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Abstract—Regular code, which includes repetitions of the same
basic pattern, has been shown to have an effect on code compre-
hension: a regular function can be just as easy to comprehend as
an irregular one with the same functionality, despite being longer
and including more control constructs. It has been speculated
that this effect is due to leveraging the understanding of the first
instances to ease the understanding of repeated instances of the
pattern. To verify and quantify this effect, we use eye tracking
to measure the time and effort spent reading and understanding
regular code. The results are that time and effort invested in
the initial code segments are indeed much larger than those
spent on the later ones, and the decay in effort can be modeled
by an exponential or cubic model. This shows that syntactic
code complexity metrics (such as LOC and MCC) need to be
made context-sensitive, e.g. by giving reduced weight to repeated
segments according to their place in the sequence.

I. INTRODUCTION

Although there is a general agreement on the importance of

code complexity metrics, there is little agreement on specific

metrics and in particular their accuracy [26]. Syntactic metrics

like lines of code (LOC) and McCabe’s cyclomatic complexity

(MCC) are commonly used mainly because they are simple.

These metrics are additive and myopic: they simply count

source code elements without considering their context and

type. Therefore, they do not necessarily reflect the “effective

complexity” of source code. In particular, they lead to inflated

measurements of well-structured long functions that are actu-

ally reasonably simple to comprehend [11].

In previous work [11], [10], we introduced regularity as

a new factor that questions the additivity of the classical

syntactic metrics. Regularity is the repetition of code segments

(patterns), where instances of these patterns are usually suc-

cessive. Figures 4 and 5 show examples of regular code (the

repeated instances are indicated by rectangles).

Regular code is generally longer than its non-regular alter-

native, and if measured by metrics like MCC it is also more

complex, as there is a strong correlation between LOC and

MCC. However, our experiments showed that long “complex”

regular code is not harder to comprehend than the non-regular

alternative which is shorter normal code. The speculation was

that regularity helps because repeated instances are easier once

the initial ones are understood [10].

To investigate this idea, we conducted a controlled experi-

ment that uses eye tracking to explore how programmers read

regular code, and to quantitatively measure the time and effort

invested in the successive repetitions of such a code. The

results indeed show that the time and effort are reduced as

subjects progress from one repeated instance of a pattern to

the next. This reduction can be modeled by an exponential or

a cubic function.

The consequence is that additive syntax-based metrics like

LOC or MCC may be misleading, because repeated instances

contribute less to complexity and comprehension effort. This

observation was made already by Weyuker in the context of

her famed work on desirable properties of code complexity

metrics [29], where she writes “Consider the program body P;

P (that is, the same set of statements repeated twice). Would

it take twice as much time to implement or understand P; P as

P? Probably not.” Our results enable us to take an additional

step, and suggest a specific weighting function which can be

applied to repeated code segments so as to reflect their reduced

effect. This adds a degree of context sensitivity to previously

oblivious syntactic metrics.

II. MOTIVATION AND RESEARCH

QUESTIONS

While a large number of metrics for measuring code com-

plexity have been proposed, no one of them is capable of fully

reflecting the complexity of source code [4], [16]. In previous

work we have suggested regularity as an additional factor

that affects code comprehension, especially in long functions,

and provided experimental evidences for its significance [11],

[10]. Specifically, we conducted several experiments where

developers were required to understand functions and to per-

form maintenance tasks on them, where different subjects were

actually working on different versions of the same function.

Thus we could evaluate the relationship between performance

and the style in which the function was coded.

To quantify the level of regularity of the different versions,

we use an operational definition that is based on compression.

We have systematically investigated different compression

schemes and code preprocessing levels [9], [11], and found

that different combinations yield different results. The combi-

nation that gave the best correlation with perceived complexity

was to strip the code down to a skeleton of keywords and

formatting, and use the gzip compression routine. Regularity

is quantified by the compression ratio.



TABLE I
ATTRIBUTES OF THE TWO VERSIONS OF THE PROGRAMS USED IN THE EXPERIMENT. THE REG. COLUMN REPRESENTS COMPRESSION RATIO.

Regular version Non-regular version

Program LOC MCC Reg. LOC MCC Reg. Description

Median 53 18 79.3% 34 13 60.7% Find medians of all 3×3 neighborhoods
Diamond 46 17 82.8% 26 14 43.8% Find max Manhattan-radius around point with all same value

Regular functions by definition contain repetitive code seg-

ments that, at least to some extent, come one directly after

another. This implies that understanding one of these segments

would help understanding subsequent ones. Based on this we

argue that the cognitive effort needed for the second segment

is lesser than that for the first, and as the developer proceeds in

the sequence of repetitive segments the effort needed becomes

smaller. After several segments it may be expected that the

additional effort would even be negligible.

