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Abstract 1. Introduction

Virtual machine monitors, especially when used for A hypervisor or virtual machine monitor (VMM) may
server consolidation, need to enforce a predefined sharseem to have similar responsibilities to an operating
ing of resources among the running virtual machines. system: it abstracts the hardware and performs resource
We propose a hew mechanism for doing so that pro- management, including scheduling the different virtual
vides improved pacing in the face of heterogeneousmachines. However, the context is actually quite differ-
allocations and priorities. This mechanism lends from ent. Operating systems’ schedulers typically try to op-
token-bucket metering and from virtual-time schedul- timize performance objectives, such as response time,
ing, and prioritizes the different clients based on the di- based on knowledge about each process’s behavior. A
vergence between their desired allocations and the achypervisor, on the other hand, is concerned with virtual
tual consumptions. The ideas are demonstrated by im-machines that may each run a mixture of diverse pro-
plementations for the CPU and networking subsystemscesses that are unknown to the hypervisor. And its goal,
of the Linux kernel. Notably, both use exactly the same especially in server consolidation scenarios, is more
basic module; future plans include using it for disk I/O typically to enforce a pre-defined allocation of the re-
as well. sources.

] ) ) Controlling the relative allocation of resources to
Categoriesand Subject Descriptors - C.2.3 [COMPUTER- ,htending processes (or virtual machines) is not new.
COMMUNICATION NETWORKS]: Network Operations—g o, “fajr share” scheduling of the CPU is typically
Network management; D.4.OPERATING SYSTEMS]: 456 hased on variants of virtual time. Allocations of

Process Management—Scheduling; K.8NAGE- o161k handwidth are typically done using variants of
MENT OF COMPUTING AND INFORMATION SYS “leaky bucket” or “token bucket” approaches. Our ap-

TEMS]: Installation Management—Pricing and re- 4401 combines the two into “resource sharing virtual

source allocation time” scheduling (abbreviated RSVT). It includes me-

General Terms  Design, management, performance tering of the. allocation to each process on one hand,
and scheduling so as to better pace the utilization of the

Keywords Virtual machine, fair share, resource allo- allocated resources on the other.

cation The next section motivates the work by explaining
the need for supporting predefined allocations, espe-
cially in virtualization scenarios. Section 3 then de-
scribes previous work and leads up to our extensions,
which are delineated in Section 4. This is followed by
a description of the implementation in the Linux ker-
nel in Section 5, and by an experimental evaluation in

[Copyright notice will appear here once "preprint’ optiaremoved.] Section 6. Section 7 presents the conclusions.
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2. Motivation and Context tivity of the virtual machine as a whole — only the ac-
tivity of that process, which is not even directly known
by the hypervisor.

Another difference is that the goals are typically dif-

We are now witnessing the second wave of virtualiza-
tion. The first wave occurred about forty years ago and
led to the widespread use of virtualization as a means ) i k
to share large scale mainframe platforms [12]. The sec-[€rent. Operating systems attempt to optimize metrics

ond wave, started about ten years ago, concerns dataSUCh as response time of interactive processes, while at
the same time providing equitable service to all the pro-

center servers and desktop PCs, which are now pow- _ _ o )
erful enough to support multiple virtual machines on a C€SSes. With hypervisors, it is more typical to try and
control the resource allocation, and ascertain that each

single physical host. It is driven by the utility of virtu- * ) :
alization for server consolidation, flexible provisioning Virtual machine only gets the resources that it deserves.

of resources, and support for testing and development'© complicate matters, this has to be done in multiple
of new facilities. dimensions, reflecting the different devices in the sys-

Server consolidation is the practice of migrating tem: the CPU, the disks, and the network connectivity.

legacy servers from distinct physical machines that 1N€ question is then what does it mean to provide a

possibly use different operating systems to virtual ma- certain share of multiple resources, when the processes
chines on a single more powerful platform. This re- running on each virtual machine actually require differ-

duces operational expenses by saving the need to main€Nt cOMbinations of resources. _
We are working on a global scheduling framework

tain and support all those legacy systems, reducing the _ _ ; _ _
floor footprint, and reducing cooling requirements. It thatis designed to answer this question. It is based on
is especially beneficial when it increases server utiliza- the combination of two basic ideas: the use of fair share

tion, e.g. if the legacy servers are not highly utilized scheduling to control relative resource allocation, and

but when consolidated they lead to a reasonably highthe identification of the bottleneck device as the locus
utilization of the new server. where such control should be exercised [9]. The present

Another important benefit of consolidation is that it P&Per reports our progress in the first component of this
promotes flexible provisioning of resources. With con- WOk, namely the RSVT scheduler.

