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ABSTRACT

It is naturally easier to comprehend simple code relative to com-
plicated code. Regrettably, there is little agreement on how to
effectively measure code complexity. As a result simple general-
purpose metrics are often used, such as lines of code (LOC), Mc-
Cabe’s cyclomatic complexity (MCC), and Halstead’s metrics. But
such metrics just count syntactic features, and ignore details of the
code’s global structure, which may also have an effect on under-
standability. In particular, we suggest that code regularity—where
the same structures are repeated time after time—may significantly
reduce complexity, because once one figures out the basic repeated
element it is easier to understand additional instances. We demon-
strate this by controlled experiments where subjects perform cogni-
tive tasks on different versions of the same basic function. The re-
sults indicate that versions with significant regularity lead to better
comprehension, while taking similar time, despite being longer and
having higher MCC. These results indicate that regularity is another
attribute of code that should be taken into account in the context of
studying the code’s complexity and comprehension. Moreover, the
fact that regularity may compensate for LOC and MCC demon-
strates that complexity cannot be decomposed into independently
addable contributions by individual attributes.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Complexity measures

General Terms

Experimentation, Measurement, Human factors
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1. INTRODUCTION
Some code is easy to understand, while other code may be diffi-

cult to understand. The attribute that makes code hard to understand
is generally called “code complexity”. It is important to be able to
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define and measure code complexity, because doing so may enable
reliable predictions of defect density (complex code is harder to
get right) and maintenance effort (complex code is harder to under-
stand, correct, and modify), and enable identification of code that
should be subjected to further scrutiny and possibly refactoring.

However, the concept of code complexity has proven to be elu-
sive. Many complexity metrics have been proposed, but all have
been attacked on various theoretical and practical grounds. Thus it
seems that complexity cannot be captured by a single simple met-
ric: different (combinations of) metrics may be needed for different
projects, and interactions between the metrics should also be con-
sidered [12, 32, 29].

The McCabe cyclomatic complexity (MCC) metric is a widely
used metric that measures one specific aspect of complexity, namely
the cyclomatic complexity of the control flow of the code [27]. In
previous work we studied MCC in the Linux kernel and some other
large projects [18], and found a wide gap between the practice as
reflected in these projects and the suggested thresholds on MCC in
different works [27, 44, 43, 8] and tools [30, 45]. For example,
we found many hundreds of functions with MCC higher than 100,
whereas suggested thresholds for MCC range between 10 and 50,
above which the code is considered “too complex”. But some of
these “high complexity” functions appeared to be well structured,
and underwent extensive evolution [18]. The conclusion was that
this metric does not necessarily reflect the effective complexity, es-
pecially in high-MCC functions.

Using a visualization of the structure of the code in terms of con-
structs and nesting, it was obvious that some of these long functions
are very regular, with a certain pattern of nested constructs being re-
peated very many times (see Fig. 1 for an example). We speculated
that this regularity is an important factor in making the functions
manageable. Indeed, in a survey where participants subjectively
ranked high MCC functions, we found a significant correlation be-
tween functions’ subjective ratings and their regularity [18].

This last result spurred a larger research effort to better under-
stand regularity and its implications, including

• Formally defining regularity and finding ways to measure it
effectively. Our results in this area are outlined in the next
section.

• Performing controlled experiments to precisely measure the
impact of regularity and its relation to other metrics. The
current paper is the initial part of this effort.

• Trying to understand why and how regularity affects devel-
oper performance, using experiments with eye-tracking and
other means. This is ongoing work and results will be pub-
lished separately.
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Figure 1: Code structure diagram (CSD) of a regular function

from the Linux kernel.

Our focus is on establishing the effect of regularity on compre-
hension. In this we emphasize the interest in cognitive and human
aspects of software development (as in e.g. [1, 38, 48]), as opposed
to other studies which focus on direct predictions of project at-
tributes while avoiding the human element (e.g. [34, 9, 31, 4, 28]).
This complements recent works which have shown that complexity
metrics, e.g. MCC, do not reflect complexity as it is perceived by
humans [18, 21, 46, 11].
To enable this study we focus on trying to isolate the effect of

regularity by controlling all other sources of variability. Thus we
do not try to mine existing data from various projects. Instead we
conduct controlled experiments using different solution styles for
the same problem, where one is based on regular repeated struc-
tures and the others are not. Subjects are then asked to perform
typical comprehension tasks on either of the versions, and we eval-
uate their performance when doing so.
The results show that, in terms of correctness, subjects working

on regular code did better overall than those faced with non-regular
code, while taking about the same amount of time. Since the regu-
lar versions are typically longer, this implies that the subjects spent
less time on average on each line of code. We thus conclude that
regularity may compensate for high MCC and LOC at least in some
cases, and should therefore be taken into account alongside these
commonly used metrics. Importantly, these experiments use func-
tions of moderate length, so they also show that regularity is rele-
vant for “normal” code and is not limited to extreme cases such as
the high-MCC functions from Linux studied previously.
In the next section we review the work on quantifying regularity,

followed by motivation and high-level research questions in Sec-
tion 3. The methodological approach is presented in Section 4.
Sections 5 and 6 presents top-level and detailed analyses of the re-
sults of our first experiment, and Section 7 analyzes the second ex-
periment. Related work is reviewed in Section 8, and the discussion
and conclusions are in Section 9.

2. MEASURING CODE REGULARITY
As mentioned above, we suggested code regularity as an expla-

nation for the success in writing and maintaining extremely long
functions in the Linux kernel [18]. Our observation was based on
identifying repeated structures in the code, where the same block
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Figure 2: Correlation of perceived complexity with regularity

for 30 functions from the Linux kernel, from [18].

of nested control structures (and in many cases even the same types
of expressions) are repeated again and again. An example of such
a function is given in Fig. 1. The challenge was then to come up
with a metric that can quantify the prevalence of such structures.