The purpose of this work is twofold. First is to replicate our

previous study regarding where we compared the performance

of subjects when maintaining regular programs versus their

non-regular counterpart. The second purpose is to study the

way developers investigate regular code, and whether their

efforts in repetitive segments are equal. If the efforts are not

the same we want to find a model that reflects the relation

between the serial location of the segment and the amount of

effort needed to comprehend it. If developers need less effort

to understand repeated segments that they already encountered

then our model would be a good context-dependent weighting

factor for metrics that consider all segments using the same

mechanism and hence yield exaggerated measures. An exam-

ple of very long functions that some metrics classify as very

hard while humans classify as simple and well structured was

presented in [11].

The research questions this paper addresses are:

• Do developers follow any pattern when they are required

to comprehend regular code? In particular, are their

efforts equally divided among regular segments?

• Assuming there is a pattern that governs their understand-

ing behaviour, which model might fit and describe it?

• In terms of correctness and completion time, are the

results consistent with those of our previous work [10]?

III. METHODOLOGICAL APPROACH

A. Test Programs

We use two programs from the image processing domain

(Table I). Each program has two versions: regular and non-

regular. The specifications of the programs used are: finding

the medians of all 3×3 neighborhoods and finding the maximal

Manhattan-radius around a point with all same value. The

programs were taken from our previous work [10], and they

meet the following design criteria:

• Realistic programs of known domain.

• Reasonable regular and non regular implementations of

the same specification.

• Non trivial specifications

We could use one program with its two implementations, but

we prefer two programs to avoid program-specific conclusions.

B. Eye-tracking Apparatus

We use the Eye Tribe eye tracker (www.theeyetribe.com) in

this work. The device uses a camera and an infrared LED. It

operates at a sampling rate of 60Hz, latency less than 20ms at

60Hz mode, and accuracy of 0.5◦–1◦. The device supports 9,

12, or 16 points for the calibration process. We used 9 points

mode. The screen resolution was set to 1280 by 1024.

The Eye Tribe is a remote eye tracker and as such it

provides the subjects a non-intrusive work environment which

is essential for reliable measurements. Furthermore, the device

allows head movements during the real experiment but not

while calibrating.

To analyze the tracking data we use OGAMA

(www.ogama.net). It is an open source software designed

for analyzing eye and mouse movements. OGAMA supports

many commercial eye trackers like Tobii. In its last version

(4.5) support for the Eye Tribe has been added. This builtin

support makes the process easier and saves the import of the

data between systems.

C. Task Design

Basically, we adopted the programs and the task of exper-

iment 2 from our previous work [10] with one difference. In

our previous work, each subject sequentially performed the

same task (understanding what does a program do) for the

regular version of one program and the non-regular version

of the other. In this work we follow a between-subject design

where each subject performs the task on one version only. This

design decision has been taken on the basis of a pilot study

where subjects claimed that performing two programs is hard

especially when you have to keep your gazes within the screen

for a long time [27].

In addition to answering the comprehension question what

does the program do, the subjects were asked to evaluate the

difficulty of the code on a 5-point scale, and state the reasons

for their evaluation.

A post-experiment question was presented to each partici-

pant regarding the way they approach the programs, with the

goal of understanding how their effort was distributed in the

code and why. Retrospectively, it turned out that this post-

experiment question was important as there were cases where

the eye tracking data did not fit the participant’s opinion.

D. Grading Solutions for Correctness

In grading the solutions of the subjects we followed [14],

[3], [23]. In particular, we adopted a multi-pass approach

where three evaluators were involved. Initially, the first author

evaluated the answers according to a personal scale. In the



TABLE II
AVERAGE GRADES OF THE PARTICIPANTS IN THE DIFFERENT GROUPS.

Style All courses Programming courses

Regular (median) 84.0±7.9 86.5±11.1
Regular (diamond) 86.6±9.0 87.0±9.8

85.1±8.1 86.7±10.0

Non-regular (median) 82.2±11.0 83.2±9.9
Non-regular (diamond) 85.6±8.1 86.2±7.7

84.1±9.0 84.8±8.3

second pass another colleague evaluated the answers. How-

ever, in a few cases there were large gaps between the two

evaluations. To resolve this, the second author made a third

pass on these cases.

The final grade for each of the cases was computed as the

average of the three evaluations when these were close enough

(≤10 pts). Otherwise, we computed the average of the two

closest grades. It should be noted that in all cases where we

chose two grades of the three, these two grades were always

very close to each other.