solidation, the resources provided to each server are
not fixed. Rather, the different servers compete for re- 3. Related Work

sources, which are provided by the underlying virtual- The requirement for control over the allocation of re-
ization infrastructure. It is then possible to control the sources given to different users or groups of users
resources provided to each one, and assign them achas been addressed in several contexts. It is usually
cording to need or the relative importance of the differ- called “fair-share scheduling” in the scheduling litera-
ent servers. Moreover, this partitioning of the resourcestyre, where “fair” should be understood as according
can be changed easily to reflect changing conditions. to each user's due rather than as equitable. Early im-
The virtualization infrastructure is therefore found plementations were based on accounting, and simply
to assume many of the basic responsibilities of an op-gave priority to users who had not yet received their
erating system. However, the situation is actually some-que share at the expense of those that had exceeded
what different. One difference is that hypervisors typ- their share [16, 17]. In Unix systems it has also been
ically operate with far less information than an oper- syggested to manipulate each process’s nice value to
ating system. An operating system mediates all inter- achieve the desired effect [8, 15]. Simpler and more di-
actions with hardware devices for all processes, Whererect approaches include lottery scheduling [27] or using
the processes themselves are rather simple in structuregn economic model [26], where each process’s priority
Therefore the operating system can use a pretty simple(and hence relative share of the resource) is expressed
model of operation, e.g. blocking a process that has re-py its share of lottery tickets or capital.
quested an I/O Operation. But a hypel’ViSOI’ is one level Another approach that has been used in several im-
lower down, and supports a virtual machine that in turn plementations is based on virtual time [2, 7, 22]. The
runs a full operating system which may support many igea is that time is simply counted at a different rate
processes. When some process in the virtual machingor different processes, based on their relative alloca-
requests an I/O operation, this does not reflect the ac+ions. Our RSVT scheduler falls in this category; it
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bases scheduling decisions on the difference betweenually this uses a counter of how many byte-by-byte
the resources a process has actually received and whabunds have elapsed, which serves as a timepiece (it is
it would have received if the ideal resource sharing dis- actually identical to the idea of virtual time mentioned
cipline had been used [11]. A similar approach was above). Using this, one can find the round at which a
used in [4]. packet will finish transmission: it is the sum of its start
Focusing on virtual machine monitors, Xen uses time and length, where the start time is the max of its
Borrowed Virtual Time (BVT). VMware ESX server arrival time and the end of the previous packet from
uses weighted fair queueing or lottery scheduling. The the same source. As the counter is monotonically in-
Virtuoso system uses a scheduler called VSched thatcreasing, the order of finish times as counted in rounds
treats virtual machines as real-time tasks that require acorresponds to their order in real time. The algorithm
certain slice of CPU time per each period of real time then is to calculate these finish times for all sources,
[18, 19]. Controlling the slices and periods allows for and select to transmit the packet with the earliest finish
adequate performance even when mixing interactivetime. It is also possible to provide variable allocations
and batch jobs. by modifying the count of rounds needed to transmit,
Control over allocations of network bandwidth is leading to “weighted fair queueing”.
usually combined with traffic shaping, i.e. the reduction =~ The main drawback of all the above approaches is
of variability in bandwidth usage. One way to achieve that they focus on one resource — either the CPU
this is the leaky bucket algorithm. The bucket figura- or the network. Similarly, there has been interesting
tively represents a buffer where packets are stored whenwork on scheduling bottleneck devices other than the
the source creates them too quickly and they cannotCPU, but this is then done to optimize performance of
be transmitted immediately. Thus data flows into the the said device and not to enforce a desired allocation
bucket at a variable rate, but flows out at a steady rate.[1, 14, 25]. This raises the question of the interaction
Additional packets that arrive when the bucket is al- between devices, e.g. the effect of CPU scheduling on
ready full are called “nonconforming”, and are typi- 1/O [23], or the prioritization of VMs that do 1/0 so as
cally discarded. not to cause delays and latency problems [13]. But such
An alternative is to use a token bucket, which works interactions may naturally interfere with the desired
the other way around: it stores tokens that allow pack- allocations. The work presented here is part of a larger
ets to be sent (similar to the economic framework men- project to achieve a global scheduling scheme based
tioned above). When a packet arrives, it will be sentif a on identifying the bottleneck device at each instant and
token is available; otherwise it is nonconforming (and using it to dictate the allocations [9].
thus needs to be queued in a buffer). Tokens are added
to the bucket at a steady rate, and removed whenevedt TheRSVT Scheduler

packets are sent. Thus a source may accumulate tokeng, general, scheduling combines resource allocation
when itis idle, and use them at a high rate (higher thanand sequencing. RSVT, introduced in [11jackles
their arrival rate) when it needs to transmit. As a result this combination. Like other virtual time scheduling
the momentary bandwidth of a source may surpass itsschemes it controls allocations by making time pass at
average allocation, but only for a limited time. a different rate for different processes (or VMs), such
Leaky and token buckets limit the rate of individual that the rate reflects the allocation. The sequencing
sources, but do not specify how they are multiplexed. js done by selecting the process that is most “behind
Using FCFS with these algorithms may still lead to jts time” to run next (e.g. [22]). RSVT is especially
overload and is subject to manipulations. This was im- yseful for combining fair shares with pacing. The idea
proved by Nagle's “fair queueing” [21], in which the re- s that rather than just selecting the VM with the biggest
quests of each source are kept in a separate queue, angg in virtual time, we select the one with the biggest
these queues are served in round robin manner. HOW-difference from where it was supposed to be if it was

ever, given that packets may have different sizes, thisadvancing continuously. This helps spread out multiple
may lead to deviations from the intended bandwidth al- vvMs with the same profile [11].

