4 Grading Solutions for Correctness

In grading the solutions of the subjects we followed [22,7,38]. In particular, we
adopted a multi-pass approach where three evaluators were involved. Initially, the
first author evaluated the answers according to a personal scale. In the second
pass another colleague evaluated the answers. However, in a few cases there were
large gaps between the two evaluations. To resolve this, the second author made
a third pass on these cases.

The final grade for each of the cases was computed as the average of the three
evaluations when these were close enough (≤10 pts). Otherwise, we computed the
average of the two closest grades and the outlier was excluded. It should be noted
that in all cases where we chose two grades of the three, these two grades were
always very close to each other.

8 Ahmad Jbara, Dror G. Feitelson

Table 2: Experiment design and the subjects in the different groups.

Course grades
Group Function Style Subjects∗ All Programming

1 Median Regular 6 84.0±7.9 86.5±11.1
2 Diamond Regular 5 86.6±9.0 87.0±9.8
3 Median Non-regular 4 82.2±11.0 83.2±9.9
4 Diamond Non-regular 5 85.6±8.1 86.2±7.7

3.5 Subjects

The subjects in this experiment are 18 3rd year students at the computer science
department of Netanya Academic College, and two faculty members. In total we
had 20 subjects. All participants except three were males. The average age is 24.8
(SD=8.7), and subjects are without industrial experience except one subject who
had 3 years experience before his academic studies.

To ensure fair comparisons we asked the subjects about their average grades in
general and in programming courses. Initially assignment was random, but later
we assigned subjects to groups so as to reduce the variability in grades. Table 2
shows the average grades of the 4 groups. According to this table we see that in
terms of groups and style the averages are quiet similar.

3.6 Procedure

The first author was the experimenter of all subjects. The experimenter initially
gave a general overview about the experiment and the eye tracker. Participants
were told that the experiment is about comprehension but were not told the spe-
cific goal. The experimenter showed each participant how the eye tracker operates
and let him practice that by himself. In particular, the experimenter asked each
participant to notice the track-status window that shows the subject’s eyes and
their gazes. This is important because when the participant moves his head it is
reflected in this window allowing the participant to learn about the valid range of
his head’s movements.

Once the participant felt satisfied with the system, the experimenter asked him
to calibrate. The system notification about the calibration results uses a five-level
scale. Table 3 shows the different levels, their accuracy, and the number of subjects
at each level. The subject who failed the calibration process was tracked manually
(he was requested to move the mouse to show the code he is looking at). Luckily he
was assigned to a non-regular function, so was not needed for the detailed analysis
of regular ones.

After the calibration phase the subject started the experimentation. The first
screen presents a general overview and instructions, and the second screen presents
the program to comprehend. The participant is allowed to study the program as
much time as he wants and then answers the question. While studying the program
he is allowed to use off-computer means to trace the variables even if this forces
him to disconnect his gaze from screen.

A post-experiment question was asked by the experimenter about the way the
subject studied the program. The initial question was “how did you approach the

How programmers read regular code: a controlled experiment using eye tracking 9

Table 3: Accuracy levels of the calibration process and how many subjects fall
into each of these levels.

Level Accuracy subjects
Perfect < 0.5◦ 12
Good < 0.7◦ 5

Moderate < 1.0◦ 2
Poor < 1.5◦ 0

Re-calibrate bad 1

program”. In the ensuing discussion subjects were also asked where they invested
effort. They were also shown the heatmap of their gazes trying to learn more about
the process, and asked to comment on it — specifically, whether it reflects what
they think they did. Finally, they were asked to rate the function on a five-point
difficulty scale.

3.7 Study Variables

The dependent variables of this study are correctness, completion time, and visual

effort. The correctness variable is the score a subject achieves for answering the
“what does the function do?” question. The completion time variable measures
the time a subject spent in the function stimuli including answering the question.
The rationale of considering the time of writing the answers is that subjects may
re-consider the stimuli while writing their answers.

The correctness and completion time variables are not the main variables we
want to analyze in this study as they have been studied already in a previous
work for comparing the comprehension of regular and non-regular implementa-
tions of the same program. Thus we use them for replication and for generating a
challenging environment to get a realistic measure for the visual effort variable.

The visual effort variable measures, in terms of eye movements, the effort a
subject needs to invest to get an answer. It is a latent variable so it is measured
indirectly using observable variables related to fixations.

Fixation is one of two types of data that are considered when using the eye
tracking technique. It occurs when the eyes stabilize on an object. The other type
of data is called saccade. It describes the rapid movements between fixations.

We derive our observable variables from fixations rather than saccades as two
important mental activities occur during fixation. These activities are derived from
two assumptions that relate fixation to comprehension. The eye-mind assumption
states that processing occurs during fixation, and the immediacy assumption posits
that interpretation at all levels of processing are not deferred [21].

The observable variables that are measured to represent visual effort are fix-

ation count and total fixation time. While it has been shown that there is also a
positive correlation between cognitive effort and pupil dilation, measurements of
pupil dilation are very sensitive to lighting conditions and require substantially
more data. We therefore do not report results on pupil dilation.

3.7.1 Fixation Count

This metric counts the number of fixations in a predefined area of interest (AOI).

10 Ahmad Jbara, Dror G. Feitelson

3.7.2 Total Fixation Time

This metric measures the total fixation durations in a predefined AOI.

3.7.3 Fixation Locations

Finally, we also record fixation locations, to enable a reconstruction of the scan
path. The scan path is the path that the subject’s gaze traverses over the code
being read.

4 Results and Analysis

4.1 Regular vs. Non-Regular Versions

4.1.1 Correctness and Time

This work is in the context of a larger study of regular code and how developers
deal with it. Therefore we start by replicating our previous experiments [18] and
verifying that the results are consistent. We use the following hypotheses to test
the differences between regular and non-regular versions of the same program:

– H0: Programmers achieve similar scores and time in understanding non-regular
versions as in the regular counterpart.

– H1: The regular versions are easier and faster to understand even though they
are longer and have higher values of McCabe’s cyclomatic complexity.

To test our hypotheses we initially look at the means of all regular and non-
regular scores for each program, then consider the whole distribution of regular
scores against the whole distribution of non-regular ones.

The four groups’ scores met the normality assumption which was tested by
the Shapiro-Wilks test. The diamond groups did not meet the equality of variance
assumption so we did not assume that. As the groups are unrelated we used the
independent t-test. Comparing the means of the regular and non-regular groups
of the diamond programs yielded a significant different between these two groups
(t(4.967) = −3.211, p = 0.012). So we can reject the null hypothesis and accept the
alternative one. When examining the groups of the median program the difference
between the means was not significant. Thus we cannot reject the null hypothesis
in this case.

One explanation for the similar scores in the median program is that the differ-
ence between the values of the regularity measure for the regular and non-regular
versions is not large enough. Furthermore, the non-regular version contains a code
segment that computes the median by partial sorting. As sorting is a programming
plan [40] it might serve as a strong clue for the whole function understanding.

Taken together, the results show that the regular versions are not more difficult,
contradicting the naive expectation that subjects of the regular version achieve
lower scores due to high values of LOC and MCC.

We also compared the whole distribution of regular scores (of the two programs)
to the distribution of non-regular scores. We did not use the independent t-test
as the groups failed the normality assumption even under transformation. In such

How programmers read regular code: a controlled experiment using eye tracking 11

Table 4: Correctness and completion time results for all implementations.

Style Correctness average Completion time average
Regular (median) 66.5±30.0 26.0±12.9
Regular (diamond) 92.0±9.8 25.7±12.3

80.2±25.4 25.9±12.0
Non-regular (median) 65.0±28.7 25.2±7.4
Non-regular (diamond) 49.1±27.0 31.5±21.6

56.1±26.7 28.7±16.3

cases it is recommended to use the Mann-Whitney non-parametric test. This test
is used to compare differences between two unrelated groups when their dependent
variable is not normally distributed. By running this test it was found that the
regular group achieved significantly better scores than the non-regular group (U =
24, p = 0.028).

In terms of completion time, we also applied the independent t-test as the four
groups were normally distributed and each pair also met the equality of variance

assumption. For the two programs there was no significant difference in the means,
so we cannot reject the null hypothesis.

According to Table 4 the results are quite similar for the two styles in the
two programs (with slight advantage for the regular style despite its long imple-
mentations when compared to the non regular style), except for one non-regular
implementation (diamond program) where one subject in this group spent much
time and as a result the average got a relatively high value.

These results (correctness and completion time) follow those of our previous
work where we used the same functions as in this work [18].

4.1.2 Difficulty of Programming Style

Besides the “what does the function do?” question, we also asked the subjects
to rank the function difficulty on an ascending 5-point scale. Figure 2 shows the
distribution of the subjects’ answers. In particular it shows that a third of the
subjects of the non-regular implementation ranked their functions as very hard
while none of the regular-implementation subjects used this level. On the opposite
side, 2 subjects ranked the regular implementations as easy while not even one
subject of the non-regular group used this rank.