E. Subjects

The subjects in this experiment are 18 3rd year students

at the computer science department of Netanya Academic

College, and two faculty members. In total we had 20 subjects.

All participants except three were males. The average age is

24.8 (SD=8.7), and subjects are without industrial experience

except one subject who had 3 years experience before his

academic studies.

To ensure fair comparisons we asked the subjects about their

average grades in general and in programming courses. Ini-

tially assignment was random, but later we assigned subjects

to groups so as to reduce the variability in grades. Table II

shows the averages of the 4 groups. According to this table

we see that in terms of groups and style the averages are quiet

similar.

F. Procedure

The first author was the experimenter of all subjects. The

experimenter initially gave a general overview about the

experiment and the eye tracker. Participants were told that

the experiment is about comprehension but were not told the

specific goal. The experimenter showed each participant how

the eye tracker operates and let him practice that by himself.

In particular, the experimenter asked each participant to notice

the track-status window that shows the subject’s eyes and their

gazes. This is important because when the participant moves

his head it is reflected in this window allowing the participant

to learn about the valid range of his head’s movements.

Once the participant felt satisfied with the system, the

experimenter asked him to calibrate. The system notification

about the calibration results uses a five-level scale. Table III

shows the different levels, their accuracy, and the number of

subjects at each level. The subject who failed the calibration

process was tracked manually (he was requested to move the

mouse to show the code he is looking at). Luckily he was

TABLE III
ACCURACY LEVELS OF THE CALIBRATION PROCESS AND HOW MANY

SUBJECTS FALL INTO EACH OF THESE LEVELS.

Level Accuracy subjects

Perfect < 0.5◦ 12
Good < 0.7◦ 5

Moderate < 1.0◦ 2
Poor < 1.5◦ 0

Re-calibrate bad 1

assigned to a non-regular function, so was not needed for the

detailed analysis of regular ones.

After the calibration phase the subject started the experi-

mentation. The first screen presents a general overview and

instructions, and the second screen presents the program to

comprehend. The participant is allowed to study the program

as much time as he wants and then answers the question. While

studying the program he is allowed to use off-computer means

to trace the variables even if this forces him to disconnect his

gaze from screen.

A post-experiment question was asked by the experimenter

about the way the subject studied the program. The initial

question was “how did you approach the program”. In the en-

suing discussion subjects were also asked where they invested

effort. They were also shown the heatmap of their gazes trying

to learn more about the process, and asked to comment on it

— specifically, whether it reflects what they think they did.

G. Study Variables

The dependent variables of this study are correctness,

completion time, and visual effort. The correctness variable is

the score a subject achieves for answering the what does the

function do? question. The completion time variable measures

the time a subject spent in the function stimuli including

answering the question. The rationale of considering the time

of writing the answers is that subjects also consider the stimuli

while writing their answers.

The correctness and completion time variables are not the

main variables we want to analyze in this study as they have

been studied already in a previous work for comparing the

comprehension of regular and non-regular implementations of

the same program. Thus we use them for replication and for

generating a challenging environment to get a realistic measure

for the visual effort variable.

The visual effort variable measures, in terms of eye move-

ments, the efforts a subject needs to get an answer. It is a

latent variable so it is measured indirectly using observable

variables related to fixations.

Fixation is one of two types of data that are considered

when using the eye tracking technique. It occurs when the

eyes stabilize on an object. The other type of data is called

saccade. It describes a rapid movements between fixations.

We derive our observable variables from fixations rather

than saccades as two important mental activities occur during

fixation. These activities are derived from two assumptions

that relate fixation to comprehension. The eye-mind assump-

tion states that processing occurs during fixation, and the



immediacy assumption posits that interpretation at all levels

of processing are not deferred [12].

The observable variables that are measured to represent

visual effort are fixation count, total fixation time, and pupil

dilation.

1) Fixation Count: This metric counts the number of fixa-

tions in a predefined area of interest (AOI).

2) Total Fixation Time: This metric measures the total

fixation durations in a predefined AOI.

3) Average Pupil Dilation: It has been shown that there

is a positive correlation between cognitive effort and pupil

size. Hess showed that the pupil size increases with the

increase of arithmetic complexity [8]. In a different domain,

Just et al. found a correlation between pupil size and sentence

complexity during a comprehension task [13]. Similar findings

were presented by Ganholm et al. in the context of working

memory load [6].

On the basis of the above works we use pupil dilation

as a measure of complexity and apply it to compare regular

code with non regular code. In addition, we use pupil size to

examine our claim about decreasing complexity of repeated

instances of code segments.