location. Demers et al. therefore suggested an approx-

imation of round-robin at théyte level [6]. Concep- It was originally called PSVT, as it was envisioned in the context
of a single resource: the processor.
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Unlike some other virtual time schemes, RSVT has |,
a concept of allocations. This raises the question of £ | allocation = 2
what to do when a process becomes inactive: should its3 accounting rate = 1/2 \
allocation continue to grow? We handle this as follows. ) ‘
First, allocations continue to grow for a certain “grace ¢ | IR
period” that reflects expected continuity of operation. N Zﬂgg‘mggém .
Then they are frozen. Finally, the relative allocation is - ‘ ‘ ‘ i ‘ ‘
reset to zero after a long time that reflects the system’s elapsed real time
memory bound. This means that processes that have
been inactive for a long time are simply treated as if
they were new, and their previous history is forgotten.

,,,,,,,,

accounted virt

Figure 1. Virtual time scheduling.

the consumption by job by ¢;, and its allocation rate
4.1 Expressing Relative Priorities by r; (these and other notations are summarized below

There are two ways to express the desired allocationsin Table 1). Then by definition

to competing processes: absolute and relative. Using de;

the allocation of network bandwidth as a concrete ex- do 1)

ample, an absolute allocation would be something like

“this process should transmit at 20MB/s”. Such an allo-

cation is natural when using leaky bucket, token bucket,

or economic models. A relative allocation, on the other

hand, is more like “this process should transmit at dou-

ble the rate of that process”. This approach is natural

with lottery scheduling. dv R @)
RSVT uses the relative approach. Each process is dt ZjeA T

given a priority, which is expressed as a rate. However,

this is not an absolute rate, but rather a relative one.Putting this together, we find that the rate of consump-

Thus if two processes exist and both have a rate Oftioq by a specific job is proportional to its relative allo-

1, they will each get half of the bandwidth. If a third Cation: de: v R

process is added also with a rate of 1, each of the three dTl = 2277“ ®3)

will now get a third of the bandwidth. But if the third jeAty

process has a rate of 2, it will get half of the bandwidth, Thus virtual time is indeed a weighted version of real

and the original two processes will each get a quarter. time, where the weight reflects the relative allocation.
The reason for preferring the relative approach is In other words, different jobs are accounted for their

that it facilitates better utilization. With absolute rates, "esource usage at different rates.

if the total rates of active processes exceed the capacity 1hiS interpretation of virtual time leads to a very

then they cannot be satisfied, and if they fall bellow Simple scheduling algorithm [7]: dispatch the job with

the capacity then resources are wasted. Using relativéhe lowest accounted resource consumption. For exam-

rates solves these problems [5]. Other solutions, suchple, consider two competing jobs, one with an alloca-

as using a large token bucket and allowing a sourcefion 71 = 1 and the other with an allocation, = 2.

to send at a higher rate when there is no competition,When job 1 runs, it is accounted at full rate. But when

lead to reduced control over the allocations and to thelOb 2 runs, it is accounted at half rate, because its al-

danger of extended monopolization of the resource bylocation is double. Therefore it will get to run twice as

a single client. Relative rates are also more portable, in™much. This is illustrated in Fig. 1.

the sense that they remain equally relevant if a different 1N resource rat# is relevant for resources such as

wherev denotes the virtual time. The relationship be-
tween virtual time and real time is based on the avail-
able physical rate? that is available (e.g. the band-
width of the network), and the allocation rates to the
set of active jobsA:

network is used. networks or disks, where it reflects the amount of data
_ ) _ transferred per unit time (that is, the bandwidth). In the
4.2 Interpretation of Virtual Time case of a CPU it can be taken as 1, since the CPU pro-

As noted above, accounting for resource usage usingvides one second of processing for each second of real
virtual time is simpler than using real time [2]. Denote time. For simplicity, we will consider this situation in
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accounted virtual time

ideal rate = 2/3
| actual progress \ -

elapsed real time

accounted and ideal progress

i /,",»‘,.:"";if, JUREEN /& ideal rate = 1/3

actual progress

T T T T T T
elapsed real time

Figure2. RSVT scheduling.

the sequel and drog from the equations. In fact, this

can also be done for any resource — it just means we
schedule and account for “seconds of resource activity” elapsed real time
rather than for “units of resource work done”.

accounted and ideal progress

Figure 3. The advantage of RSVT scheduling in
43 Concept of RSVT sp_readipg low priority jobs that compete with a high-

priority job.
RSVT is a variation of the virtual time approach. Vir-
tual time scheduling algorithms can be viewed as bas-
ing the relative priority of each job on the difference
between the global real time and its personal virtual
time, which reflects an accounting of its consumption.
However, given that all jobs share the same real time,
it is enough to compare their consumptions and select
the lowest one.