Moreover, about 55% of the regular group ranked their functions as easy or
moderate while about 78% of the non-regular group ranked their functions as
hard or very hard. These results are a bit more extreme than those we obtained
previously [18].

4.2 Visual Effort

4.2.1 Heat Map

One way to identify regions which garner special attention is using heat maps.
These are designed to visualize the concentration of fixations, and can represent
data from one or many subjects. Using this we can answer questions like what lo-

cations of the stimulus are noticed by the average subject? We use this technique to

12 Ahmad Jbara, Dror G. Feitelson

 0

 1

 2

 3

 4

 5

 6

v.easy

easy
m

oderate

hard
v.hard

N
um

be
r

of
 s

ub
je

ct
s

Difficulty level

regular
non-regular

Fig. 2: Distribution of perceived difficulty ratings.

investigate whether subjects follow an obvious pattern in terms of effort allocation,
and by this we answer our first research question.

Figure 3 shows the heat maps of the regular implementations (diamond and
median programs). Both maps show that the average subject largely fixates on
the first instance of the repeated pattern. The innermost red spot indicates the
region that received the largest attention, and as we move downward the color
becomes colder and regions get less attention. These figures show an aggregation
of all subjects of each regular group.

The conclusion is that subjects spend more effort in the initial instances. When
it comes to the last instances the examined area gets minimal focus.

Importantly, subjects did refocus on the final processing that comes after the
regular repeated instances in the median program. This shows that attention is
not just reduced with length, and subjects do not just tend to ignore the end of
the function. Thus it strengthens the above result concerning reduced attention to
repeated segments. The diamond program does not have such a final processing
part.

There is no such obvious behavior in the non-regular counterparts as shown in
Figure 4. Subjects generally focus on the inner-loop of the functions.

4.2.2 Areas of Interest

Heat maps show the dominant areas in the code without clear separation between
repeated segments. Areas of interest are geometric areas defined by the experi-
menter for the sake of between-area and within-area analyses.

In both regular implementations we are interested in the repeated instances. In
the median version we identified 8 areas of interest as shown in Figure 5 (one AOI
for each instance), and in the diamond version we identified 4 areas of interest
(Figure 6). For each AOI we count the number of fixations of each subject in
this AOI, and the total time of all fixations of each subject in this AOI. We then
calculate the distribution of effort across the AOIs for each subject. In other words,
we find the fraction of time and fixations the subject spent on the first AOI, the
fraction spent on the second AOI, and so on. This normalization allows us to

How programmers read regular code: a controlled experiment using eye tracking 13

Fig. 3: Left: heat map of the regular implementation of the median program based
on 6 subjects. Right: heat map of the regular implementation of the diamond

program based on 4 subjects (we excluded the fifth subject due to a contradiction
between his heat map and think-aloud results).

Fig. 4: Left: heat map of the non-regular implementation of the median program
based on 3 subjects (we excluded the fourth subject as he failed the calibration
process). Right: heat map of the non-regular implementation of the diamond pro-
gram based on 5 subjects.

14 Ahmad Jbara, Dror G. Feitelson

AOI1

AOI2

AOI3

AOI4

AOI5

AOI6

AOI7

AOI8

Fig. 5: The areas of interest (AOIs) of the median regular implementation.

average across subjects without giving more weight to subjects that just spend
more time or have more fixations.

Tables 5 and 6 show the resulting average measures of all areas of interest for
the regular versions of both programs. As may be expected the distributions in
terms of number of fixations and total fixation times are very similar. Obviously
these results show that subjects spent more time (and thus effort) in the earlier
segments, and the time spent is sharply reduced as we progress to later segments.
The only exception is in the median results where the maximum is attained on the
second AOI and not on the first. This may be a result of the fact that the AOIs

How programmers read regular code: a controlled experiment using eye tracking 15

AOI1

AOI2

AOI3

AOI4

Fig. 6: The areas of interest (AOIs) of the diamond regular implementation.

are only 3 lines long, so attention may “spill over” to neighboring AOIs, but the
first one does not have another preceding AOI.

If subjects spend more time in one area rather than others that would normally
mean that this area is more complex than others. But in our study, given that the
segments are pretty similar, a better interpretation is that once one segment is
learned it is easier to comprehend the others.

4.2.3 AOI Transitions

Heatmaps and fixations data provide us with clues about the areas in the code
where the programmers spend the most effort. However, we do not get any infor-
mation about the way they progress while reading. In particular, we are interested
to know how they move between AOIs. From this we can learn about their read-

16 Ahmad Jbara, Dror G. Feitelson

Table 5: Averages relative investment in the AOIs of the median regular imple-
mentation. Numbers do not sum to 1 due to rounding.

Average fraction of
number of fixations total fixation time

AOI1 0.204 0.198
AOI2 0.233 0.235
AOI3 0.171 0.180
AOI4 0.103 0.104
AOI5 0.093 0.103
AOI6 0.075 0.072
AOI7 0.064 0.062
AOI8 0.053 0.042

Table 6: Averages relative investment in the AOIs of the diamond regular imple-
mentation. Numbers do not sum to 1 due to rounding.

Average fraction of
number of fixations total fixation time

AOI1 0.424 0.440
AOI2 0.271 0.268
AOI3 0.169 0.175
AOI4 0.134 0.115

Table 7: average relative transitions between AOIs of the median regular imple-
mentation.

AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8
AOI1 0.755 0.199 0.019 0.006 0.006 0.006 0.002 0.004
AOI2 0.160 0.668 0.146 0.011 0.003 0.002 0.005 0.001
AOI3 0.024 0.181 0.652 0.115 0.009 0.002 0.005 0.007
AOI4 0.020 0.040 0.162 0.590 0.151 0.012 0.005 0.016
AOI5 0.005 0.012 0.059 0.183 0.576 0.134 0.023 0.004
AOI6 0.012 0.014 0.031 0.032 0.150 0.582 0.142 0.033
AOI7 0.016 0.024 0.014 0.024 0.035 0.183 0.559 0.140
AOI8 0.014 0.022 0.038 0.017 0.021 0.061 0.177 0.647

ing pattern and whether regularity affects the supposed story order in natural
languages and semi-linear order in source code [5].

According to [15] a transition is a saccade from one AOI to another one. A
traditional transition matrix contains the frequencies of direct transitions between
all pairs of AOIs. However, as our data contains frequencies from different subjects
we are exposed to possible bias as a result of having a subject with relatively high
transition rates. To overcome this we normalize the data as in Tables 5 and 6.
Tables 7 and 8 show the average normalized transition frequencies between AOIs
of the median and diamond programs, respectively. The main diagonal in each
table contains transitions within the same AOI. Generally a saccade within an
AOI is not really a transition but rather a within-AOI saccade [15]. We included
them in the transition matrix to compare with the transition rates.

The first thing to notice when examining these tables is that the most transi-
tions occur within an AOI (main diagonal, in italics). And in both tables we see
that the probability for the within-AOI saccades decreases as we progress to higher

How programmers read regular code: a controlled experiment using eye tracking 17

Table 8: Transitions frequencies between AOIs of the diamond regular implemen-
tation.

AOI1 AOI2 AOI3 AOI4
AOI1 0.813 0.163 0.019 0.003
AOI2 0.147 0.712 0.114 0.02
AOI3 0.025 0.144 0.708 0.121
AOI4 0.017 0.054 0.117 0.809

AOIs. This again indicates that subjects face more difficulty in initial AOIs and
comprehension becomes easier in the repeated instances later. But this behavior
does not hold for the last regular AOI. One possible explanation for this is that
participants try to conclude before starting a new iteration and therefore they
stay longer in last AOIs. Indeed, it seems that the last repetitive line/statemen-
t/AOI may be a special case. Beller et al. also show that the last line/statement
in repetitive instances of the same code are more erroneous, and state that the
psychological reasons are still an open issue [2].

The next observation is that most transitions occur between each AOI and
its two adjacent AOIs. The diagonal below the main diagonal, indicated in bold,
reflects transitions to the previous (upper) AOI. Similarly, each cell in the upper
diagonal (underlined) reflects transitions to the next lower AOI. Interestingly, there
is an advantage for the upper AOI, meaning going back in the code. For example,
according to Table 7 the probability that the next transition from AOI2 goes to
AOI1 is 0.160 whereas the probability for AOI3 is 0.146. This property is preserved
for all AOIs in both tables. It is reasonable that a programmer frequently moves to
the previous AOI while studying the current one as these segments are similar and
it is natural that he tries to compare between them and infers about the current
one based on the previous one. The interesting point is that as the programmer
progresses to next AOIs the number of transitions decreases (except in few cases).