We define the metric as the average of pupil size in all

fixations in a given area of interest (AOI). We discard gazes

between fixations (saccads) as pupil size reflects complexity

and complexity is experienced during processing which hap-

pens in fixations.

IV. RESULTS AND ANALYSIS

A. Regular vs. Non-Regular Versions

1) Correctness and Time: The main purpose of this work

is exploring the way developers approach regular code rather

than comparing its performance to non regular code. We have

investigated this in a previous work [10]. Nevertheless, we

replicate that work to confirm the results. We use the following

hypotheses to test the differences between regular and non-

regular versions of the same program.

• H0: Programmers achieve similar scores and time in

understanding non-regular versions as in the regular coun-

terpart.

• H1: The regular versions are easier and faster to under-

stand even though they are longer and have higher values

of McCabe’s cyclomatic complexity.

To test our hypotheses we initially look at the means of all

regular and non-regular scores for each program, then consider

the whole distribution of regular scores against the whole

distribution of non-regular ones.

The four groups’ scores met the normality assumption

which was tested by the Shapiro-Wilks test. The diamond

groups did not meet the equality of variance assumption so

we did not assume that. As the groups are unrelated we used

the independent t-test. Comparing the means of the regular

and non-regular groups of the diamond programs yielded a

significant different between these two groups (t(4.967) =
−3.211, p = 0.012). So we can reject the null hypothesis and

TABLE IV
CORRECTNESS AND COMPLETION TIME RESULTS FOR ALL

IMPLEMENTATIONS.

Style Correctness average Completion time average

Regular (median) 66.5±30.0 26.0±12.9
Regular (diamond) 92.0±9.8 25.7±12.3

80.2±25.4 25.9±12.0

Non-regular (median) 65.0±28.7 25.2±7.4
Non-regular (diamond) 49.1±27.0 31.5±21.6

56.1±26.7 28.7±16.3

accept the alternative one. When examining the groups of the

median program the difference between the means was not

significant. Thus we cannot reject the null hypothesis in this

case.

One explanation for the similar scores in the median pro-

gram is that the difference between the values of the regularity

measure for the regular and non-regular versions is not large

enough. Furthermore, the non-regular version contains a code

segment that computes the median by partial sorting. As

sorting is a programming plan [25] it might serve as a strong

clue for the whole function understanding.

Taken together, the results show that the regular versions

are not more difficult, contradicting the naive expectation that

subjects of the regular version achieve lower scores due to

high values of LOC and MCC.

We also compared the whole distribution of regular scores

(of the two programs) to the distribution of non-regular scores.

We did not use the independent t-test as the groups failed the

normality assumption even under transformation. In such cases

it is recommended to use the Mann-Whitney non-parametric

test. This test is used to compare differences between two

unrelated groups when their dependent variable is not normally

distributed. By running this test it was found that the regular

group achieved significantly better scores than the non-regular

group (U = 24, p = 0.028).

In terms of completion time, we also applied the indepen-

dent t-test as the four groups were normally distributed and

each pair also met the equality of variance assumption. For

the two programs there was no significant difference in the

means, so we cannot reject the null hypothesis.

According to Table IV the results are quite similar for

the two styles in the two programs (with slight advantage

for the regular style despite its long implementations when

compared to the non regular style), except for one non-regular

implementation (diamond program) where one subject in this

group spent much time and as a result the average got a

relatively high value.

These results (correctness and completion time) follow those

of our previous work where we used the same functions as in

this work [10].

2) Difficulty of Programming Style: Besides the what does

the function do? question, we also asked the subjects to

rank the function difficulty on an ascending 5-point scale.

Figure 1 shows the distribution of the subjects’ answers. In

particular it shows that a third of the subjects of the non-

regular implementation ranked their functions as very hard
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Fig. 1. Distribution of perceived difficulty ratings.

while none of the regular-implementation subjects used this

level. On the opposite side, 2 subjects have ranked the regular

implementations as easy while not even one subject of the

non-regular group used this rank.

Moreover, about 55% of the regular group ranked their

functions as easy or moderate while about 78% of the non-

regular group ranked their functions as hard or very hard.

B. Visual Effort

1) Heat Map: One way to identify regions with special

attention is using heat maps. They are designed to visualize

fixations taken from many subjects. By this we can answer

questions like what locations of the stimulus are noticed by the

average subject? We use this technique to investigate whether

subjects follow an obvious pattern in terms of effort allocation,

and by this we answer our first research question.

Figure 2 shows the heat maps of the regular implementations

(diamond and median programs). Both maps show that the

average subject largely fixates on the first instance of the

repeated pattern. The innermost red spot indicates the region

that received the largest attention, and as we move downward

the color becomes colder and regions get less attention. These

figures show an aggregation of all subjects of each regular

group.