RSVT likewise compares two values, but they are
slightly different: we compare each job’s actual con-
sumption with itsideal consumption. The actual con-
sumption grows at a steady rate (equal to real time)
when the job is running, and stays flat when it is not.
The ideal consumption grows steadily at a rate that re-
flects the job’s relative allocation. If the consumption is
ahead of the allocation, the job has a low priority and
other jobs should run. But if a job’s consumption lags
its allocation, it has a higher priority. In particular, the
job for which the consumption lags the allocation by
the most is the job with the highest priority, and will be
selected to run next, as illustrated in Fig. 2. 4.4 RSVT for aGiven Set of Clients

Antﬁxamw(;atlor:j of E'%S'Il _ar_lgl 2t§holw13_r;[hzt_flfn this More formally, RSVT works as follows. Assume for
case Ihe produced schedule 1S identical. The dIerencey, o o men that the set of active cliéhts is fixed —

between the tWO. a!oproaches is only evident V\(hen S®V%all clients arrived some timg) in the past, they do not
eral jobs have similar profiles and compete with other
jobs that have a different one. Let’s consider a concrete?we will use “client” in place of source, process, etc.

example where two jobs have an allocatign= o =

1, and a third hass = 2. Virtual time scheduling will
settle into a pattern where the two low-allocation jobs
are always executed one after the other, thus excluding
the high-allocation job for 2 time units in a row (top
of Fig. 3). This happens because when the two low-
allocation jobs have a lower virtual time than the high-
allocation job, scheduling one of them leaves the other
with its low virtual time, so it will be scheduled next
(arrows). RSVT, in contradistinction to the above, will
spread them out and give the high-allocation job better-
paced access to the CPU [11] (bottom of Fig. 3). The
reason is that when one low-allocation job is sched-
uled to run (arrows from below), the ideal allocation
of the high-allocation job continues to rise. Therefore
by the next scheduling point the high-allocation job has
gained an advantage over the second low-allocation job
(arrows from above).
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terminate, and they are constantly active in using the 4  set of active clients

resource. Each clientis characterized by its ideal rela- .,  relative rate of client

tive rater;. Assuming constant activity, its ideal alloca-  4; cumulative allocation of client
tion by timet (where obviously we are only interested ¢, cumulative consumption of cliert

int > to) is then T tick period for allocations and timer events
ai(t) = i (t — to) (4) g grace period during which allocations con-
' D jeAT) tinue when a client becomes inactive
which reflects its relative share of the capacity of the 77 rebirth period during which allocations are
resource. retained after a client becomes inactive
At time ¢, the client’s actual consumption so farwill b maximal allowed difference between alloca-
be denoted by;(¢). Its priority is then simply tion and consumption
prii(t) = a;i(t) — ¢(t) (5) Table 1. Parameters used in RSVT.

The scheduler will select the client with the highest . . o
priority. Note that priority may be negative, if a client forall£€ A (!ncludmg clienti). . .
happens to consume more than its fair share at some Note thaF n b.Oth the above equations _the total in-
point in time. crgment is |_den.t|cal,_ and standstat- t,. This seems
To implement this, we need to be able to calculate © imply a nice invarianty_a; = 3, ¢;. However, this
a;(t) andc;(t) for all active clients. In principle, these IS ha“_’ to maintain when clients have more dyn_amlc
values need to be updated upon each scheduling eVen{c’Jehawor instead qf being able to use the full available
to reflect the changes since the last scheduling event!©SOUrces all the time.
Note that there are two types of scheduling events: 45 Handling a Changing Set of Clients

* Aclientis selected to use the resource Note that the above equations assume that the set of

* A client stops using the resource, either because itactive clientsA does not change with time. In a real
does not need it anymore at this time or becausesystem, of course, new clients may arrive while oth-
another is selected as having higher priority ers depart. In addition, clients may become inactive for

If the resource is constantly busy, pairs of such events€xténded periods, i.e. they may refrain from using the
coincide as one client stops and another is selected. [fésource which we are scheduling (for example, when

such a situation the stop events are redundant and caf cliéntis blocked doing I/O itis not contending for the
be ignored. But if the resource becomes idle, the stopCPU)- This affects the above equations because the rel-

event is important to note. ative allocations depend o ; 4 ;. Another question
Assume that the time now i§ and that the time IS Whether to retain the client’s historical consumption

of the previous event was. If the resource was busy data for when it will become active again.

during this period, assume that cligritas just finished ~ ©One possible approach to handling this issue is to
update sets. Thus a new segment starts whenever any of the
cit) = ci(ty) + (t —tp) (6) following events occurs:

All the other ¢ values remain unchanged, as other ® A new clientarrives
clients did not consume any of the resource in this in- e A client terminates
terval. All ¢s remain unchanged also if the resource
has been idle in this period; in this case the resources
capacity during the period fromto ¢, was wasted.
However, the ideal allocations afl the clients have  We could then do the calculations in each such segment
grown by their respective shares. Therefore we shouldindividually, in a way that reflects the changing condi-

¢ An active client becomes inactive
¢ An inactive client becomes active again

compute tions.
B Ty The problem with this approach is that changes may
ag(t) = ar(tp) + S e AT (t = tp) (7) be very frequent, and it is not clear that trying to follow
jeEA )
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all their details is beneficial. In particular, a thorny is- a; andc; values for a certain time (the “rebirth” period,
sue is how to handle clients that temporarily become m), but then we set;; = ¢;. This is done for both
inactive. One option is to freeze their allocations, to positive and negative relative usage. On the positive
avoid situations where a client gains a huge credit by side, it avoids situations where a client may monopolize
virtue of not using the resource, and then starves allthe resource based on a credit gained long ago. On the
other clients once it starts to use it again. But this vi- negative side, it avoids situations where a client stays
olates the notion of an ideal allocation in those casesat a disadvantage after using more than its fair share
where start/stop activity is natural, e.g. when sending of the resource when no other clients wanted to use it.
network packets or performing disk 1/0. For example, Thus a client returning to activity after a long period of
if a client should get an allocation of 1/3 of the band- not being active will be effectively treated like a new
width, we don’t want this to be reduced due to process- client. In the future we plan to decay exponentially
ing that occurs between send operations. towardsc;, rather than using an abrupt change.