Our metric for regularity is based on the observation that regu-
larity lies at the basis of text compression. For example, the well-
known Lempel-Ziv algorithm compresses text by maintaining a
dictionary of observed strings. When some string is seen again,
a pointer to the previous instance is used instead of the string itself
[51]. Therefore the compression ratio can be used as a metric for

regularity. To apply this insight to code regularity we conducted
a systematic study of compression schemes and their effectiveness
in this context. Quantifying regularity using compression has also
been suggested in other domains [24].

Our study involved 5 compression schemes and 4 levels of pre-
processing the code [17]. The 20 resulting combinations were eval-
uated based on their correlation with perceptions of the complexity
of 30 functions as rated by human developers in the Linux study.
The conclusion was that the most promising combination is the
well-known gzip utility applied to a skeleton of the code obtained
by removing all the statements, expressions, and comments, and
leaving just the keywords, braces, and formatting (specifically in-
dentation). The keywords are then mapped to single-letter codes to
avoid effects that depend on keyword length.

Comparing this metric with the Linux perception results led to
a correlation coefficient of −0.585, indicating that higher regular-
ity as measured by the compression ratio indeed correlates with a
perception of lower complexity by programmers (see Fig. 2). For
comparison, the correlation coefficient of MCC and LOC with the
survey results were −0.29 and 0.16, respectively.

For completeness, we also mention how we measure LOC and
MCC. There are many versions of LOC (lines of code), e.g. with or
without comments and blank lines. As long as one is consistent the
differences are typically small, so we simply use the Linux utility
wc -l which counts newline characters. The files did not contain
comments or blank lines. MCC was defined by McCabe to be the
cyclomatic number of a function’s control flow graph [27]. For a
graph g this is V (g) = e−n+2p, where n is the number of nodes,
e the number of edges, and p the number of connected components.
We use the “extended” version of MCC, which also counts logical
operators within predicates, as calculated by the pmccabe tool [2].

3. RESEARCH QUESTIONS
While the experiment cited above showed a correlation between

regularity and perceived complexity, this was limited to a percep-

tion by human subjects. The experiment did not show that regular-
ity actually affects programmer performance. Evaluating such an
effect is the focus of the present paper. Specifically, we set out to



Table 1: Attributes of the three versions of the program used in experiment 1.

Version LOC MCC Reg. Description

Regular 125 32 89.7% Loop with switch on digits. Count and track max within switch.

Sort 48 11 55.6% Loop to find number of digits, double loop to sort them, and loop with complex if for processing.

Array 29 6 36.5% Loop to collect digit frequencies in an array, followed by processing.

Table 2: Attributes of the two versions of the programs used in experiment 2.

Regular version Non-regular version

Program LOC MCC Reg. LOC MCC Reg. Description

Median 53 18 79.3% 34 13 60.7% Find median of each 3× 3 neighborhood

Diamond 46 17 82.8% 26 14 43.8% Find max Manhattan-radius around point with all same value

investigate the following high-level research questions, from which
we later derive more detailed ones. The questions are:

Q1. How does regularity affect programmer performance on tasks
that require code comprehension in terms of correctness? Is
it easier to handle regular code?

Q2. How does regularity affect programmer performance on tasks
that require code comprehension in terms of the time needed
to perform such tasks? Is it faster to handle regular code?

Q3. How large is the effect of regularity relative to the effect of
commonly used metrics such as MCC and LOC? Can regu-
larity compensate for high MCC and LOC?

The purpose of this paper is to report the evidence we found
for the importance of code regularity as a factor that affects com-
prehension. In particular, we demonstrate that functions with high
MCC and LOCmay have enough regularity to actually be relatively
simple, whereas functions that have lower MCC and LOC values
can be much harder to understand. This leads us to renounce the
direct use of MCC and LOC as major guidelines for software devel-
opment. Instead, one should consider the effective MCC and LOC
after taking regularity into account.

4. METHODOLOGICAL APPROACH
To study the effect of regularity on comprehension we conducted

two controlled experiments with dozens of participants, different
versions of 3 different programs, and 3 typical comprehension tasks.

4.1 Test Programs
It is problematic to compare different functions with different

levels of regularity, because differences in the domain and func-
tionality may confound the results without being identified. To best
evaluate the effect of regularity one therefore needs programs that
can be implemented in different ways while retaining precisely the
same functionality. In our first experiment we use a set of three ver-
sions of one such program. The common specification for all three
versions is a function that receives a number and returns the most

frequent digits of this number. The rationale for this choice was
that it is not trivial, and facilitates implementations using different
approaches. Moreover, versions of this program need only simple
constructs of the C language so they fit a wide range of subjects, and
a minimal knowledge of the language is sufficient. The three ver-
sions are described in Table 1. To avoid the side effects of format-
ting on comprehension we formatted all of them using the default
formatting mechanism of the Eclipse IDE. All test programs are
available at URL http://www.cs.huji.ac.il/%7efeit/papers/RegExp/.
The main problem with these functions is that it may be claimed

that their specification is just an unnatural exercise. However, we

have in fact seen similar implementations in Linux [18]. Moreover,
to the degree that these functions are indeed unnatural, using them
leads to conservative results because they do not match program-
mer expectations [42]. Nevertheless, we later conducted a second
experiment using two versions of each of 2 additional programs re-
lated to image processing. These programs generally operate on all
the pixels of a 2D image. One version first copies the image into a
larger matrix to create a boundary around it, and then does the pro-
cessing in a very condensed manner. The other uses repeated struc-
tures to perform the processing while checking for different edge
conditions, leading to a regular structure. These two approaches
are both reasonable, and the functions are realistic. A description
of these programs is given in Table 2.

In both cases, the relatively low number of functions is due to
the desire to collect enough statistics about each version, while ran-
domizing experimental aspects such as presentation order.