If we add AOIs for other non-repeated parts of the code, we find that the
within-AOI saccades in the end block that finds the median value in the median

program is the highest value along the main diagonal. This follows our observation
from the heat map above regarding the renewed focus on non-regular segments that
follow regular ones.

4.2.4 Verification of Eye Gaze Results

A post-experiment question was asked by the experimenter of each of the subjects
about their approach and effort allocation to the different parts of the function.
During the conversation they were presented with the heat map of their session and
were asked whether this map matches their subjective impression. In particular
the focus was on the subjects of the regular implementations. We summarize their
responses in Table 9. According to this table more than 72% of the subjects stated
clearly that they spent more time on the first instances. One subject just stated
that instances are similar without any statement regarding effort allocation. Two
subjects did not express awareness of the regularity issue.

The responses of Subject20 and Subject19 were particularly interesting. Sub-
ject20 did not agree with his heat map and said that he did not investigate the
program this way. His heat map shows one spot on the last inner while and one

18 Ahmad Jbara, Dror G. Feitelson

Table 9: Subject opinions regarding their effort allocations in the regular imple-
mentations.

Subject Version Response
Subject1 diamond I realized that once I understood the first segment, it

will be easier to understand the rest due to similarity.
Subject2 median Do not know why there is more focus on the first

segment compared to others.
Subject5 median Passed over all the code but focused on the first if

more than others. I saw that the segments are similar
so spent less efforts in the later. If the later segments
were different I would spent more effort there.

Subject7 diamond Inner loops were similar.
Subject9 median Passed over all ifs, but it was enough to focus on a

few to understand others.
Subject12 diamond Spent much efforts at the beginning, tried to under-

stand the loops at the beginning because I saw that
they repeat themselves. In particular I realized that
the differences are very small so it is easy to infer
about other.

Subject13 diamond Spent more efforts on the first inner loop because it
is new for me and the rest are similar.

Subject16 median Passed over all loops and ifs. Spent much efforts on
the ifs.

Subject17 median Most of the time in the ifs. Thought about one if
and infer about others.

Subject19 median I was panicked of the if...else statements but once
saw they all similar I spent much time on those at
the beginning. (She was surprised from the fact that
her attention map follows the pattern of the others
and said that she always thinks in a different way
than others.)

Subject20 diamond Most of the efforts were spent on the inner loops
in particular the first one because it “jumps to the
eyes” the similarity with others. I do not agree with
the heat map (it shows he spent much efforts on the
last loop), it does not reflect the real efforts I spent.

before the outermost loop. We believe that something went wrong while recording
the gazes. It could be that the device was unintentionally moved by the subject
or the subject himself moved.

Subject19 was surprised from the perfect matching between her mind and its
heat map. She was even more surprised when she realized that her pattern fol-
lows the aggregated pattern of all other subjects. She said that she always thinks
differently and it is interesting to see that this time she broke that.

4.3 Modeling Effort in Repeated Instances

We claim that not all code segments in a program should have equal weights,
specifically if they are repetitions of the same pattern. The rationale is that once
the developer understands one instance it is easier to understand the other in-
stances and therefore needs less effort.

Based on this claim we observe that many widely used complexity metrics
present inflated measurements of a given code. For example, the McCabe cyclo-

How programmers read regular code: a controlled experiment using eye tracking 19

Table 10: Results of curve fitting to fixation data as a function of instance number
in regular implementations.

Version Measure Equation Model Sig. R2

median

complete
fixation
time

Linear y = −0.0271x+ 0.247 0 0.558
Logarithmic y = −0.0903 ln(x) + 0.244 0 0.509
Quadratic y = 0.00112x2 − 0.0372x+ 0.264 0 0.561
Cubic y = 0.00131x3 − 0.0166x2 +0.0305x+0.199 0 0.580
Exponential ln(y) = −0.253x− 1.190 0 0.586
Power ln(y) = −0.819 ln(x)− 1.245 0 0.504
Inverse y = 0.0631 + 0.182

x
0.002 0.361

number
of
fixations

Linear y = −0.0262x+ 0.242 0 0.597
Logarithmic y = −0.0893 ln(x) + 0.243 0 0.572
Quadratic y = 0.00223x2 − 0.0462x+ 0.276 0 0.615
Cubic y = 0.00123x3 − 0.0143x2 +0.0171x+0.215 0 0.633
Exponential ln(y) = −0.228x− 1.257 0 0.616
Power ln(y) = −0.755 ln(x)− 1.281 0 0.558
Inverse y = 0.0621 + 0.184

x
0 0.428

diamond

complete
fixation
time

Linear y = −0.1065x+ 0.516 0.002 0.516
Logarithmic y = −0.235 ln(x) + 0.436 0.001 0.545
Quadratic y = 0.0281x2 − 0.247x+ 0.657 0.006 0.545
Cubic y = −0.00776x3+0.0863x2−0.377x+0.738 0.02 0.546
Exponential ln(y) = −0.405x− 0.563 0.001 0.584
Power ln(y) = −0.857 ln(x)− 0.894 0.001 0.568
Inverse y = 0.0329 + 0.416

x
0.001 0.534

number
of
fixations

Linear y = −0.0973x+ 0.493 0.001 0.558
Logarithmic y = −0.215 ln(x) + 0.421 0.0 0.595
Quadratic y = 0.0295x2 − 0.245x+ 0.641 0.003 0.599
Cubic y = 0.00277x3 +0.00878x2 − 0.199x+0.612 0.01 0.599
Exponential ln(y) = −0.375x− 0.595 0.0 0.633
Power ln(y) = −0.806 ln(x)− 0.893 0.0 0.632
Inverse y = 0.0504 + 0.383

x
0.001 0.586

matic complexity is based on the number of conditions in the code where all
conditions are treated the same. Conditions in the 10th instance of a pattern are
counted just like those in the first instance. But this is misleading. As we showed,
developers do not need to invest the same effort in repeated instances.

We therefore wish to build a model that reflects the effort needed to understand
a repeated instance on the basis of its ordinal number. To do so we use the nor-
malized fixation data for all the subjects and check the fit of candidate functions
to this data (initially we use the raw data for all subjects, without averaging as in
Tables 5 and 6). The natural candidates are various decreasing functions. Table
10 shows the models found by the SPSS curve fitting procedure for the different
measures (complete fixation time and number of fixations) as a function of AOI
for our two regular implementations. According to the table all the models are
significant.

Overall, the best model appears to be the exponential model, which explains
between 58.4%–63.3% of the observed variation. Not far behind it is the cubic

model which explains about 54.6%–63.3% of the observed variation. The quadratic
model is also a promising candidate, and captures 54.5%-61.5% of the variation.
The linear, power and logarithmic models also explain more than 50% of the
observed variation, but they are not good as the previous models. The worst is
the inverse model which in two cases explained less than 50% of the variation.

20 Ahmad Jbara, Dror G. Feitelson

Table 11: Results of curve fitting to averaged fixation data as a function of instance
number in regular implementations.

Version Measure Equation Model Sig. R2

median

complete
fixation
time

Linear y = −0.0271x+ 0.246 0.001 0.885
Logarithmic y = −0.0902 ln(x) + 0.244 0.002 0.806
Quadratic y = 0.00111x2 − 0.0371x+ 0.263 0.004 0.890
Cubic y = 0.00134x3−0.0170x2+0.03205x+0.196 0.011 0.921
Exponential ln(y) = −0.241x− 1.151 0 0.941
Power ln(y) = −0.772 ln(x)− 1.214 0.003 0.793
Inverse y = 0.0627 + 0.181

x
0.03 0.57

number
of
fixations

Linear y = −0.0261x+ 0.242 0.001 0.875
Logarithmic y = −0.0893 ln(x) + 0.242 0.001 0.839
Quadratic y = 0.00225x2 − 0.0464x+ 0.276 0.003 0.901
Cubic y = 0.00123x3 − 0.0144x2 +0.0172x+0.214 0.009 0.928
Exponential ln(y) = −0.220x− 1.227 0 0.947
Power ln(y) = −0.725 ln(x)− 1.256 0.001 0.848
Inverse y = 0.0616 + 0.184

x
0.019 0.628

diamond

complete
fixation
time

Linear y = −0.107x+ 0.516 0.027 0.946
Logarithmic y = −0.235 ln(x) + 0.436 0.001 0.999
Quadratic y = 0.028x2 − 0.246x+ 0.656 0.042 0.998
Cubic y = −0.00766x3+0.0855x2−0.374x+0.737 0 1.0
Exponential ln(y) = −0.445x− 0.397 0.001 0.998
Power ln(y) = −0.945 ln(x)− 0.760 0.013 0.975
Inverse y = 0.0321 + 0.416

x
0.011 0.978

number
of
fixations

Linear y = −0.0972x+ 0.492 0.035 0.931
Logarithmic y = −0.215 ln(x) + 0.421 0.004 0.993
Quadratic y = 0.0295x2 − 0.244x+ 0.640 0.016 1.0
Cubic y = 0.00266x3 + 0.0095x2 − 0.200x+ 0.612 0 1.0
Exponential ln(y) = −0.393x− 0.505 0.01 0.981
Power ln(y) = −0.845 ln(x)− 0.816 0.008 0.984
Inverse y = 0.0502 + 0.382

x
0.012 0.977

When examining the models in terms of programs, the exponential and cubic

models are the best for the median program, while the exponential and power

models are the best for the diamond program. The inverse model is the worst by
far for the median program, but achieved noticeably better results for the diamond

program.