The conclusion is that subjects spend more effort in the

initial instances. When it comes to the last instances the

examined area gets minimal focus.

Importantly, subjects did refocus on the final processing

that comes after the regular repeated instances in the median

program. This shows that attention is not just reduced with

length, and subjects do not just tend to ignore the end of

the function. Thus it strengthens the above result concerning

reduced attention to repeated segments. The diamond program

does not have such a final processing part.

There is no such obvious behavior in the non-regular

counterparts as shown in Figure 3. Subjects generally focus

on the inner-loop of the functions.

2) Areas of Interest: heat maps show the dominant areas in

the code without clear separation between repeated segments.

Areas of interest are geometric areas defined by the experi-

menter for the sake of between-area and within-area analyses.

TABLE V
MEASURES (AVERAGES) OF THE AOIS OF THE median REGULAR

IMPLEMENTATION.

AOI #fixations Complete fixation time Pupil size

AOI1 311.6 133714.0 19.98
AOI2 393.8 182459.3 19.85
AOI3 287.6 144096.0 19.54
AOI4 173.0 82537.0 19.55
AOI5 130.0 66345.5 19.38
AOI6 116.0 49318.6 19.19
AOI7 97.6 43115.3 19.11
AOI8 87.0 31101.8 19.18

TABLE VI
MEASURES (AVERAGES) OF THE AOIS OF THE diamond REGULAR

IMPLEMENTATION.

AOI #fixations Complete fixation time Pupil size

AOI1 496.7 235035.8 22.57
AOI2 239.0 92919.0 22.19
AOI3 179.0 80597.5 22.21
AOI4 129.2 46648.0 22.61

In both regular implementations we are interested in the

repeated instances. The median version was divided into 8

areas of interest as shown in Figure 4 (one AOI for each

instance), and the diamond version was likewise divided into 4

areas of interest (Figure 5). For each AOI we compute fixation

count, total fixations time, and average size of subjects’ pupil.

Tables V and VI show the measures of all areas of interest

for the regular versions of both programs. Obviously these

results show that subjects spent more time (and thus effort) in

the earlier segments, and the time spent is sharply reduced as

we progress to later segments. This behaviour is preserved in

terms of all measures with slight digression in few cases, but

the general pattern is pretty evident.

If subjects spend more time in one area rather than others

that would normally mean that this area is more complex than

others. But in our study, given that the segments are pretty

similar, a better interpretation is that once one segment is learnt

it is easier to comprehend the others.

3) Pupil Dilation: It is well known that there is a strong

correlation between pupil size and mental effort, and therefore

also a correlation between pupil size and the complexity of

the task. Table V shows the average size of the subjects’ pupil

in all areas of interest in the regular version of the median

program. According to this table the average size in the first

AOI is 19.98, in the second AOI it is 19.85, in the third 19.54,

and this behaviour is roughly preserved as we progress to the

next areas. Similar behaviour occurs in the regular version

of the diamond program (Table VI). Thus the pupil size data

too indicates that successive repeated code segments become

easier to comprehend.

However, the differences are smaller than for the fixation

data. To investigate this more deeply, we consider the indi-

vidual distributions for the different subjects. As shown in

Figure 6, some have a clear downward trend, e.g. Subject5 and

Subject1. For others there is a mainly downward trend, but it

is not monotonous — as for Subject2 and Subject9. Finally



Fig. 2. Left: heat map of the regular implementation of the median program based on 6 subjects. Right: heat map of the regular implementation of the
diamond program based on 4 subjects (we excluded the fifth subject due to a contradiction between his heat map and think-aloud results).

Fig. 3. Left: heat map of the non-regular implementation of the median program based on 3 subjects (we excluded the fourth subject as he failed the
calibration process). Right: heat map of the non-regular implementation of the diamond program based on 5 subjects.

there are those where there is no clear trend, and even one

with an upward trend. In general, the subjects who worked on

the median program exhibited stronger trends, maybe because

the diamond program had only 4 repeated segments.

4) Verification of Eye Gaze Results: A post-experiment

question was asked by the experimenter of each of the subjects

about their approach and effort allocation to the different parts

of the function. During the conversation they were presented

with the heat map of their session and were asked whether

this map matches their subjective impression. In particular the

focus was on the subjects of the regular implementations. We

summarize their responses in Table VII. According to this table

more than 72% of the subjects stated clearly that they spent

more time on the first instances. One subject just stated that



Fig. 4. The areas of interest (AOIs) of the median regular implementation.

instances are similar without any statement regarding effort

allocation. Two subjects did not express awareness of the

regularity issue.