4.2 Task Design
The design of the tasks in experiment 1 was motivated by the

comprehension framework from Pacione et al. [36], also adopted by
[7]. Pacione et al. stated that a set of typical software comprehen-

sion tasks should seek to encapsulate the principal activities typi-

cally performed during real world software comprehension. They
divided software comprehension activities into those that are per-
formed to gain an overall understanding and those that carry out
a specific task such as bug fixing. In particular, two of the list of
comprehension activities they elicited from the literature were In-
vestigating the functionality of (a part of) the system and Adding to
or changing the system’s functionality. Thus we define three tasks
to be performed on each program version: understanding function-
ality, bug fixing, and adding a new feature.

In more detail, the experiment comprised three comprehension
tasks which we call phase1, phase2, and phase3. In phase1 the
subject is presented with one program version and is asked to an-
swer what does the function do (an open question). In phase2 a
buggy version of the program from phase1 is presented and the
subject is asked to find and fix the bugs in this program (without
looking back at the version from phase 1). The subject does not
know in advance the number of bugs. In phase3 the program ver-
sion from phase1 is presented again and the subject is asked to add
a feature to it. The new feature was modify the program so that it

prints an appropriate message if all digits of the original number

also appear in the result.
For bug fixing we introduced 8 bugs. The bugs types were mo-

tivated by two classification schemes identified in [3] and used in
[19]. According to one scheme a bug can be classified as omission
or commission. Bugs of omission are those where the program-
mer forgets to include some code, while bugs of commission are



Table 3: A list of the bugs that were applied in the different versions. Bugs 5 and 6 are implemented differently in different versions.

Bug no. Type(scheme1) Type(scheme2) Correct Buggy

1 Commission Initialization maxFreq=0 maxFreq=1

2 Omission Computation pValue=1 removed

3 Commission Data switch(number%10) switch(number/10)

4 Commission Data number=number/10 number=number%10

5 Commission Control if (di==maxFreq) if (di!=maxFreq)

6 Commission Computation case 0: case 0:
maxDigits=maxDigits*10 maxDigits=maxDigits+0*pValue

7 Commission Computation pValue=pValue*10; maxDigits=maxDigits+2*pValue;
maxDigits=maxDigits+2*pValue pValue=pValue*10

8 Omission ? unsigned long long int maxFreq unsigned long int maxFreq

incorrect code which exists in the program. According to the other
scheme a bug can belong to one of six types: Initialization, Con-
trol, Computation, Interface, Data, and Cosmetic. Table 3 shows
the bugs and their classification according to the two schemes. We
applied the same 8 bugs in all 3 versions.
In experiment 2 our emphasis was on obtaining data for more

example programs. Therefore only the task of understanding what
the program does was used. Each subject was asked to perform this
task on two different programs, one being a regular version and
the other a non-regular version. In addition, subjects were asked to
provide their evaluation of the difficulty of the programs and what
features made them difficult.

4.3 Grading Solutions for Correctness
In grading the solutions in experiment 1 we followed [22, 7, 41].

In [22], two graders worked together to grade a programming task
in pair-programming style. Initially, they reviewed several of the
solutions to determine how best to grade them and set a five-point
scale. For a comprehension task each grader assessed half of the
cases after agreeing on a binary rubric. A similar approach was
adopted in [7]. In [41] three modification tasks were assigned a 10-
point score and were graded by a TA who had extensive experience
in grading student programs. A similar approach was adopted in
grading the functional correctness of recalled programs.
Our approach was qualitatively similar. To evaluate the answers

of the subjects in phase 1 we used a multi-pass style for 60% of the
analyzed cases where two or three evaluators were involved. The
grades were based on a scale of 0–100. Initially the first author per-
formed the grading according to a personal rubric. In the second
pass the first author together with a colleague made another evalua-
tion based on a rubric that both agreed on. However, in some cases
there was a substantial gap between the grades of the two passes.
To resolve this and to verify the other cases where the differences
were relatively small we performed a third pass. The first author
selected the top 5 cases that have extreme differences and another
random set of 5 normal cases. These 10 cases were evaluated by
the second author based on the same evaluation rubric used in the
second pass, without knowing which set of 5 they came from. The
results of pass three were as follow: the 5 random normal cases
were evaluated quite close to the first two passes. In the extreme
cases the third evaluator was close to the grades in the first pass in
two cases and to the second pass in the rest. We then used all the
data from the three passes to set the final grades. In cases where
the difference between the first pass and the second was relatively
small we take the grade in the second pass. In moderate differences
(up to 10 points) we average the grades of the first two passes. In
extreme cases we average the two closest grades. Based on this ex-

perience, the other 40% of cases were evaluated by the first author
alone.

A similar style was applied in the third phase. The first author
made an initial evaluation. A second pass was done by the first
author together with the same colleague from the first phase. The
final grade was set by the average of the two passes. The second
phase was evaluated in a single pass single evaluator style due to
the objectivity of the answers. The grade assigned was simply the
number (or percent) of bugs found.

In experiment 2 we exploited our experience from experiment
1. The first author initially graded the solutions of each group im-
mediately after their session, as was done for experiment 1. Two
weeks later he performed a second pass on all the results together
in order to adjust them on a common scale.

4.4 Subjects
The subjects in experiment 1 were recruited in four sessions: 13

computer science students from the HebrewUniversity of Jerusalem,
27 third year and 15 second year computer science students from
Netanya Academic College, and 11 computer science education
students from the Technion institute of technology. Thus we have a
total of 66 subjects, from which 2 were removed because they did
not submit results.

All participants, except those from the Technion, were enrolled
in courses taught by the authors. Participation in the experiment
was anonymous and not compulsory. The analyzed group in exper-
iment 1 is composed of 19 females and 43 males (2 did not state
their gender). The average age is 27.6, the average industrial expe-
rience is 1.7 years, and the average year of study is 2.8.