The suggested solution is to define a grace period Clients may also be added to the active set. New
g which defines a time frame that reflects the natural clients are initialized withe;(¢;) = ¢;(t;) = 0. Note
continuity in using the resource — typically on sub- that this is before the new allocation, which they will
second time scales (with a 2GHz CPU, even a merereceive together with all other active clients. Clients
1ms corresponds to 2 million cycles; with a 100Mb/s that have become active again since the last tick after
network, it corresponds to sending 100 Kb). When a a period of inactivity are also added to the active set.
client becomes inactive, its ideal allocation will con-
tinue to grow during this grace period. After the grace 5. | mplementation in the Linux Kernel

period it will be frozen, to avoid over-allocations as de- RSVT is a generic proportional share scheduler. Thus

scribed above. a system may have many instances of RSVT control-

The grace period s measured in ticks of length ling different resources. This is managed by the global
from a timer. These ticks are also used to “smooth” the RSVT manager

fluctuations in the active setin general. This is achieved The implementation of RSVT was started in the

by performing periodic allocations once evelytime context of the QoS facility of the Linux networking

units, instead of p_leceme_al allocations as described bysubsystem. This facility provides a hook that can be
Eq. (7) above. Client arrivals and departures are also

synchronized with these ticks.

To summarize, allocations are handled by a periodic
timer that ticks every” time units. Handling this timer
tick involves the following actions:

used to select the next packet that will be sent from the
gueue of waiting packets. We use RSVT as the policy to
guide this selection, and select the first queued packet
belonging to the socket whose transmissions so far are
the farthest behind what they should have been.
1. Clean up after clients who have terminated since the Rather than create a policy function that is specif-
last tick. ically tied to the networking QoS facility, we build on
2. Note clients that have become active or inactive.  the fact that the interface separates the mechanism from
the policy to create a generic implementation that can
be used as the policy guide for other subsystems as
Allocations are made in advance: the allocation per- el|. This boils down to the definition of an interface
formed on a tick reflects expected usage from this time whereby the policy receives the information it requires
till the next tick. However, it may happen that notallthe iy order to render its decisions. We then indeed used
allocated time will be used. In order to prevent the al- this policy module for CPU scheduling as well, and us-

locations from outgrowing the consumptions, itis nec- gge for I/0 scheduling is planned as future work.
essary to bound their growth. Thus after calculating the

allocation according to Eg. 4, we perform 5.1 TheRSVT Module

3. Make new allocations for all the active clients.

ai(t) = min(a;(t), e;(t) +b) (8) The _RSVT module is a_Linux kernel module that can
provide RSVT scheduling of resources such as the

New allocations are only given to active clients, or CPU, disks, and networks. The scheduling algorithm
those in their grace period. Inactive clients retain their is intended to provide predetermined shares of the re-
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sources to the different processes, which potentially moving them from the queue. This is done by the func-
embody different virtual machines. tionsclient_set_pending andclient_unset_pending.

A kernel running RSVT has one global RSVT man-  When the resource is free for processing diggatch
ager and one or more instances of RSVT schedulers —function is called to select the most deserving client
one for each device. The global manager is responsi-from the pending queue (using the RSVT algorithm,
ble for two main functions. First, it maintains a repos- based on past resource usage relative to each client’s
itory of active RSVT instances; new RSVT schedulers priority). A resource that is not request-based can then
are created (typically upon startup) using te_create start operating on the selected client. A request-based
function, and should be removed before shutdown us-resource will simply pull the selected client’s requests
ing thersvt_destroy function. Second, it activates the pe- one by one. After processing a client, the resource
riodic resource allocation on all such instances, as will should update the resource usage of the client, based on
be described below. This is done by calling tfiecate the amount of processing performed. This provides the
function of each instance. RSVT module with the information needed to make fu-

Tasks (either processes or threads) are regarded atire scheduling decisions. As noted above, this is sim-
clients of a resource. Therefore, a task is allocated a ply done using the time that the resource was used. The
proxy client object for each resource it uses. Tasks arefunction used to note resource usage is calledkin.
also the basic entities whose priority can be set, and
the clients representing a task operate with the task’'ss 2 Data Structures
priority. The relationship of tasks _to resources is many The RSVT module completely separates the object rep-
to many. There are many tasks in the system, several

. resentation of a task from that representing a client.
independent resources, and each task may use all thﬁ . R .
[ESOUICESs ather than storing each client’s information as part

: . of the corresponding task'sask_struct object, it is
The semantics of resource operation depend on the ; . .