The responses of Subject20 and Subject19 were particularly

interesting. Subject20 did not agree with his heat map and

said that he did not investigate the program this way. His heat

map shows one spot on the last inner while and one before

the outermost loop. We believe that something went wrong

while recording the gazes. It could be that the device was

unintentionally moved by the subject or the subject himself

moved.

Subject19 was surprised from the perfect matching between

her mind and its heat map. She was even more surprised when

she realized that her pattern follows the aggregated pattern of

all other subjects. She said that she always thinks differently

and it is interesting to see that this time she broke that.

Fig. 5. The areas of interest (AOIs) of the diamond regular implementation.

C. Modeling Effort in Repeated Instances

We claim that not all code segments in a program should

have equal weight, especially if they have the same structure

or they are clones. The rationale is that once the developer

understands one instance it is easier for him to understand the

other instances and therefore he needs less effort.

Based on this claim we observe that many widely used

complexity metrics unfairly present inflated measurements of a

given code. For example, the McCabe cyclomatic complexity

is based on the number of conditions in the code where all

conditions are treated the same. Conditions in the 10th instance

of a pattern are counted just like those in the first instance.

But this is misleading. As we showed, developers do not need

to invest the same effort in repeated instances.

Our purpose is therefore to build a model that predicts

efforts needed to understand a repeated instance on the basis

of its ordinal number. To do so we use the fixation data

for all the subjects and check the fit of candidate functions

to this data. The natural candidates are various decreasing

functions. Table VIII shows the models found by the curve
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Fig. 6. Left: Changes to the pupil size of 6 subjects over 8 AOIs of the regular version of the median program. Right: Changes to the pupil size of 4 subjects
over 4 AOIs of the regular version of the diamond program.

TABLE VII
SUBJECT OPINIONS REGARDING THEIR EFFORT ALLOCATIONS IN THE

REGULAR IMPLEMENTATIONS.

Subject
Version

Response

Subject1
diamond

I realized that once I understood the first segment, it will
be easier to understand the rest due to similarity.

Subject2
median

Do not know why there is more focus on the first segment
compared to others.

Subject5
median

Passed over all the code but focused on the first if more
than others. I saw that the segments are similar so spent
less efforts in the later. If the later segments were different
I would spent more effort there.

Subject7
diamond

Inner loops were similar.

Subject9
median

Passed over all ifs, but it was enough to focus on a few to
understand others.

Subject12
diamond

Spent much efforts at the beginning, tried to understand
the loops at the beginning because I saw that they repeat
themselves. In particular I realized that the differences are
very small so it is easy to infer about other.

Subject13
diamond

Spent more efforts on the first inner loop because it is new
for me and the rest are similar.

Subject16
median

Passed over all loops and ifs. Spent much efforts on the ifs.

Subject17
median

Most of the time in the ifs. Thought about one if and infer
about others.

Subject19
median

I was panicked of the if...else statements but once saw they
all similar I spent much time on those at the beginning. She
was surprised from the fact that her attention map follows
the pattern of the other and said that she always thinks in
a different way than others.

Subject20
diamond

Most of the efforts were spent on the inner loops in
particular the first one because it “jumps to the eyes” the
similarity with others. I do not agree with the heat map (it
shows he spent much efforts on the last loop), it does not
reflect the real efforts I spent.

fitting procedure for the different measures (complete fixation

time and number of fixations) as a function of AOI for our

two regular implementations. According to the table all the

models are significant except one (the exponential model of

the complete fixation time measure of the diamond program).

The best model turns out to depend on the program. For the

median program the best model could be the exponential one,

which explains about 46–49% of the observed variation. Other

models are far behind it. As for the diamond program the best

model is the cubic one. It succeeds in explaining more than

51% of the observed variation in both measures. An additional

good candidate is the quadratic model which is relatively close

to the cubic model. The worst model for this program is the

exponential, which in one case is not statistically significant

and in the other explains only 30% of the variation which is

relatively low.

The reason for the relatively low values of the R2 of the

different models is the way the observed values distribute.

For example, for the median version we have 8 AOIs. For

each AOI we have a column of the measurements for each

subject. Due to the natural variability between subjects, it is

impossible to explain all the variation using a function of only

the instances.

But as we are interested in the average user on the long

term we can perhaps do better if we fit a model to the average

value for each AOI. Thus the data is reduced to a single vector

with 8 values for each measure in the median program, and 4

values for the diamond program. In fact these values are the

ones shown in Tables VI and V.