The reason for the relatively low R2 values of all the different models is that
there are two separate sources of variation. For example, for the median version
we have 8 AOIs. So one source of variation is the instance number of the AOI, and
this is what we are trying to model. But in addition there is the variation among
experimental subjects. Hence it is impossible to explain all the variation using a
function of only the instances.

But as we are interested in the average user on the long term we can perhaps
do better if we fit a model to the average value (across users) for each AOI. Thus
the data is reduced to a single vector with 8 values for each measure in the median

program, and 4 values for the diamond program. In fact these values are the ones
shown in Tables 6 and 5.

The results of fitting to the averaged data are shown in Table 11. All model
equations are pretty much similar (up to fractional digits) to those of Table 10,
except for the exponential and power models where differences may be a bit bigger.
All models are also statistically significant. The substantial change was in their

How programmers read regular code: a controlled experiment using eye tracking 21

R2 values. In particular, in the number of fixations measure of the median pro-
gram, the exponential model explained about 95% of the variation while the worst
model explained about 63%. Similarly, in the complete fixation time measure, the
exponential model explained a bit more than 94% of the variation while the worst
model explained 57%.

As for the diamond program the results show that the cubic model shows a
perfect fit for both measures, and the quadratic model shows a perfect fit in for
the number of fixations measure. The other models show a very high fit. However,
note that with only 4 data points a cubic function can indeed pass through all the
points, so this may be an overfit.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 2 4 6 8 10 12 14

logarithmic
linear
quadratic
cubic
exponential
power
inverse
data points

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14

logarithmic
linear
quadratic
cubic
exponential
power
inverse
data points

Fig. 7: Extrapolation of the model functions for the number of fixation measure
from Table 10. Data points are from Tables 5 and 6. Left: median version. Right:
diamond version.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 2 4 6 8 10 12 14

logarithmic
linear
quadratic
cubic
exponential
power
inverse
data points

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14

logarithmic
linear
quadratic
cubic
exponential
power
inverse
data points

Fig. 8: Extrapolation of the model functions for the complete fixation time mea-
sure from Table 10. Data points are from Tables 5 and 6. Left: median version.
Right: diamond version.

But when selecting a model one should consider the characteristics of the func-
tion and not only the R2 of the fit. Specifically, while our data is about functions
with only 4 or 8 repeated segments, actual functions (e.g. from Linux) may have
many more. We therefore want a model that will have a defendable general shape,

22 Ahmad Jbara, Dror G. Feitelson

and will at least not lead to unreasonable results if extrapolated. The seven model
functions for the number of fixations on the diamond program from Table 10
are shown in Figure 7 (right). This shows that if we extrapolate to larger xs, the
quadratic and cubic models grow to infinity, while the linear and logarithmic mod-
els attain negative values, all of which are unreasonable. As for the median version
(Figure 7 left) the linear, logarithmic, quadratic, and cubic models behave as in
the diamond program although not as steeply, and the inverse model converges to
a positive value. For both programs, the exponential and power models have the
more appropriate attribute of tending asymptotically to zero.

When considering the complete fixation time measure models which are shown
in Figure 8, we see that the logarithmic, linear, inverse, exponential and power

models behave as in Figure 7 for both programs. However, the quadratic model
attains negative values at its minimum for the median program, and the cubic

model tend to minus infinity for the diamond program.
Together with the previous results on goodness of fit (the R2 values) this

suggests that the exponential model has the best characteristics and this model
should be preferred. Note, however, that extrapolation is always risky and therefore
the reservations regarding functions that grow to infinity or to negative values for
larger xs may be unfounded. Theoretically that is right, however, the number of
repeated instances in the code does not grow to very large values. Therefore, for
some thresholds other models could be a good fit.

4.4 Scanpath Analysis

A scanpath is defined as a set of fixations and directed saccades. They can be
studied in either of two ways: by superimposing them over the stimuli, or by
graphing the AOIs visited as a function of time. The second approach has the
added value of adding temporal data over heatmaps and transition matrices used
earlier.

We start the analysis by manual visual inspection (traditional approach) of the
data at the granularity of AOIs. This is good for checking the quality of the data
and providing very initial observations. We then suggest two improvements. First,
we smoothed the scanpaths to get rid of distracting noise. Second, we identify
recurring patterns which represent scanpath events, and analyze the scanpaths
according to these events.

4.4.1 Traditional Approach

In this study the average number of fixations is relatively high, therefore showing
them directly superimposed over the code would be overwhelming. To learn about
the temporal aspect we adapted the traditional approach and created figures that
show fixations in AOIs as a function of start time of each fixation point (Figures
9 and 10). Moreover, these figures include more AOIs than we depicted in Figures
5 and 6. These added AOIs capture the non-regular parts of the code. For the
median program we added AOI0 for the code above AOI1. AOI9 is the single line
right beneath AOI8. The two loops in the end are captured by AOI10 and the rest
by AOI11. For the diamond program AOI0 captures the code above AOI1 and
AOI5 the code at the end.

How programmers read regular code: a controlled experiment using eye tracking 23

 0

 1

 2

 3

 4

 5

 0 2
00

00
0

 4
00

00
0

 6
00

00
0

 8
00

00
0

 1
e+

06

A
O

I
Start time

 0

 1

 2

 3

 4

 5

 0 1
00

00
0

 2
00

00
0

 3
00

00
0

 4
00

00
0

 5
00

00
0

 6
00

00
0

 7
00

00
0

A
O

I

Start time

Fig. 9: Left: The fixations of subject1 on AOIs of the diamond program over time.
Right: The fixations of subject12 on AOIs of the diamond program over time.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 1
00

00
0

 2
00

00
0

 3
00

00
0

 4
00

00
0

 5
00

00
0

A
O

I

Start time

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 2
00

00
0

 4
00

00
0

 6
00

00
0

 8
00

00
0

 1
e+

06

 1
.2

e+
06

A
O

I
Start time

Fig. 10: Left: The fixations of subject9 on AOIs of the median program over time.
Right: The fixations of subject16 on AOIs of the median program over time.

Figure 9 left shows that subject1 started by looking for a while back and forth
at AOIs 0 and 1, then made a quick scan of all AOIs with a very short fixation
in each one, then jumped back to AOI 0 for a long session of moving back and
forth between AOI 0 and 1 with many fixations in AOI 1 (horizontal lines). It is
interesting to see that in this session the transitions between AOI 0 and 1 decrease
as time goes on. At some point there is a jump to AOI 2 and the subject starts
a new pattern where he jumps back and forth between AOIs 1 and 2 with short
fixations between transitions. The same behavior is largely repeated for the pairs
2, 3 and 3, 4. For AOIs 4 and 5 there were very few back and forth moves without
consecutive fixations in 5. The subject then moved to back to AOI 0, and similar
patterns of traversing all the AOIs in sequence were repeated three more times.

Behaviors similar to that of subject1 can be easily identified also in Figure 9
(right) and Figure 10. In particular, going back and forth while progressing towards
lower AOIs occurs more than once within a subject’s complete scanpath.

4.4.2 Scanpath Smoothing

Figures 9 and 10 provide some insights about the way programmers read regular
code. However, it is quite evident that these figures are noisy in several areas.
One explanation for this noisy data is probably the very large number of con-
secutive fixation points in a condensed areas. Another cause could be the use of

24 Ahmad Jbara, Dror G. Feitelson

off-computer means for tracing which disconnect the gazes from the screen and
re-connect them after a while. A third source of noise could be blinking, as this
action moves the pupil and may be interpreted by the eye tracker as shifting the
gaze. An additional problem is that these figures are based on discrete AOIs.

The purpose of providing scanpaths is to identify trends in reading regular code
and not to know what happens in a specific point of time. To make these figures
more clear one acceptable technique is smoothing. And to improve resolution we
apply such smoothing to the raw gaze data rather than to the discretized AOI
data.

Smoothing is a technique primarily used in the signal processing domain to
reduce high-frequency noise in the signal. In this process points with abnormally
high values compared to their adjacent points are reduced, and those with abnor-
mally low values are increased. This process leads to a smoother signal. Another
way to look at smoothing is in the frequency domain: smoothing is then achieved
by low-pass filtering, which suppresses the high-frequency transitions up and down.
The simplest smoothing algorithm is the rectangular where each point is replaced
by the average of m adjacent points where m is the smooth width.