Experiment 2 was similar and was done in two sessions: 24 com-
puter science students from the Hebrew University, and 20 com-
puter science students from Netanya Academic College, for a total
of 44 subjects. Of these, 5 submitted nearly empty forms so they
were removed from the analysis. The 39 remaining subjects had
an average age of 24.9 and an average industrial experience of 0.6
years. There were 7 females and 32 males.

4.5 Procedure
The authors were the experimenters of all 6 sessions of the two

experiments. Each participant received a booklet which contained
a demographic form to be filled and the material for the different
functions and tasks to be performed, including space for answers.
In experiment 1 there were 3 variants of this booklet, one for each
version of the program. In experiment 2 there were 4 variants,
each including a single version of both programs. The variants dif-
fered in which program was represented by the regular version, and
which came first. The variants were interleaved before distribution



to ensure an equal number of participants for each variant and no
adjacent participants receiving the same variant. Which subject got
which version was random based on seating order.
The experimenter initially gave a general overview. Participants

were told that the experiment is about comprehension but were not
told the specific goal. The participants were not limited in time. At
the beginning and end of each phase the participants were required
to write the time. A clock was projected on a screen to ensure
reliability. In experiment 1 phase 2 we asked them to also write the
time when they found each bug.
Participants were required not to go back to a previous phase

once they finished it. This was included in the written instructions
and was emphasized by the experimenter. In experiment 2, how-
ever, they were allowed to revise their evaluation of the first pro-
gram after seeing the second program. To enable us to compare the
first evaluation with the second (in case it was changed) we asked
them to write the new evaluation at the end.

4.6 Variables and Analysis
The design of the experiments has the following independent

variables: program, solution style, MCC, LOC, regularity, and de-
mographic details. In experiment 1 there is only one program, but
in experiment 2 there are two. The style is regular, array based, or
sort in experiment 1, and regular or irregular in experiment 2. Our
main interest is naturally in the effect of solution style and metric
values. The demographic variables (gender, age, and industrial ex-
perience) are almost fairly distributed among the different groups
of subjects so they should not have an effect. We believe that future
work should examine the effect of experience on solution styles like
those we are investigating here.
The dependent variables measure the performance of the partic-

ipants in terms of time and correctness. We measure the time spent
by requiring the subjects to fill in the start time and the end time for
each phase. We subjectively evaluate their answers on functionality
and feature adding as described above and compute the percentage
of corrected bugs in the second phase.
We use Analysis of Variance (ANOVA) to test whether the means

of the different groups of the solution style are identical. In this
context, a generalization of the t-test is used when the number
of groups to compare is larger than two. In experiment 1 we use
ANOVA to investigate whether there is a significant difference be-
tween the three solution styles for correctness and completion time,
while in experiment 2 we use a mixed repeated measure.
When using ANOVA there are three main assumptions that should

be met: normality of the dependent variables, homogeneity of vari-
ances, and independence of cases. Regarding the first assump-
tion, ANOVA is considered robust against the normality assump-
tion when in each group there are at least 10 participants. For
the second assumption we use Levene’s test. If this fails, we can
use Welch ANOVA instead of one-way ANOVA. Moreover, a post-
hoc test is used to identify the statistically significant pairs. How-
ever, this test depends on the ANOVA test used: for the one-way
ANOVA the Tukey test should be used, but for Welch ANOVA the
Games-Howell test should be used instead. The third assumption
is met as each subject is only involved in one case.
For experiment 2 we use mixed ANOVA as the tasks performed

by each subject are consecutive (repeated). Mixed ANOVA com-
pares the mean differences between groups that are split on the ba-
sis of two independent variables. One variable is the programming
style which is a within-subjects factor. This factor specifies the
conditions for each subject; in our case each subject performs two
comprehension tasks one after the other. The second variable is the
order factor which is a between-subjects factor. This factor helps

splitting the subjects into two groups based on the order in which
the subject receives the functions.

In this experiment our primary dependent variables are the scores
the subjects achieved on each function and the time spent in un-
derstanding each function. We could also discard the order effect
factor and run a repeated measure ANOVA as we counterbalanced
the treatments for each subject. Counterbalancing is a technique
used to minimize order effect. The primary purpose of the mixed
ANOVA is to check whether there is an interaction between our
within-subjects factor (regular vs. non-regular programming style)
and between-subjects factor (the order of performing the tasks) in
terms of effect on the dependent variable.

5. TOP-LEVEL RESULTS FROM

EXPERIMENT 1
Table 4 summarizes the averages and standard deviations of the

measured dependent variables. It shows for each solution style the
score and time taken in the different phases. The overall column
presents the average grade for the answers in all phases and the
total time spent to give these answers.

According to this table the quality of answers was best for the
regular version when considering the overall average of all phases.
Next is the array version. Participants did the worst with the sort
version. Regarding the average total time spent on all the phases,
the participants of the array version did better than other versions,
while those of the sort version were again the worst. But the differ-
ences were small.

5.1 Correctness Results
Testing the significance of the dependence of correctness scores

on code metrics is complicated by the interaction between the met-
rics. In our test cases MCC and LOC are highly correlated with reg-
ularity. Therefore code with high MCC, which is expected to lead
to worse performance, also has high regularity, which is expected
to lead to good performance. And indeed we find such cases where
the effects cancel out. We therefore use hypotheses which focus on
one metric, and state that the commonly assumed effect need not
occur:

• H10: different values of MCC or LOC do not impact the
correctness of the solutions given.

• H1: high values of MCC or LOC do not necessarily decrease
correctness and low values do not necessarily increase cor-
rectness.

due to the high correlation between them, in the analysis we
treat MCC and LOC together, without going into the discussion of
whether MCC adds complexity information beyond the size infor-
mation that is contained in LOC [40]. We use ANOVA to compare
the means of the groups of the levels of the solution style variable
and determine if any of the means are statistically significantly dif-
ferent in the correctness dependent variable.