The results of fitting the median program data are that

all model equations are pretty much similar (up to fractional

digits) to those of Table VIII and statistically significant. The

substantial change was in their R2 values. In particular, the

exponential model explained 92% of the variation while the

worst model explained a bit more than 70%.

As for the diamond program the results show that the linear

and quadratic models are not significant, so we are left with

the other three. Of these, the cubic model shows a perfect

fit, while the other two show a very high fit. However, note

that with only 4 data points a cubic function can indeed pass

through all the points, so this may be an overfit.

Indeed, when selecting a model one should consider the

characteristics of the function and not only the R2 of the

fit. For example, the five model functions for the number

of fixations on the diamond program from Table VIII are

shown in Figure 7 (right). This shows that as we extrapolate

to larger xs, the quadratic model grows to infinity, while the

logarithmic, linear, and cubic models attain negative values.



TABLE VIII
RESULTS OF CURVE FITTING TO FIXATION DATA AS A FUNCTION OF INSTANCE NUMBER IN REGULAR IMPLEMENTATIONS.

Version Measure Equation Model Sig. R2

median complete fixation time
Linear y = −20422.9x+ 183489.2 0 0.340
Logarithmic y = −65923.5 ∗ ln(x) + 178972.5 0 0.292

Quadratic y = 325.1x2 − 23349.5x+ 188366.8 0 0.340

Cubic y = 1743.5x3 − 23212.92 + 66443.9x+ 102060.5 0 0.375
Exponential ln(y) = −0.254x+ 12.2 0 0.465

#fixations
Linear y = −43x+ 393.1 0 0.384
Logarithmic y = −144.3 ∗ ln(x) + 390.9 0 0.356

Quadratic y = 3.2x2 − 72.6x+ 442.6 0 0.393

Cubic y = 3.1x3 − 38.9x2 + 88.6x+ 287.5 0 0.422
Exponential ln(y) = −0.228x+ 6.0 0 0.489

diamond complete fixation time
Linear y = −57748.2x+ 258171 0.007 0.414
Logarithmic y = −132855.2 ∗ ln(x) + 219355.4 0.003 0.475

Quadratic y = 27041x2 − 192958x+ 393380.6 0.013 0.487

Cubic y = −25237x3 + 216320.3x2 − 614418x+ 658370.5 0.029 0.515
Exponential ln(y) = −0.405x+ 12.2 0.066 0.222

#fixation
Linear y = −116.2x+ 551.6 0.006 0.432
Logarithmic y = −265.6 ∗ ln(x) + 472.0 0.003 0.489

Quadratic y = 52x2 − 376.2x+ 811.6 0.011 0.501

Cubic y = −31.2x3 + 286.3x2 − 898.1x+ 1139.7 0.03 0.512
Exponential ln(y) = −0.375x+ 6.2 0.026 0.308
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Fig. 7. Extrapolation of the model functions (of the #fixation measure) from Table VIII. Data points are from Table V. Left: median version. Right: diamond

version.

The exponential model has the more appropriate attribute of

tending asymptotically to zero.

As for the median version (Figure 7 left) the linear, logarith-

mic, and quadratic models behave as in the diamond program

although not as steeply. However, the cubic model changed

its direction to positive infinity to compensate for the non-

monotonicity of the first point.

On the basis of the above observations one may claim

that all models, except the exponential one, are bad for

extrapolation as some of them grow to infinity and others

to negative values for larger xs. Theoretically that is right,

however, the number of repeated instances in the code does

not grow to very large values. Therefore, for some thresholds

other models could be a good fit.

V. THREATS TO VALIDITY

The results of this work are subject to several threats to

validity, in particular in the experimental part.

There is an obvious advantage to using a remote eye tracker

over a head mounted device, especially when considering

intrusiveness and how natural is the experiment environment.

Yet, it is still somewhat restrictive and may influence subjects’

behavior and affect their performance. For example, one sub-

ject noted a fear to move his head too much which prevented

him from fully tracing the function.

The small number of subjects in each group is another threat

to validity. It is hard to avoid because of the need to conduct

personal experiments with the eye tracker, and our total of

20 is relatively high in this context when compared to other

works that use eye tacking [1], [21], [22], [30].

In this work we only used two different programs and

our conclusions rely on them. The hope is to generalize to

additional examples. The reason we stuck to these programs

is because we already used them in our previous work, and

they appear to be non-trivial and realistic. Furthermore, this

work basically uses undergraduate students which could limit

its generalization.

Two more threats are related to the areas of interest (AOIs).

In our analysis each area of interest captures one repeated

instance. However, repeated instances may form a continuum,

therefore, areas of interest may span over two successive



instances. Moreover, we used the same margins around the

code of each instance, and created rectangular areas, but other

options and geometric shapes are possible and may lead to

slightly different results.