. stored as a client object that is part of the correspond-
nature of the resource, with some resources operat- , )
) : . ing resource’s RSVT management module. Client ob-
ing on a request basis (network, disk), but some on.

a time basis (CPU). The design of the RSVT module jects are created witHlient_create, and destroyed with

. . lient_ .
can account for both. It is based on a core that main-° lent.destroy . . . .
tains a queue of pending clients, and two wrappers: The reason for this design, other than its generality,

. is th Kk’ far rce m live th k
one for direct access, and the other for request-baseés that a task's use of a resource may outiive the tas

access (called RRSVT). The difference is that RRSVT for example, a process may have network packets

is based on requests. Therefore whendiggtch func- waiting to be sent when it is killed. Therefore, a task’s
tion selects a client .it returns an abstract handle to aproxy client for resources must be regarded as different

. ) . entities than the task itself.
struct list_head, which contains all that client’s requests.

L . To access the client objects, a taslgsk_struct will
In addition to that, clients can enqueue and requeue . . .
. . contain an array of handles to the client objects for
requests, as demonstrated in our network implementa- . R
tion different resources. The array size limits the number

. . . . of resources that can be accommodated. In the other
In either case, the queue of pending clients contains . . . : . .
. . e direction, each client object contains a pointer to the
only the clients that are actively waiting for the re-

source at a given time. For example, if the RSVT mod- cqrrespond|_ngask,struct. If the task has been killed
: ) . : this pointer is set to NULL, and when all requests have
ule is managing a network device, those clients that

" . been serviced the client object is deleted.
have network packets waiting to be sent will be placed To simplify the implementation (and especially the
on the queue of pending clients. When all the pending P P P y

. o . search for the next client to serve) only a discrete set

packets of a client are sent, it is automatically removed . . N
. of different rates (representing priorities) is supported.
from the queue. In case the resource is not request- R
. .~ When the RSVT module is initialized, the number of
based, such as a CPU, the queue of pending clients. . . e
: distinct rates and their specific values should be spec-
acts as the runnable tasks queue, and the module’s use

(the kernel) has to explicitly mark clients as pending, |¥|ed (these are arguments tevt create). These are

thereby inserting them to the queue, or not, thereby re_stored_ in an array that maps each priority level to its
associated rate.
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The lowest priority is by convention set to 1. The pecially with regards to the CPU clock rate which may
highest priority should be set according to the desired be adjusted based on power and heating considerations.
maximal ratio of rates: should be highest rate by dou- We currently ignore such difficulties.
ble the lowest rate? or 5 times higher? or 10 times? Ad- The RSVT module does not generally manatdje
ditional intermediate levels should be set according to of a resource’s users, as it is designed to manage
the desired ratios that should be supported. This wouldonly a subset of the existing processes — specifi-
typically imply a logarithmic scale, asin 1, 2, 4, 8. As cally those executing a virtual machine. Other pro-
priorities should be integral numbers, it is possible to cesses — for example system daemons — should be
deviate from the convention of starting at 1 to accom- managed by another scheduling algorithm (probably a
modate smaller ratios. For example, to achieve an ap-FIFO queue). Such clients should have priority over
proximate ratio ofy/2 between adjacent priorities one the RSVT clients. For example, in our implementation
can use 10, 14, 20, 28, 40, 57, 80. for networking, traffic generated by NFS clients falls

Clients may be linked to each other in two ways. in this category. In CPU scheduling, this may refer to
First, there is a linked list o@ll clients. This is used some real-time processes.
when all clients must be traversed, e.g. when making However, we do need to track the times when the
new allocations. In addition, active clients are linked resource is being used by these other clients that are
according to their priority. This creates a multi-queue outside our control, and reduce the allocations to our
structure, with a separate queue for each discrete prior<lients accordingly. In general, a resource’s time can be
ity level. divided into three types of use:

e |t is being used by RSVT’s clients based on its
5.3 Operation scheduling decisions.
In principle each resource has its own units: CPU usage e It is idle.
is measured in cycles, network transmission is mea-
sured in bytes, and disk 1/0O is measured in blocks.
Using these units requires us to calibrate the RSVT
module so that it knows how many units to allocate

e |tis being used by some other clients we don’t know
about (so called “dead time”).

The RSVT scheduler should be cognizant of the first
or charge for a period of time. However, this is re- two, and use them for the purpose of calculating allo-

dundant if all allocations and consumptions are simply C&tions. It should ignore the third, as if it were a gap in
measured in time. We therefore use time as our basicth€ timeline that does not exist. To do so, it must know
unit for all resources, regardless of their nature. Specif- When other clients take over the resource and when they

ically, our basic unit in the initial implementation is one "€l€@se it again.
microsecond. With 32 bits this limits us to usage of just 531 Ticksand Allocations
over one hour. In a “real” implementation one would
therefore need to use 64 bits.

Note that in some resources, notably disk and net-
work, it may be impossible to measure the time needed
to serve a specific request. The problem is that the
lower-level devices may handle multiple requests con-
currently and transparently. The solution is to map the
request size to time using the known nominal resource
rate (e.g. effective bandwidth; for example, in a net-
work setting this would account for overhead due to
physical layer headers). This is done by the “glue code”
and is external to RSVT itself. In the network imple-

The original concept of RSVT is based on resource
sharing, as if all clients consume their allowance of
the resource continuously. In reality, of course, they are
multiplexed using time slicing. Allocations are likewise
done at discrete instances. That is why the experimental
results below show stepwise progress rather than slopes
(Fig. 4 as opposed to Fig. 2).