Since the assumption of homogeneity of variance failed, we used
the Welch ANOVA. There was a statistically significant difference
between the groups of the solution style levels as determined by
Welch ANOVA (F (2, 35.4) = 19.23, ρ = .000)1. A Games-
Howell post-hoc test showed that the regular (ρ = .000) and array
(ρ = .002) subjects’ groups did statistically significantly better
when compared to the sort style. However, there was no statis-
tically significant difference between the regular and array styles

1F ratio is the between-group variability divided by within-group
variability. Parameters for F represent degrees of freedom. ρ is the
significance of the F ratio. Significance level used is 0.05.



Table 4: Experiment 1 descriptive statistics (average ± standard deviation) of the measured dependent variables for each phase and

solution style. Correctness is on a scale of 0-100 and time is in minutes.

Phase 1 Phase 2 Phase 3 Overall

Version N Correctness Time Correctness Time Correctness Time Correctness Time

Regular 22 68.8±31.5 13.5±5.6 37.5±18.5 8.9±3.4 57.2±35.3 9.8±4.2 50.2±20.0 32.2±6.9

Sort 22 52.3±27.2 19.1±10.9 10.5±9.1 8.7±5.1 18.9±29.4 8.4±4.3 23.0±11.0 36.2±9.5

Array 20 69.5±33.1 10.1±7.2 35.9±28.5 8.1±4.0 40.5±35.5 9.5±6.2 39.4±23.5 27.7±10.2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

grade

regular
sort based

array based

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time spent(minutes)

regular
sort based

array based

Figure 3: Distributions of average grade for all phases and to-

tal time taken for experiment 1. Cumulative probability is the

probability that a specific sample be smaller than or equal to a

given value.
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Figure 4: Distributions of grades and time vs. MCC. The MCC

values 6, 11, and 32 are for the array, sort, and regular styles,

respectively (per Table 1).

(ρ = .764). This means that the regular style, despite its high
MCC and LOC, is not necessarily worse than the array style which
has very low MCC and LOC. In other words, there is a possibility
that their means are identical. The lack of significant difference
between the array and regular styles is illustrated in Fig. 3 top
(which shows not only the average but the whole distribution) as
their curves are pretty close and even cross each other, while both
are far from the curve of the sort style. This figure shows for each
grade on theX axis the percent of subjects who achieved this grade
or less.

Fig. 4 shows a scatter plot of the different distributions, to em-
phasize the lack of correlation with MCC. Again, the distribution
for sort is seen to be different from the other two. Specifically, the
range from the first to the third quartile of the distribution is 15–
25, as opposed to 30–65 for the other two. In addition to the large
difference between them the subjects’ variability in sort is much
smaller — they all did badly. Regular and array are similar despite
the wide difference in MCC.

5.2 Time Results
We now test the null hypothesis regarding the average of total

time spent in all phases by the subjects of each solution style. The
hypotheses are similar to the ones for correctness:

• H20: different values of MCC or LOC do not impact the
time spent when performing a comprehension tasks on dif-
ferent solution styles.

• H2: high values of MCC or LOC do not necessarily increase
the time spent and low values do not necessarily decrease
time spent.

Again, we use ANOVA to compare the means of the groups of
the levels of the solution style variable and determine whether any
of the means are statistically significantly different in their time-
spent dependent variable.

In this case the homogeneity assumption was met so the one-way
ANOVAwas used. There was statistically significant difference be-
tween the groups of the solution style level as determined by one-
way ANOVA (F (2, 61) = 4.65, ρ = .013). A Tukey post-hoc test
shows that the array style subjects’ group did statistically signifi-
cantly better when compared to the sort style. However, there was
no statistically significant differences between the array and regu-

lar (ρ = .249) as well as between the regular and sort (ρ = .311).
This lack of significant difference is illustrated in Fig. 3 where the
curve of regular falls between the curves for array and sort. We
speculate that the similarity between the timing for participants of
the sort style and the others is a result of frustration and not spend-
ing sufficient time answering the questions, as reflected by their
relatively low correctness scores.

In addition to looking at the total time, we can also consider the
average time per line of code (this is discussed more below, see
Table 6). In this case we get statistically significant differences be-
tween the groups of the different styles (F (2, 61) = 2.75, ρ =
.000). The Tukey post-hoc test shows that the regular style is sig-
nificantly better than the other styles while the sort style is better
than the array. Again, this last result is probably explained by the
two versions having relatively close LOC but the sort subjects gave
up more quickly so they spent less time.

6. DETAILED ANALYSIS OF RESULTS

FROM EXPERIMENT 1
In this section we analyze and test hypotheses regarding the spe-

cific phases of the experiment. For the different subjects’ groups
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Figure 5: Phase 1 results.

and the three phases we compare the differences between the means
and check whether these differences are statistically significant.
Moreover, we investigate which phases impacted the overall results
as presented in the previous section. We use null hypotheses like
before, stating that MCC, LOC, and regularity do not affect the
grades or the time needed to achieve them, and the corresponding
alternative hypotheses.