We applied the rectangular smoothing algorithm to our raw gazes of the fixa-
tion points with a smooth width of 7000 milliseconds. Thus every smoothed point
is the average of a set of adjacent points that were sampled in a range of 7000 mil-
liseconds. Setting the value of the smooth width to 7000 was not arbitrary. Initially
we created the graphs for all subjects using smoothing widths of 1000, 3000, 5000,
7000, 10000, and 30000 milliseconds. As expected the higher the smooth width the
clearer the graphs will be. However, there is a tradeoff and we may lose data.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

0 1000
2000

3000
4000

5000

F
re

qu
en

cy

Time (ms)

 0

 500

 1000

 1500

 2000

 2500

0 1000
2000

3000
4000

5000
6000

7000
8000

F
re

qu
en

cy

Time (ms)

Fig. 11: Left: The distribution of dwell time of subject1 on the diamond program.
Right: The distribution of dwell time of subject9 on the median program.

To make an intelligent choice we looked at the distribution of dwell times. A
dwell time is defined as the duration of one visit to an AOI, from entry to exit
(dwells of only one fixation were discarded). The most frequent dwell time can be
an indicator for the appropriate smooth width. Figure 11 show two histograms of
the dwell times of two subjects, one from each program. The histograms of the
other subjects are pretty similar. The majority of the dwells are found to be within
1000 milliseconds. This fact already invalidates higher values such as 10000 and
30000 as candidates for the smooth width. As for the other candidate values we
realized, by manual investigation, that the differences between the figures of all
these values are not so large therefore we took the highest value we could.

How programmers read regular code: a controlled experiment using eye tracking 25

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2
00

00
0

 4
00

00
0

 6
00

00
0

 8
00

00
0

 1
e+

06

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(a) subject1

-100
 0

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

 2
.5

e+
06

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(b) subject7

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1
00

00
0

 2
00

00
0

 3
00

00
0

 4
00

00
0

 5
00

00
0

 6
00

00
0

 7
00

00
0

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(c) subject12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(d) subject13

Fig. 12: Smoothed scanpaths of the diamond program subjects.

Figures 12 and 13 are smoothed versions of Figures 9 and 10 with additional
subjects added. Note that as opposed to the noisy figures, in the smoothed ones
the y axis is the y coordinate of the gazes and is not discretized into AOIs. We do
not consider the x coordinate (location in the code line) as we are interested in
the vertical transitions rather than horizontal ones. This is justified because the
gazes nearly always remain within the scope of the code lines (and AOIs), so the
pattern is captured by the y values.

According to Figure 12a subject1 made a very quick scan of the code, and then
restarted with a slow scan that includes very short back and forth moves. The
progress was very slow at the beginning and then became successively quicker.
This was followed by a shorter third scan that ends with a very quick move to the
end, and a fourth scan which is quite similar to the third one. One key point to
notice is that the start point of each new inner scan always moves forward.

Other subjects behaved differently. In Figure 12c subject12 slowly read the
beginning of the code then made a quick scan of the rest of the code. He then
goes back and forth to different parts of the code in an unclear pattern. Subject13
(Figure 12d) starts with three quick scans of most of the code, and then starts a
very long period of reading almost all the code interspersed with back and forth
moves. After this a new scan starts that again covers all the code but is shorter
than the previous one.

Figure 12b shows the scanpath of subject7. This scanpath is largely different
from the other scanpaths of the diamond program. It is true that it starts, like
others, with a quick scan over the code, but then he performs a very long session

26 Ahmad Jbara, Dror G. Feitelson

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

 2
.5

e+
06

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(a) subject2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2
00

00
0

 4
00

00
0

 6
00

00
0

 8
00

00
0

 1
e+

06

 1
.2

e+
06

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(b) subject5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

 3
50

00
0

 4
00

00
0

 4
50

00
0

 5
00

00
0

 5
50

00
0

 6
00

00
0

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(c) subject9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2
00

00
0

 4
00

00
0

 6
00

00
0

 8
00

00
0

 1
e+

06

 1
.2

e+
06

 1
.4

e+
06

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(d) subject16

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2
00

00
0

 4
00

00
0

 6
00

00
0

 8
00

00
0

 1
e+

06

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(e) subject17

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 2
00

00
0

 4
00

00
0

 6
00

00
0

 8
00

00
0

 1
e+

06

 1
.2

e+
06

 1
.4

e+
06

 1
.6

e+
06

 1
.8

e+
06

G
az

e
(y

 c
oo

rd
in

at
e)

Start time

(f) subject19

Fig. 13: Smoothed scanpaths of the median program subjects.

of small back and forth in the very initial parts of the code, followed by a very
noisy scan to the end, and then returning to focusing on the beginning with some
very quick jumps to the end. This might be a clue of comprehension difficulty as
reflected by the grade this subject achieved (76.5 compared with the average of
90.4) and the very high time spent (41 min, compared to average of 26 min). A
further point that might explain this is the low GPA of subject7 which was reported
at the pre-experiment questionnaire. This reflects the general methodological issue
of variability among subjects in controlled experiments.

When examining the figures of the median program subjects we see that sub-

ject2 scanpath is relatively noisy with an endless number of back and forth moves.
The unclear trend can be explained by the very low score (10, average=66.5) he
achieved and the very long time spent (48 min, average=26 min). Consistently

How programmers read regular code: a controlled experiment using eye tracking 27

with other subjects, he made a quick scan at the beginning. Subject9 initially fo-
cuses on the beginning, and then performs a quick scan of most of the code. He
then repeats this pattern, this time with a slightly wider and longer scan. The
third scan, however, is slower and seems to cover all the code methodically at a
constant rate. subject16 has a three similar scans where the third one does not
cover all the code. As for subject5, he starts with a long period of back and forth
moves at the initial parts in the code, then switches to a methodical scan simi-
lar to the previous two subjects. Many of the subjects end with relatively wide
fluctuations going back and forth.

To summarize, it seems that subjects spent some time for a quick scan of the
code (or part of it) probably to draw an overall picture about its size and structure
before starting a real comprehension process. This preliminary scanning has been
identified by Uwano et al. who argued that there is a correlation between the first
scan time and the defect detection time [41]. Many of them also spend considerable
time reading the initial part of the code, and perform slower methodical scans of
all the code (or nearly all of it) later. In addition, short back and forth moves is a
property that exists in all scanpaths.

4.4.3 Scanpath Events

One way to identify the reading patterns of subjects is by analyzing their scan-
paths events. Scanpath events are temporal patterns that occur in eye-movement
sequences [15].

In this section we analyze the scanpaths according to a set of events that have
been published and reviewed in [15] as well as a few new events we introduce.
Before delving in the analysis we introduce the events and describe them in Table
12. Some of the events were tagged as “new” which means that they were not
listed in [15] and we are not aware of studies that define them as such. A possible
exception is the prescan event, which is similar to the more specific header scan

event identified by Uwano et al. [41]. In the related work section we provide details
on other events.

We believe that the need for these new events reflects the fact that reading
code is different from conventional reading [6,8]. Further, at this stage, where eye
tracking is relatively new to software engineering, it is better to suggest more
events and patterns to facilitate study by other researchers, which will eventually
lead to convergence on an agreed set. Note that two of the new events (prescan
and verify) are location dependent, occurring only at the start and the end of the
session, respectively.

Interestingly, some events interact with their neighbors, which means that the
behavior before the event and after it is expected. For example, a scan is most
often followed by a return. The before-event and the after-event of look ahead are
quite similar and generally fixations. Likewise for the look back event.

As noted in Table 12, each scanpath event can be represented by a single letter
code. The entire scanpath can then be encoded by a string of these letters, where
the size of each letter reflects the duration of the event (this was inspired by the
sequence logos used in the bioinformatics domain [33]). For this purpose we define
4 levels: tiny, small, large, and huge. An alternative representation of duration
could be repetition of the letter representing the event. However, this requires

28 Ahmad Jbara, Dror G. Feitelson

Table 12: Scanpath events that occur in eye-movement sequences.

Event Code Description
Suggested Mean-
ing

Illustration

Reading R
A slow progress along the y
axis (moderate slope).

Comprehension

Fixation F Reading in one place. Comprehension

Scan S
A fast progress along the y
axis (steep slope).

Overview of code

Look ahead A
Jump ahead along the y
axis then back.

Hypothesis
testing, look for
ideas

Look back B
Jump back along the y axis
then return.

Recall
definitions,
verify details

Prescan (new) P Scan for preview at t = 0.
Initial
orientation

Return (new) T
Set y to a low value and
start over.

Failure to
conclude

Forward jump
(new)

J
Set y to a high value and
continue.

Continue at a
new location

Fumbling
(new)

M No clear pattern or event.
Do not know
what to do

Verify (new) V
multiple varied jumps at
t=end

Verification

How programmers read regular code: a controlled experiment using eye tracking 29

Table 13: Event-coding strings of the scanpaths of the subjects.