Allocations are done periodically based on the sys-
tem’s clock interrupt (the same one that increments
jiffies®). At each tick, an allocation reflecting the time
since the previous allocation is made, after subtracting
mentation the resource rate is obtained from the Con_known deaql _tlme (th_at is, time when the resourge was

used by entities outside our control). As part of this, the

figuration information. The implication of this decision Gme in iiffies is t lated into mi ds. The total
is that the rate of resource usage is constant at all times M€ INJIMES IS fransiated into microseconds. The tota

In modern systems this is not necessarily the case, es20n a 250Hz system this i = 4ms.
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allocation is divided among adictive clients according  clients consumption. In the CPU implementation the
to their relative priorities. To make this easier, an accu- accounting is done when the client is de-scheduled,
mulator with the total rates of all active clients is main- based on reading the processor’s cycle counter, because
tained at all times; it is updated when clients arrive, the length of time it will run cannot be known in ad-
terminate, or change state (become active/inactive).  vance [10].

The total gllocation reflects_ the total f:apacity ayail- 533 Handling Grace and Rebirth
able to our clients after deducting dead time. But clients
may not use their whole allocation, e.g. because theyAIIocations should in principle be made at the finest
pace their activity based on wallclock time. To avoid 9granularity possible, and as a compromise we do them
waste of resources, RSVT allows negative priorities, as at tick granularity. But we also need two coarser timers,
may happen if a client's consumption is ahead of its in order to implement the grace period and rebirth. Both
allocation. In fact, it may happen that one client’s allo- of these also piggyback on the ticks used for allocation.
cation grows significantly more than its consumption, 10 implement the grace period, each client has a
while another’s is significantly behind its consumption. timestamp of when it was last active. As part of han-
This is undesirable as it may have detrimental effects dling a tick we first scan all clients to check the differ-
on future usage. Specifically, if the allocation is way €Nnce between their timestamps and the current time. A
ahead the client has a high priority and may monopo- client that has been inactive for longer than the grace
lize the resource for an extended time. If it is behind the Period then becomes inactive. The grace period in the
client may be blocked out for an extended time. current implementation is set o= 20ms for the net-

Our implementation solves this problem by bound- Work andg = 600ms for the CPU. This reflects the
ing the divergence between the allocation and the con-fact that the network operates at a much finer resolution

sumption. This is always done by manipulating allo- — sending of individual packets vs. scheduling time
cations, as the consumption reflects real usage by théluanta. _ _
client. Thus if a client does not use its full allocation, !N addition, the ticks are also used for rebirth. Re-

future allocations are bounded and will not grow too Pirth works using a second chance approach. It is ac-
much beyond the client's consumption. Conversely, if tivated periodically, with a period that is 60 times the
a client's consumption grows more than its allocation, 9race period. Each client has an activity flag, which
the missing allocation is made up so as to prevent tooiS Set whenever it performs some activity. Upon in-

much lag. In both cases, the bound is set equal to thevocation of a rebirth process, all clients are checked.
grace period in the initial implementatiob £ g). Those whose flag is set are retained, but the flag is re-
set. Those whose flags are unset have not been active
since the previous check, so they have been inactive for
at least a full rebirth period. Their allocation is then
Dispatch decisions require finding the client with the gg¢ o equal their consumption. When they become ac-

largest difference between its allocation and consump-jye again they will then be treated as if they were new
tion. The problem is that allocations change at differ- ¢jients (thus the name “rebirth”).

ent rates for different clients. To reduce overhead we

do not want to scan all the active clients each time. >4 Networking Glue Code

Therefore clients are kept in separate queues accordThe generic RSVT module is responsible for the schedul-

ing to their priorities (rates). Each queue is sorted suching policy only. It exists in parallel to the mechanisms

that the client with the largest difference is first; as all used to actually manage the resource itself. The glue

the clients in the queue have the same rate, they cannotode connects the policy and the mechanism.

overtake each other [9]. Thus we just need to compare The Linux kernel has long had a network Quality of

the first client in each queue. Service (QoS) module in it, located it /sched [24].
After a client is selected its resource usage must belt consists of a main control and various alternative

noted. In the networking implementation this can be policies (called “queueing disciplines”). It is relatively

done in advance. When a packet is sent, the lengtheasy to add new policies to the QoS module, simply

of the packet is translated into a time based on the by adding a file and implementing the basic functions

network’s bandwidth. This is then accounted to the (engqueue packet, dequeue packet, and so forth).