6.1 Phase 1 - Understanding Functionality
There are two null hypotheses, concerning correctness grades

and time, and derived from the general description of all hypotheses
in this section that was presented above. Using ANOVA there was
no statistically significant difference between these groups (F (2, 61) =
2.18, ρ = 0.122) which means that we cannot reject the null hy-
pothesis and there is a possibility that the means are identical. This
test was run after the homogeneity assumption was met.
This result indicates that despite the high MCC and LOC of the

regular version and the low values of the other two, the subjects of
the regular version did not do significantly worse as would be ex-
pected from functions with high MCC and LOC. Table 4 shows that
the means of the regular version (which has the highest MCC) and
the array version (which has the lowest MCC) are almost equal,
and both are relatively far from the sort version. Fig. 5 can explain
the large difference in the means but the lack of its significance.
The curves of the three versions in this figure look the same for
the lowest 35% of the cases which means that there were no differ-
ences between the groups for the subjects who achieved bad scores.
However, for the remaining 65%, the figure shows that the regular
and array are rather similar and both are quite different from the
sort version. Specifically, the sort version subjects tend to achieve
grades in the range 50–70, whereas with the other versions many
subjects achieved grades above 80.
Regarding the time-spent-variable hypothesis, the ANOVA (ho-

mogeneity assumption was met) found a statistically significant dif-
ference between the three groups (F (2, 61) = 6.27, ρ = 0.03). A
Tukey post-hoc test showed that there is a statistically significant
difference between sort and array with (ρ = 0.03) while there are
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Figure 6: Phase 2 results.

no significant differences between the other pairs. However, when
considering time as a function of LOC the differences are statisti-
cally significant between regular and the two other version, while
there is no significant difference between array and sort.

When looking at the distributions of time spent (Fig. 5 bottom)
we see that they have a significant overlap. This explains the fact
that the averages are not statistically significantly different. How-
ever, when looking at each decile of the distribution, we find that
consistently (except the last data point) array < regular < sort (a
phenomenon called “stochastic dominance”). sort is also distin-
guished by having a much higher maximum (longer tail).

6.2 Phase 2 - Fixing Bugs
Regarding bug fixing, we had three measured variables: bugs

revealed, bugs fixed, and time spent. The homogeneity assumption
was not met for the two first variables, and was met for the time
spent.

Welch ANOVA analysis shows that there is a statistically signifi-
cant difference between the groups for the number of bugs revealed
(F (2, 34.09) = 18.69, ρ = .000) and for the number of bugs fixed
(F (2, 32.63) = 20.97, ρ = .000). A Games-Howell post-hoc test
showed that there is a significant difference between regular and
sort as well as between array and sort. This result is the same for
the first two variables. No significant difference was found between
regular and array. This can be seen in Fig. 6 where the curves of
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Figure 7: Phase 3 results.

the regular and array versions are quite close and the sort curve is
far from both throughout.
Regarding time spent there were no significant differences be-

tween the groups. Again, when investigating the time as a function
of LOC we get that the regular version has statistically significant
differences when compared with the other two versions. However,
the interesting result here is that the sort version had a statistically
significant difference with regard to the array version (explained
below in section 6.4).

6.3 Phase 3 - Adding a New Feature
In this phase the null hypotheses and their alternatives are also

derived from the general description above. ANOVA was again
used to compare between the means of the different groups. Re-
garding the correctness variable the ANOVA shows that there are
statistically significant differences between the groups F (2, 61) =
7.19, ρ = 0.002). The homogeneity assumption also was met. A
Tukey post-hoc test shows that there is a significant difference be-
tween the regular version and the sort version, while there is no
significant difference between all other combinations.
Fig. 7 shows that grade distributions in phase 3 are the most dis-

tinct from each other throughout, but time is not. In particular, the
regular distribution of the correctness variable is markedly higher
than the other two throughout. This is the cause for the overall
higher grades of regular relative to array in Table 4.
When investigating the time variable the ANOVA shows no sig-

nificant differences. In other words, we cannot reject the null hy-
pothesis regarding the time spent.

6.4 Fatigue Effects
It is also interesting to track the changes in subjects’ behaviors

from phase to phase.
One observation is that the difference between the time taken to

perform phase 1 using the 3 different program styles is rather large,
but it converges for the later two phases (see Table 4).
Another observation is that the biggest change is for subjects

who were working with the sort version. For these subjects the

Table 5: Results (average±standard dev.) of experiment 2.

Correctness Time

order Reg. Non Reg. Reg. Non Reg

1st 80.6±25.2 47.8±29.8 15.6±7.5 12.9±4.4

2nd 64.2±33.8 53.9±28.9 13.4±9.6 15.4±6.6

time invested dropped to less than half going from phase 1 to 2,
and stayed there for phase 3. For subjects working with the other
two styles the differences were not so big, and phase 3 took more
time than phase 2. Note that the low time for sort in phase 3 does
not correspond to better results, and in fact their grades were sub-
stantially lower. We therefore suggest that a reasonable interpreta-
tion of this is that the “willingness to keep trying” of the subjects
of the sort version decreases and they give up sooner. The interest-
ing point is that the sort subjects gave up sooner, despite the fact
that their average time was much shorter than an hour, while it is
known that fatigue effects typically occur only in experiments that
span more than an hour [13]. So maybe this reflects frustration
more than fatigue.

7. ANALYSIS OF RESULTS FROM

EXPERIMENT 2
The goal of the second experiment was to reproduce the differ-

ences between regular and non-regular code for additional func-
tions, using the first task. The null hypothesis and alternative are
again the same as above. The results are shown in Table 5.

7.1 Correctness Results
According to our analysis, the average score of the regular func-

tions when presented first was 80.6 and when second it was 64.2.
As for the non regular functions, subjects achieved much lower
scores: when presented first the average score was 47.8, when pre-
sented second it was 53.9.

The very obvious conclusion is that in terms of correctness sub-
jects did better in the regular style regardless of the order of presen-
tation so it is most likely to be the easier style to comprehend. In-
deed, according to the mixed ANOVA analysis, there was a signifi-
cant main effect of the programming style being examined, F (1, 34) =
14.68, ρ = 0.001. This effect tells us that if we ignore the order
by which the functions were given, the scores of the two styles are
significantly different.

Given that each subject received two functions in this experi-
ment, we need to consider the effect of order. According to ANOVA
the main effect of the order between-subjects factor is not signifi-
cant (F (1, 34) = 0.40, ρ = 0.530). The fact that the F ratio is
less than 1 means that there was more error than variance created
by the experiment, in effect negating the possibility of significance.
Thus if we ignore the programming style it appears that the first
and second functions would achieve similar scores.