Subject Symbol representation of scanpaths

subject1 PRSBSTFAS ARBS/MFA

subject7 PFRTFAFAFA FAFAFAFAF

subject12 RARSTRAJF TRV

subject13 PRARBABFBRBTFV

subject2 PFAASTSTSTFASTFSM
subject5 PRAFARTSBBBTFSV

subject9 FARAJFTFTSTFJFTFSB

subject16 STSTSMASTVA

subject17 RSBBTRAFAFARAFASTF/MA

subject19 PRSFTFARAFJRBFBBRBFBFBFBFBFBF

dividing the scanpath into equal units of time which may produce segments that
are composed of different events.

Table 13 shows the event coding strings of the subjects’ scanpaths. According
to this table, the most frequent event is Fixations which are 22.5% of all events,
followed by the look ahead event with 18.3%. The look back, return, reading, and
scan events are at the same rank with about 12% each. The forward jump, prescan,
fumbling, and verification events are relatively rare.

These frequencies should be taken with caution. Some events are visually simi-
lar and this makes it difficult to choose between them. For example, the difference
between fixation, reading, and scan is based on the extent of steepness and this
is not easily determined. In the case of fixation it is not so critical because even
if some fixation events were considered as reading it still semantically belongs
to comprehension. The second problematic point is that frequency simply counts
items and does not take into account the duration of the event which means that
not all counted events have the same contribution. For example, the fixation event
occurrences come in all sizes, and in fact are common in each size category. So fix-

ation events also have the highest total duration. When combined with the value
of the reading events, which is reasonable as both are semantically similar, we find
that comprehension is the most common event type.

An interesting pair of events are the look ahead and look back. The former is
nearly equally divided between subjects, while the latter does not occur in 40% of
the subjects. However, in 50% of the subjects it is divided nearly equally, and one
subject contributes 42% of its total count. This means that the look back event is
rare, and was ranked high thanks to an extreme value for one subject.

30 Ahmad Jbara, Dror G. Feitelson

Another interesting aspect to examine is recurring patterns. The first one to
notice is the prescan event that occurs in 60% of the subjects and is always followed
by reading or fixation. A semantically similar event is scan which is followed by
the return event in 55% of its occurrences. As for the look ahead related patterns,
it seems that after a comprehension event subjects look ahead. This is evident in
the coding strings as 80% of the look ahead occurrences are preceded by reading

or fixation.
The coding strings in most cases end with M or V. Both letters indicate unclear

behavior. However, in the former this behavior points to a lack of knowledge and
control and in the latter it points to a verification process. We make the distinction
partly based on how the subjects performed, assigning M to subjects who failed
the mission and V to subjects who did better.

The ultimate purpose of event coding is to define a framework that enables
pretty accurate representation of behavior to enable automatic manipulation and
analysis, for example, similarity between strings and pattern identification within
those strings. As we stated earlier event coding is debatable and it is subject to
further work. For example, our coding so far totally ignores code coverage, which
might be a very important parameter which describes how much code a prescan

event covers, or how far in the code a look ahead reaches.

4.4.4 Reading Regular Code

Using the scanpath events we can also characterize the reading patterns used in
regular code, and more specifically, the patterns employed in successive instances
of the repeated pattern. Based on our results, it appears that the initial part of
the regular functions is indeed read thoroughly, with reading or fixation events.
This includes the initial repeated instances of the repeated pattern. But the later
instances are actually not read, but only scanned, as evident for example in the
scanpaths of subjects 5, 9, 17, and 19 in Figure 13.

5 Threats to Validity

The results of this work are subject to several threats to validity, in particular in
the experimental part.

There is an obvious advantage to using a remote eye tracker over a head
mounted device, especially when considering intrusiveness and how natural is the
experiment environment. Yet, it is still somewhat restrictive and may influence
subjects’ behavior and affect their performance. For example, one subject noted
a fear to move his head too much which prevented him from fully tracing the
function.

Furthermore, the affective state of a participant might have an effect on the
recorded data and as a result on the conclusions. For example reduced interest (due
to fatigue or boredom) is indicated by smaller pupil size or less activity in the eye
movements [43]. To cope with this we reduced the load relative to our previous
experiments, and had participants deal with only one program style rather than
both styles one after the other.

The small number of subjects in each group is another threat to validity. It is
hard to avoid because of the need to conduct personal experiments with the eye

How programmers read regular code: a controlled experiment using eye tracking 31

tracker, and our total of 20 is relatively high in this context when compared to
other works that use eye tacking [1,36,37,46].

In this work we only used two different programs and our conclusions rely on
them. The hope is to generalize to additional examples. The reason we stuck to
these programs is because we already used them in our previous work, and they
appear to be non-trivial and realistic.

Furthermore, this work basically uses undergraduate students which could limit
its generalization. However, the real question is not whether the subjects are stu-
dents or professionals, but whether they are qualified for the task [9]. As our task
was to understand a single function we feel students were adequate, and this is
justified by the results where the vast majority indeed completed the task, even if
they thought it was hard.

Two more threats are related to the areas of interest (AOIs). In our analysis
each area of interest captures one repeated instance. However, repeated instances
may form a continuum, therefore, areas of interest may span over two successive
instances. Moreover, we used the same margins around the code of each instance,
and created rectangular areas, but other options and geometric shapes are possible
and may lead to slightly different results.

6 Related Work

A large body of work has been done in the area of syntactic complexity met-
rics. Lines of code (LOC) is a very straightforward metric that simply counts
lines. Halstead defined the software science metrics including one which measures
programming effort [14]. This is built on the basis of operator and operand oc-
currences. McCabe introduced the cyclomatic complexity metric which effectively
counts the number of conditions in the code [23].

These metrics and others simply count syntactic elements. But are all lines
in the code of equal importance? Do all operators or operands have the same
effect? Do all constructs and conditions have the same intrinsic complexity? A few
works have considered these questions and introduced weight-based metrics. For
example, the cognitive functional size (CFS) metric is based on cognitive weights of
the different control structure [34]. Oman et al. defined the maintainability index
on the basis of three other syntactic metrics [27,44].

Admittedly, these works have taken the syntactic metrics one step forward,
but they still ignore the context of source code elements. In particular, repeated
structures are based on the same elements but require different cognitive effort
for the comprehension process. As far as we know we are the first to empirically
quantify the effect of context on complexity as anticipated by Weyuker [45].

There have been other works that study repetitions in code. Vinju et al. empiri-
cally showed that the cyclomatic complexity metric overestimates understandabil-
ity of Java methods. They introduced compressed control flow patterns (CCFPs)
that summarizes consecutive repetitive control flow structure, which helps in iden-
tifying where and how many times the cyclomatic metric overestimates the com-
plexity of the code [42]. But their focus was not on complexity or regularity, but
rather on the question of whether people understand control flow by recognizing
patterns. Nevertheless, in the analysis they assert that “code that looks regular is
easier to chunk and therefore easier to understand”.

32 Ahmad Jbara, Dror G. Feitelson

Sasaki et al. were even closer to our work. They recognized that one reason for
large values of the MCC metric is the presence of consecutive repeated structures,
and suggested that humans would not have difficulty in understanding such a
source code. They then proposed performing preprocessing to simplify repeated
structures for metrics measurement [32]. But both these works lack quantitative
experimental evidence, and we are not aware of such evidence also in the context
of clones in source code.

Repeated code has also been considered in the context of error proneness
whenever modifications are required. As a first step for supporting modifications
Imazato et al. investigated how repeated code is modified [16]. They revealed that
more than 73% of the repeated code is modified at least once and 31-58% of the
modifications on repeated code are needed for all elements.

Furthermore, Beller et al. recently introduced the concept of a micro-clone

as an extremely short block of almost identical repeated lines or statements[2].
By analyzing many open source projects they concluded that the last repeated
line (statement) is more error prone than other lines in the same block without
providing a clear psychological reason for this effect.

Eye tracking has recently been used in several code comprehension studies.
Sharif et al. have used eye tracking in multiple works. In [36] eye tracking was
used to capture quantitative data to investigate the effect of identifier-naming
conventions on code comprehension. The use of eye tracking was a better alterna-
tive to traditional means that were used in a previous similar work [3]. Likewise,
in [37] they also replicate a previous work where traditional means were used.
The replication uses eye tracking to extend the results and determine the effect of
layout on the detection of roles in design patterns. Yusuf et al. used eye tracking
to identify the most effective characteristics of UML class diagrams that support
software tasks [46].

Rodeghero et al. used eyetracking for extraction of contextual information
that aids in weighting different parts of code. Specifically, they present a tool
that produces code summarization by extracting keywords from a given code.
To teach the tool which keywords are better than others and which areas in the
code get more focus by programmers they conducted a controlled experiment that
uses eyetracking for studying the places the programmers read more closely than
others. They concluded that programmers focus on method’s signatures more than
on method’s invocations, and that control flow receives the least focus. This work
shows the importance of context and that the same keyword may get different
attention depending on its place in the code [31].