VI. RELATED WORK

A large body of work has been done in the area of syntactic

complexity metrics. Lines of code (LOC) is a very straight-

forward metric that simply counts lines. Halstead defined

the software science metrics including one which measures

programming effort [7]. This is built on the basis of operator

and operand occurrences. McCabe introduced the cyclomatic

complexity metric which simply counts the number of condi-

tions in the code [15].

These metrics and others simply counts syntactic elements.

But are all lines in the code of equal importance? Do all

operators or operands have the same effect? Do all constructs

and conditions have the same intrinsic complexity? A few

works have considered these questions and introduced weight-

based metrics. For example, the cognitive functional size

(CFS) metric is based on cognitive weights of the different

control structure [19]. Oman et al. defined the maintainability

index on the basis of three other syntactic metrics [17], [28].

Admittedly, these works have taken the syntactic metrics

one step forward, but they still ignore the context of source

code elements. In particular, repeated structures are based on

the same elements but require different cognitive effort for the

comprehension process. As far as we know we are the first to

empirically quantify the effect of context on complexity as

anticipated by Weyuker [29].

There have been other works that study repetitions in code.

Vinju et al. empirically showed that the cyclomatic complex-

ity metric overestimates understandability of Java methods.

They introduced compressed control flow patterns (CCFPs)

that summarizes consecutive repetitive control flow structure,

which helps in identifying where and how many times the

cyclomatic metric overestimates the complexity of the code

[26]. But their focus was not on complexity or regularity, but

rather on the question of whether people understand control

flow by recognizing patterns. Nevertheless, in the analysis they

assert that “code that looks regular is easier to chunk and

therefore easier to understand”.

Sasaki et al. were even closer to our work. They recognized

that one reason for large values of the MCC metric is the

presence of consecutive repeated structures, and suggested that

humans would not have difficulty in understanding such a

source code. They then proposed performing preprocessing

to simplify repeated structures for metrics measurement [18].

But both these works lack quantitative experimental evidence,

and we are not aware of such evidence also in the context of

clones in source code.

Eye tracking has recently been used in several code com-

prehension studies. Sharif et al. have used eye tracking in

multiple works. In [21] eye tracking was used to capture

quantitative data to investigate the affect of identifier-naming

conventions on code comprehension. The use of eye tracking

was a better alternative to traditional means that were used

in a previous similar work [2]. Likewise, in [22] they also

replicate a previous work where traditional means were used.

The replication uses eye tracking to extend the results and

determine the effect of layout on the detection of roles in

design patterns. Finally, in [20] they replicated a previous eye

tracking study, but with more participant and additional eye-

tracking measures. This work investigates how programmers

find defects in source code.

Yusuf et al. used eye tracking to identify the most effective

characteristics of UML class diagrams that support software

tasks.

As for program comprehension measurement, there have

been works that use psycho-physiological sensors and func-

tional magnetic resonance imaging [24], [5].

We know of no previous work that used eye tracking to

quantify complexity model parameters.

VII. CONCLUSIONS

We conducted an eye tracking experiment to see how

programmers read code when they try to understand it, for

regular and non-regular versions of the same programs. Results

show that in the repeated segments the programmers tend to

invest more effort on the initial repetitions, and less and less on

successive ones. Specifically, the time and number of fixations

seem to drop of exponentially (although other models, e.g.

cubic, are also possible).

One may claim that the fact that programmers invest less

effort in the later repeated instances is a natural behaviour

which stems from fatigue or lack of interest. However the

heat map of the median version showed that subjects renewed

focus on the last segment of the function which is not part of

the repetitive segments. Thus we can claim that the reduced

attention is indeed a function of the repetitions.

The reduced attention is related to the fact that repeated

patterns can be anticipated and are easier to understand, as was

verified by post-experiment debriefing with participants. The

above observations therefore indicate that syntactic complexity

metrics, which just count the number of appearances of

various syntactic constructs, should be modified with context-

dependent weights. For example, assuming an exponential

model with a base of 2, a modified version of the MCC metric

would add the full MCC of the first instance, but only 1

2i−1

of the MCC of the ith instance. This shows how syntactic

measures can be reconciled with Weyuker’s suggestion that

complexity metrics reflect context [29].

However, the current experiments are not extensive enough

to enable a full model to be formulated. Of the two programs

we used, one produced results which favor an exponential

model, while the other’s results do not. Additional measure-

ment with more programs and subjects are needed in order to

converge on a general model, or alternatively, to identify when

different models are appropriate.
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