It is also interesting to check whether there is an interaction be-
tween the presentation order and the programming style. In other
words, are the scores achieved for the two styles affected by the
order in which the styles are examined by subjects? According
to ANOVA this effect is not significant (F (1, 34) = 4.01, ρ =
0.053). However, the significance level is very close to the cut-off
point of 0.05, and the means of the different styles in the different
groups show that an interaction seems to exist: subjects achieved
much better scores with the regular style for the style presented
first, whereas they achieved marginally better scores with non-regular
for the style presented second. A possible interpretation is that
working on a non-regular function is harder, and after this expe-
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rience subsequent performance is suppressed, whereas working on
a regular function does not suppress subsequent work on another,
non-regular function.

7.2 Time Results
The time spent by the subjects performing the tasks for the dif-

ferent styles given in different orders is quite similar. For example,
the averages for the regular style function in the two groups were
15.6 (minutes) for the first group and 13.4 (minutes) for the second
group. As for the non regular style subjects spent 12.9 in the first
group and 15.4 in the second.
In terms of significance there were no significant differences at

all. Moreover, it seems that there was no fatigue effect. Subjects
spent quite similar times on the later functions as on the first func-
tions despite the fact that they achieved much lower scores on them.

7.3 Difficulty of Programming Style
After answering the question regarding functionality, we asked

the subjects to rank each function on an ordinal scale of difficulty
(very easy, easy, moderate, hard, very hard). Fig. 8 shows the re-
sults. Nobody ranked the functions as very easy, and only a few
as easy; together with the time spent this shows that the functions
were reasonably challenging for our subjects. Many more ranked
regular versions as moderate, and similarly many more ranked non-
regular versions as very hard.
We also asked the subjects whether they want to change their

mind regarding the ranking of the first function after seeing the
second function. Out of 37 valid answers, 9 changed their mind.
These 9 answers distribute as follows: 5 decreased their ranking of
regular functions (made them easier), and 2 each increased and de-
creased their ranking of the non-regular functions. The data in Fig.
8 is from before this change, so in the final ranking the difference
is even bigger.
Finally, we also asked subjects to indicate what caused them to

rank the functions the way they did. We focus here on the answers
given by those who ranked regular functions as easy or moderate,
as opposed to those who ranked them as hard or very hard.
Subjects who ranked regular functions as easy or moderate jus-

tified this noting the discord between the initial impression and the
actual complexity. For example, one wrote “It seems a bit more
daunting at first because of the length and the if statements, but
they were not as complicated as they seemed to be initially.” Sev-
eral respondents even specifically identified the regularity, for ex-
ample writing “Consistency in the if dynasty. After understanding
the first ifs, there is a consistency.”
As for the subjects who ranked regular functions as hard, almost

all of them justified this by complaining about too many ifs and
loops. One also complained about bad variable names, and an-
other suggested that refactoring was in order. These statements
do not explain why it was hard to understand the functions, but

rather comment on the quality of the solutions. Interestingly, when
comparing their grades, the average score of all those who ranked
regular functions as hard was 70.4, which is not far behind the av-
erage score (76.1) of those who ranked regular functions as easy
or moderate. The impression is that subjects who ranked regular
functions as hard did not experience real difficulty, but rather were
dissatisfied with the solution style.

8. RELATEDWORK
A large number of code complexity metrics has been defined,

based on various aspects of the source code [12]. The LOC met-
ric is the simplest one and reflects the code size. The MCC metric
counts the number of decision points in the code, and as such it is
considered a control-flow metric [27]. Likewise, the Npath metric
counts the number of acyclic execution paths [33]. Halstead’s soft-
ware science metrics provide a measure for the programming effort
[14]. Other metrics focus on the data-flow aspect of the code. The
Dep-Degree metric counts the number of edges in the definition-
use graph [5], and Lifespan is the average of all spans of all vari-
ables in a method where span is defined as the number of LOC
between one occurrence of a variable and its next occurrence [10].
The CFS (cognitive functional size) belongs to the cognitive cate-
gory of metrics. It is based on cognitive weights for the different
control structures [39]. There are also composite metrics that com-
bine several different aspects of the code rather than focusing on
one. Oman et al. use LOC, MCC, and Halstead’s metrics to define
a maintainability index [35, 47].

None of the metrics that have been defined so far reflect all as-
pects of source code complexity, and it is hard to envision any that
would. In particular, regularity in the code seems not to have been
considered up to now. However, regularity has indeed been con-
sidered in areas unrelated to program code. Lipson has defined
structural regularity as the compressibility of the description of the
structure [24]. In this work different forms of regularity were de-
scribed: repetitions, symmetries, and self similarities. In addition,
this work suggested using the inverse of the description length or
Kolmogorov complexity as a metric for quantifying the amount of
regularity. Recently, Zhao at al. have shown that regularity leads to
spontaneous attention [50]. This may be part of the explanation of
why regular code is easier to understand.

It should be noted that the term “regular” is sometimes used with
different meanings. For example Lozano et al. also look at regular-
ities in the code, but they mean naming conventions, complemen-
tary methods, and interface definitions [25]. Others have consid-
ered statistical regularity, where certain aspects of the code follow a
well-defined statistical distribution. For example, Zhang suggested
a revised version for Halstead’s length equation, based on the fact
that the distribution of lexical tokens in the studied systems follow
Zipf’s law [49]. A similar result was introduced by [37]. These
works have no connection to our notion of regularity.

Closer to our work, Chaudhary et al. conducted an experiment
to study the effect of control and execution structures on program
comprehension [6]. One result that contradicted their intuitive ex-
pectation was the positive correlation between the subjects’ score
and the control structure complexity. They attributed this to the
existence of syntactic and semantic regularities in the code. They
claimed that these regularities reduced the effort in the learning pro-
cess and yielded higher score. Also, works on cloning and copy-
paste (e.g. [26, 23, 20, 16]) are somewhat related to our work, as
repeated code fragments may be a result of cloning and copy-paste.
In particular, Harder et al. conducted the first controlled experiment
to investigate the effect of clones on programmer performance in
bug-fixing tasks [15].