As for events (patterns) in eye tracking, Holmqvist et al. reviewed a large set of
patterns in the domains of reading in general and computer use [15]. They defined
backtrack as two saccades where the second goes in the opposite direction of the
first. This event has been defined and used in computer domains [13,30] and in
reading research [25]. A similar family of events are regressions where the saccades
move in the opposite direction of the text rather then the previous saccade. The
look-back event has been also introduced and defined as saccades to AOIs that
were visited previously. Many works have considered look-back events in some
way such as their relation to working memory [12] and time windows [24]. Look-
ahead events are saccades that go forward and will be soon used or become part
of a future plan. This type of event was considered by [24,28]. Two more events
were reviewed in [15]: reading and scanning. The difference between them in the

How programmers read regular code: a controlled experiment using eye tracking 33

reading domain was studied in [29]. In the field of program comprehension Crosby
et al. and Uwano et al. identified the scan pattern in subjects’ eye movements [8,
41]. Uwano et al. defined it as a preliminary scan of the source code, and showed
that there is an inverse correlation between time spent scanning the code and the
time for finding defects. Sharif et al. replicated the Uwano study but with more
participants and additional eye-tracking measures [35]. This work also investigated
how programmers find defects in source code and arrived at the same results
regarding scan time and defect finding time. Furthermore they concluded that a
correlation exists between scanning time and visual effort on relevant defect lines.

In addition to eye tracking, there have been works that use psycho-physiological
sensors and functional magnetic resonance imaging in the context of program
comprehension measurement [39,11]. Fritz et al. propose a novel approach for
classifying task difficulty (as perceived by the developer) using data from psycho-
physiological sensors. They aim at providing a way for detecting difficulties devel-
opers might experience and stop their work before they can introduce bugs into
the code [11]. Siegmund et al. explored the feasibility of using fMRI for measuring
program comprehension. In a controlled experiment it was shown that different
patterns occurred in different regions in the participants’ brains. These regions
are associated with functions such as working memory, attention, and language
processing [39].

These new techniques (EEG, EDA, and fMRI) are well established in other
domains such as cognitive neuroscience and the above works show that they can
be applied in measuring understandability. In particular, a new technique has the
potential of measuring parameters that others do not, and these additional param-
eters can shed light on new aspects or at least make things easier to measure. Such
additional techniques could be interesting also in the context of code regularity
to better understand what really goes on in developers’ brains while reading such
code and eventually building better predicting models for the effort invested.

Our work is unique in using the results of eye tracking (specifically, the fixations
data) to derive a quantitative model of effort investment. We know of no previous
work that used eye tracking to quantify the parameters of a complexity model.

7 Conclusions

We conducted an eye tracking experiment to see how programmers read code when
they try to understand it, for regular and non-regular versions of the same pro-
grams. Results show that in the repeated segments the programmers tend to invest
more effort on the initial repetitions, and less and less on successive ones. Specif-
ically, the time and number of fixations seem to drop of exponentially (although
other models, e.g. cubic, are also possible).

One may claim that the fact that programmers invest less effort in the later re-
peated instances is a natural behavior which stems from fatigue or lack of interest.
However the heat map of the median version showed that subjects renewed focus
on the last segment of the function which is not part of the repetitive segments.
This is also supported by the higher number of within-AOI saccades (relatively a
high probability of moving within this AOI) of this segment compared with the
previous ones. Thus we can claim that the reduced attention is indeed a function
of the repetitions.

34 Ahmad Jbara, Dror G. Feitelson

The reduced attention is related to the fact that repeated patterns can be antic-
ipated and are easier to understand, as was verified by post-experiment debriefing
with participants. The above observations therefore indicate that syntactic com-
plexity metrics, which just count the number of appearances of various syntactic
constructs, should be modified with context-dependent weights. For example, as-
suming an exponential model with a base of 2, a modified version of the MCC
metric would add the full MCC of the first instance, but only 1

2i−1 of the MCC
of the ith instance. This shows how syntactic measures can be reconciled with
Weyuker’s suggestion that complexity metrics reflect context [45]. Future work is
needed to see if such a weighted MCC is better than the simple version and in
what contexts.

However, the current experiments are not extensive enough to enable a full
model to be formulated. Additional measurement with more programs and subjects
are needed in order to converge on a general model, or alternatively, to identify
when different models are appropriate.

Moreover, the reduced total effort invested in successive repetitions of a code
segment does not imply that all the repetitions are read in sequence at an ever
increasing rate. On the contrary, we find that the way in which code is read is
highly non-linear, and can be described as a sequence of recurring basic patterns
such as fixation on a certain line, a linear scan of a large fraction of the code, a
temporary jump back to previously read code, and more. But while the patterns
themselves seem to be shared by different subjects, their use is inconsistent, with
each subject using a different sequence of such patterns to read the same code. We
further suggest that these patterns are likely to be used in reading all types of code,
not only regular code. A lot of additional work is needed to better characterize
the different patterns and how they are used.

In conducting such research, we suggest that several methodological innova-
tions we introduced may be useful. First, we focus exclusively on the vertical
dimension of the code, and ignore the location within a line of code. This allows
us to plot the vertical location as a function of time. But plotting all fixations
leads to very noisy graphs that are hard to interpret. The common solution is to
plot dwells in AOIs instead of individual fixations. As an alternative we suggest to
use smoothing, as achieved by computing a moving average. This retains the full
resolution of the original data (instead of discretizing using AOIs) and enables the
patterns to be seen more clearly.

In addition, we leave to future work the challenges of performing eye tracking
in large scale systems (with scrolling and tabs), and a deep study into the impact
of individual differences between experimental subjects.

Acknowledgments

This research was supported by the ISRAEL SCIENCE FOUNDATION (grant
no. 407/13). Many thanks to the reviewers of this extended version who helped to
improve the paper considerably in terms of analysis and presentation relative to
the original conference version.

How programmers read regular code: a controlled experiment using eye tracking 35

References

1. R. Bednarik and M. Tukiainen, “An eye-tracking methodology for characterizing pro-

gram comprehension processes”. In Proceedings of the 2006 Symposium on Eye Tracking
Research & Applications, pp. 125–132, ACM, New York, NY, USA, 2006, ISBN 1-59593-
305-0, DOI: 10.1145/1117309.1117356.

2. M. Beller, A. Zaidman, and A. Karpov, “The last line effect”. In Proceedings of the 2015
IEEE 23rd International Conference on Prog ram Comprehension, pp. 240–243, IEEE
Press, Piscataway, NJ, USA, 2015.
URL http://dl.acm.org/citation.cfm?id=2820282.2820317

3. D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelCase or under score”. In IEEE
17th International Conference on Program Comprehension, pp. 158–167, May 2009, DOI:
10.1109/ICPC.2009.5090039.

4. A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood, Replication’s Role in Experimental
Computer Science. Tech. Rep. EFoCS-5-94 [RR/94/172], University of Strathclyde, 1994.

5. T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif, and
S. Tamm, “Eye movements in code reading: Relaxing the linear order”. In Proceedings of
the 2015 IEEE 23rd International Conference on Program Comprehension, pp. 255–265,
IEEE Press, Piscataway, NJ, USA, 2015.
URL http://dl.acm.org/citation.cfm?id=2820282.2820320

6. T. Busjahn, C. Schulte, and A. Busjahn, “Analysis of code reading to gain more insight

in program comprehension”. In Proceedings of the 11th Koli Calling International Con-
ference on Computing Education Research, pp. 1–9, ACM, New York, NY, USA, 2011,
ISBN 978-1-4503-1052-9, DOI: 10.1145/2094131.2094133.

7. B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled experiment for program

comprehension through trace visualization”. IEEE Trans. Softw. Eng. 37(3), pp. 341
–355, May-June 2011, DOI: 10.1109/TSE.2010.47.

8. M. Crosby and J. Stelovsky, “How do we read algorithms? a case study”. Computer 23(1),
pp. 25–35, Jan 1990, DOI: 10.1109/2.48797.

9. D. G. Feitelson, “Using students as experimental subjects in software engineering research

– a review and discussion of the evidence”, Dec 2015. ArXiv:1512.08409 [cs.SE].
10. N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach.

Course Technology, 2nd ed., 1998.
11. T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger, “Using psycho-physiological

measures to assess task difficulty in software development”. In Proceedings of the 36th
International Conference on Software Engineering, pp. 402–413, ACM, New York, NY,
USA, 2014, ISBN 978-1-4503-2756-5, DOI: 10.1145/2568225.2568266.

12. I. D. Gilchrist and M. Harvey, “Refixation frequency and memory mecha-

nisms in visual search”. Current Biology 10(19), pp. 1209 – 1212, 2000, DOI:
http://dx.doi.org/10.1016/S0960-9822(00)00729-6.

13. J. H. Goldberg and X. P. Kotval, “Computer interface evaluation using eye movements:

methods and constructs”. International Journal of Industrial Ergonomics 24(6), pp. 631
– 645, 1999, DOI: http://dx.doi.org/10.1016/S0169-8141(98)00068-7.

14. M. Halstead, Elements of Software Science. Elsevier Science Inc., 1977.
15. K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. Van de

Weijer, Eye tracking: A comprehensive guide to methods and measures. Oxford University
Press, 2011.

16. A. Imazato, Y. Sasaki, Y. Higo, and S. Kusumoto, “Improving process of source code

modification focusing on repeated code”. In Product-Focused Software Process Improve-
ment, J. Heidrich, M. Oivo, A. Jedlitschka, and M. Baldassarre (eds.), Lecture Notes in
Computer Science, vol. 7983, pp. 298–312, Springer Berlin Heidelberg, 2013, ISBN 978-3-
642-39258-0, DOI: 10.1007/978-3-642-39259-7 24.

17. A. Jbara and D. G. Feitelson, “Quantification of code regularity using preprocessing and

compression”. Manuscript, Jan 2014.
18. A. Jbara and D. G. Feitelson, “On the effect of code regularity on comprehen-

sion”. In Proceedings of the 22nd International Conference on Program Comprehen-
sion, pp. 189–200, ACM, New York, NY, USA, 2014, ISBN 978-1-4503-2879-1, DOI:
10.1145/2597008.2597140.

19. A. Jbara and D. G. Feitelson, “JCSD: Visual support for understanding code control

structure”. In Proceedings of the 22Nd International Conference on Program Compre-
hension, pp. 300–303, ACM, New York, NY, USA, 2014, ISBN 978-1-4503-2879-1, DOI:
10.1145/2597008.2597801.

36 Ahmad Jbara, Dror G. Feitelson

20. A. Jbara, A. Matan, and D. Feitelson, “High-MCC functions in the Linux kernel”. Empir-
ical Software Engineering 19(5), pp. 1261–1298, 2014, DOI: 10.1007/s10664-013-9275-7.

21. M. Just and P. Carpenter, “A theory of reading: From eye fixations to comprehension”.
Psychological Review 87, pp. 329–354, 1980.

22. J. L. Krein, L. Pratt, A. Swenson, A. MacLean, C. D. Knutson, and D. Eggett, “Design

patterns in software maintenance: An experiment replication at Brigham Young Univer-

sity”. In 2nd Intl. Workshop Replication in Empirical Software Engineering Research, pp.
25–34, 2011, DOI: 10.1109/RESER.2011.10.

23. T. McCabe, “A complexity measure”. IEEE Trans. Softw. Eng. 2(4), pp. 308–320, Dec
1976, DOI: 10.1109/TSE.1976.233837.

24. N. Mennie, M. Hayhoe, and B. Sullivan, “Look-ahead fixations: Anticipatory eye move-

ments in natural tasks”. Experimental Brain Research 179, pp. 427–442, 2007.
25. W. S. Murray and A. Kennedy, “Spatial coding in the processing of anaphor by good and

poor readers: evidence from eye movement analyses”. Quarterly Journal of Experimental
Psychology: Human Experimental Psychology 40, pp. 693–718+, 1988.

26. N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component failures”. In
28th Intl. Conf. Softw. Eng., pp. 452–461, May 2006, DOI: 10.1145/1134285.1134349.

27. P. Oman and J. Hagemeister, “Construction and testing of polynomials predicting software

maintainability”. J. Syst. & Softw. 24(3), pp. 251–266, Mar 1994, DOI: 10.1016/0164-
1212(94)90067-1.

28. J. B. Pelz, R. Canosa, J. Babcock, and J. Barber, “Visual perception in familiar, complex

tasks”. In In Proceedings of the 2001 International Conference on Image Processing, pp.
12–15, 2001.

29. K. Rayner and M. H. Fischer, “Mindless reading revisited: Eye movements during reading

and scanning are different”. Perception & Psychophysics 58(5), pp. 734–747, 1996.
URL http://dx.doi.org/10.3758/BF03213106

30. J. A. Renshaw, J. E. Finlay, D. Tyfa, and R. D. Ward, “Regressions re-visited: A new

definition for the visual display paradigm”. In CHI ’04 Extended Abstracts on Human
Factors in Computing Systems, pp. 1437–1440, ACM, New York, NY, USA, 2004, ISBN
1-58113-703-6, DOI: 10.1145/985921.986084.

31. P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello, “Improving auto-

mated source code summarization via an eye-tracking stud y of programmers”. In Proceed-
ings of the 36th International Conference on Software Engin eering, pp. 390–401, ACM,
New York, NY, USA, 2014, ISBN 978-1-4503-2756-5, DOI: 10.1145/2568225.2568247.

32. Y. Sasaki, T. Ishihara, K. Hotta, H. Hata, Y. Higo, H. Igaki, and S. Kusumoto, “Pre-
processing of metrics measurement based on simplifying program structures”. In 19th
Asia-Pacific Software Engineering Conference (APSEC), vol. 2, pp. 120–127, 2012, DOI:
10.1109/APSEC.2012.59.

33. T. D. Schneider and R. M. Stephens, “Sequence logos: a new way to display consensus

sequences”. Nucleic Acids Res. 18, 1990.
34. J. Shao and Y. Wang, “A new measure of software complexity based on cognitive weights”.

Canadian J. Electrical and Comput. Eng. 28(2), pp. 69 –74, april 2003, DOI: 10.1109/C-
JECE.2003.1532511.

35. B. Sharif, M. Falcone, and J. I. Maletic, “An eye-tracking study on the role of scan time in

finding source code defects”. In Proceedings of the Symposium on Eye Tracking Research
and Applications, pp. 381–384, ACM, New York, NY, USA, 2012, ISBN 978-1-4503-1221-9,
DOI: 10.1145/2168556.2168642.

36. B. Sharif and J. Maletic, “An eye tracking study on camelCase and under score identifier

styles”. In IEEE 18th International Conference on Program Comprehension (ICPC), pp.
196–205, June 2010, DOI: 10.1109/ICPC.2010.41.

37. B. Sharif and J. Maletic, “An eye tracking study on the effects of layout in understanding

the role of design patterns”. In IEEE International Conference on Software Maintenance
(ICSM), pp. 1–10, Sept 2010, DOI: 10.1109/ICSM.2010.5609582.

38. B. Shneiderman, “Measuring computer program quality and comprehension”. Intl. J. Man-
Machine Studies 9(4), July 1977.

39. J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich, G. Saake, and
A. Brechmann, “Understanding understanding source code with functional magnetic res-

onance imaging”. In Proceedings of the 36th International Conference on Software En-
gineering, pp. 378–389, ACM, New York, NY, USA, 2014, ISBN 978-1-4503-2756-5, DOI:
10.1145/2568225.2568252.

How programmers read regular code: a controlled experiment using eye tracking 37

40. E. Soloway and K. Ehrlich, “Empirical studies of programming knowledge”. IEEE Trans.
Softw. Eng. SE-10(5), pp. 595–609, Sep 1984, DOI: 10.1109/TSE.1984.5010283.

41. H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Analyzing individual per-

formance of source code review using reviewers’ eye movement”. In Proceedings of the
2006 Symposium on Eye Tracking Research &Amp; Applications, pp. 133–140, ACM,
New York, NY, USA, 2006, ISBN 1-59593-305-0, DOI: 10.1145/1117309.1117357.

42. J. J. Vinju and M. W. Godfrey, “What does control flow really look like? Eyeballing

the cyclomatic complexity metric”. In 12th Working Conf. Source Code Analysis and
Manipulation, Sep 2012.

43. H. Wang, M. Chignell, and M. Ishizuka, “Empathic tutoring software agents using real-

time eye tracking”. In Proceedings of the 2006 Symposium on Eye Tracking Research
&Amp; Applications, pp. 73–78, ACM, New York, NY, USA, 2006, ISBN 1-59593-305-0,
DOI: 10.1145/1117309.1117346.

44. K. D. Welker, P. W. Oman, and G. G. Atkinson, “Development and application of an

automated source code maintainability index”. J. Softw. Maintenance 9(3), pp. 127–159,
May 1997, DOI: 10.1002/(SICI)1096-908X(199705)9:3<127::AID-SMR149>3.0.CO;2-S.

45. E. J. Weyuker, “Evaluating software complexity measures”. IEEE Trans. Softw. Eng.
14(9), pp. 1357–1365, Sep 1988, DOI: 10.1109/32.6178.

46. S. Yusuf, H. Kagdi, and J. Maletic, “Assessing the comprehension of UML class diagrams

via eye tracking”. In 15th IEEE International Conference on Program Comprehension,
pp. 113–122, June 2007, DOI: 10.1109/ICPC.2007.10.