Table 6: Time per line of code versions. Experiment 2 values

are lower because it has only one task.

Experiment 1

Version Time/LOC

Regular 0.25±0.05

Sort 0.75±0.19

Array 0.95±0.35

Experiment 2

Version Time/LOC

Median reg 0.068±0.023

Median nonreg 0.125±0.050

Diamond reg 0.087±0.029

Diamond nonreg 0.154±0.037

To the best of our knowledge, regularity as we defined and quan-
tified it in [18, 17] is a novel metric for software, and this is the first
paper to systematically and empirically assess its effect.

9. DISCUSSION AND CONCLUSIONS
In this study we conducted controlled experiments to compare

the performance of maintenance tasks when faced with a program
implemented in different programming styles, where one is reg-
ular and others are not. We conclude that the regularity of code
may have a large impact on comprehension by humans, and may
compensate for high MCC and LOC. Thus we believe that regular-
ity should be included among code complexity metrics alongside
common metrics such as MCC and LOC, and that the interactions
between these metrics should be taken into account. Importantly,
these results hold for moderately long functions from common set-
tings, extending the scope considered in our previous work which
was confined to very long functions in the Linux kernel.
MCC and LOC are usually believed to be monotonically related

to complexity. Thus high MCC and LOC levels supposedly lead
to high levels of complexity. But in spite of the high MCC and
LOC values of the regular version in experiment 1, which are about
three times higher than the sort version and five times higher than
the array version, subjects using the regular version almost always
did significantly better than those of the sort version and never de-
cidedly worse than the array version. These results contradict the
expectations that functions with high MCC and LOC be hard to
comprehend. Similar results were obtained in experiment 2.
Thus we have shown again that the MCC and LOC metrics do

not fully reflect code complexity as experienced by humans. This in
itself is not new, as other studies have shown various deficiencies of
MCC and LOC. However, few if any have done so using controlled
experiments in which MCC and LOC are the main independent
variables, based on using different implementations of the same
functionality. Thus our results contribute rigor to the discussion on
MCC and LOC and their problems. At the same time, these results
should not be interpreted as implying that striving for low MCC
and LOC is inadvisable, but only that low MCC and LOC values
are not necessarily good and high values are not necessarily bad.
More importantly, we suggest an explanation for why and when

high MCC and LOC values are actually OK. High MCC and high
LOC can result from code regularity, where the same structures are
repeated many times. This led us to speculate that functions with
high regularity would be comprehensible despite their high MCC
and LOC. Moreover, the results also showed that functions with
regular code do not take more time to comprehend, despite their
length and supposed complexity. Thus regularity compensates for
high MCC and LOC, and explains why they are not monotonically
related to complexity. Such interactions also means that complex-
ity cannot be decomposed into additive contributions by individual
code attributes.
These results can be interpreted to mean that regularity affects

the effective MCC and LOC of a function. In other words, regu-

larity makes the individual lines easier to understand on average.
Hence the effective MCC and LOC of regular code are lower than
the measured MCC and LOC. Using the total time results from Ta-
bles 4 and 5 we can calculate the average time per line of code, and
compare the different versions. For experiment 1, we indeed find
that the time per line in the regular version is 3 times lower than
in the sort version, and nearly 4 times lower than in the array ver-
sion. Note that the real factor for sort may actually be even higher
than indicated, because subjects faced with the sort version seem
to have given up earlier than others.

The notion of effective MCC and LOC suggested here requires
much more work to establish its validity in general. It is reasonable
to assume that not all lines of code are alike. In particular, maybe
repeated lines in regular code are indeed scanned much faster, while
other lines are scanned at the same rate as non-regular code. This
would enable an automated estimation of effective MCC and LOC
based on identification of code repetition. We intend to use eye-
tracking experiments to try and investigate this issue.

Another interesting point we observed is that the motivation of
the subjects of the sort version in experiment 1 seems to decrease
over the phases, as the time they spend decreases from phase to
phase. Such a decrease does not occur with the other versions.
Taken together with the low grades that the sort subjects received
in terms of correctness, these observations may indicate that they
become frustrated with the difficulty to cope with this version of
the code. This was the reason for the post-test briefings used in ex-
periment 2 to assess the subjective feelings of the different subjects,
and complement the objective metrics that were collected.

Our work suffers from several threats to validity. We suggest
that regularity is an additional attribute that affects complexity, but
in this work we examined only several regular functions. While
our results are also supported by previous work on perceived com-
plexity of Linux functions [18], much additional work remains on
quantifying the effect of regularity and on measuring regularity. In
particular, we need to look into different styles of regularity. There
is also the danger that the specific programs used induce some con-
founding effects. For example, one of the respondents of experi-
ment 2 mentioned problematic variable naming. However, we ap-
plied the same level of naming in all versions, therefore minimizing
the effect of naming on one version rather than on others.

Another threat is that the demographics of our subjects may not
be representative, or may interact with solution styles to have an
effect on comprehension. While using students as subjects is not
optimal, this has often been done before. In our analysis we found
no demographic-related effects, but the groups resulting from fac-
torization are quite small to generalize.

For future work, an interesting issue is the possible relationship
between regularity and bug proneness, especially in the long run. It
is possible that long regular code will eventually lead to more bugs,
because changes would most probably have to be replicated in the
repeated constructs, and some may be missed. Harder et al., in a
controlled experiment, did not succeed to achieve decisive results
regarding the effect of clones on programmer performance in bug-
fixing tasks [15]. Therefore comprehensibility may not be the same
as code quality. This effect is hard to study, as it will require data
about the long-term usage of regular functions.
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