5.3.2 Dispatch and Check-in
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Our “glue-code” constitutes such a QoS policy. ority runnable process, we keep track of time used by
It implements queueing packets as client requests toreal-time and CFS processes. From RSVT’s perspec-
RSVT. It implements de-queueing by using the RSVT tive this is dead time that should not be allocated.
dispatch function to find the client with the highest pri- The initial implementation of RSVT CPU schedul-
ority, then obtaining this client’s next request, and fi- ing assumes a single processor, and is therefore unsuit-
nally checking-in with the approximate packet sending able for SMP machines. This is a relatively minor tech-
time in microseconds. Note that this is done on a packetnical issue concerned with keeping track of the cur-
basis. Given that the QoS module is very low level, be- rently scheduled client. To support SMP machines all
low the TCP/IP implementation, packets do not neces-that is needed is to allow multiple “current” clients.
sarily correspond to transmissions. Long transmissionsAlso, care must be taken when calculating allocations.
may be fragmented into multiple packets due to MTU |If there are less clients than processors, they should
considerations, and all these packets have to be handleéach get an allocation that is equivalent to 100% of one
consistently. processor (possibly minus dead time as appropriate). If

Importantly, the glue code also needs to distinguish there are more, the sum of the capacities of the pro-
between packets belonging to RSVT clients and pack-cessors should be divided among the clients, based on
ets coming from other sources. The above procedure isthe assumption that capacity can be allocated flexibly
applied only for RSVT packets. Other packets are sentin this case. This has the drawback of losing processor
immediately, thus implementing FIFO scheduling and affinity characteristics; we leave the possible integra-
a higher priority for them. This includes NFS traffic. tion of affinity to future work.
The glue code keeps track of such packets, in order to
account for the dead time that should not be reflected6, Experimental Results

in allocations to RSVT clients. Using our implementation, we ran a number of experi-

ments to demonstrate the capabilities and properties of
55 CPU Glue Code RSVT. For network allocations, the main application

A modular scheduling policy manager already exists We use is netperfuww.netperf.org), which is a bench-
in the Linux kernel (the Modular Scheduler Core [3]), marking tool that continuously sends packets. For the
containing different time-sharing techniques for pro- CPU we use synthetic CPU-bound processes and ap-
cesses. For example, the Completely Fair Schedul-plications like MPlayer.
ing (CFS) policy implements fair-sharing of the CPU _ _
among all processes [20, Sect. 2.6]. One useful feature®1 Basic Allocations
of the modular core is custom run “queues” for each Fig. 4 shows the results for a simple case of rela-
scheduling policy. tive allocations with three competing netperf processes
For our implementation, we created our own schedul-with relative priorities of 1, 2, and 3. In this and sub-
ing policy, which is essentially a wrapper for the sequent graphs the X axis is real time, and the lines
non-request based RSVT module. The run queue inshow the growth of both allocations and consumptions
the policy is actually the RSVT object, and queue- with time for all the processes. Hence the slope of a
ing/dequeueing processes to the run queue causes thelfine reflects the rate (and priority) of the correspond-
to be set as pending or not pending correspondingly.ing process. The lines showing consumption are on top
“Taking out” the next process to the scheduler is im- of those showing the allocation, because in this simple
plemented as dispatching processes, and “putting” thescenario the consumption closely tracks the allocation.
process back to the run queue is equivalent to checkingThe smaller graph shows a zoom into one of these lines.
in the RSVT client. At this fine detail one can see the periodic allocations
The RSVT policy is lower than the CFS policy (big steps of allocation line) and the sending of individ-
(which is the default) in the scheduler class hierarchy, ual packets (smaller steps of consumption line).
in order to allow hypervisor processes to act as soon as The actual bandwidths achieved by the competing
possible, if necessary. It is higher than the idle class, processes are shown in the table. These are based on 10
which includes the system idle loop. By hooking into repeated runs of 10 seconds each. The results obviously
the dispatch loop, which searches for the highest pri- closely reflect the desired relative allocations, with ex-
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tremely small variability. During our measure_ments we 0 1or08 20108 30108 40r08 50108 Gor08 7er08 Bet03
saw only a small number of results that deviated from real time [Kcycles]

the specified allocations. These were found to be duerjgyre 5. Allocations change dynamically as clients
to variation in startup time. When one process starts 5,0 added and removed.

before the other, it gets the full bandwidth during this
time, leading to a higher average. Likewise, the lagging

process gets the full bandwidth after the first one ter- 2.2e+06

minates, also leading to a higher average. This happens 2e+06

because they each run for 10 seconds. 1.8e+06

6.2 Dynamic Scenarios g oSO

Fig. 5 shows more complicated scenarios, in which the § e

set of clients changes with time. In the first there are § [

initially two netperf clients, with relative priorities 1 1ex0

and 3. After some time (about 2.3 million Kcycles) a 800000

third client is added, with relative priority 2. As a re- 600000

sult the allocations of the first two clients are reduced 400000 e
in a way that all three receive their appropriate shares. ' ' " real time [Keycles] ' '

Then, at about 4.7 million Kcycles, the first client ter-
minates. The allocations of the remaining two are then
increased, but the change is very small because the ter-

minated client was the one with the smallest allocation.  Fig. 6 shows the effect of the grace period. The sce-
The second graph shows two competing MPlayers with nario is two competing netperf processes, with relative
relative allocations of 1 and 4 of the CPU. They start to- priorities of 1 and 2. At two points the process with the
gether, and when the high-priority one terminates, the higher priority sleeps for some time, simulating a situa-
other picks up the slack. tion that a process interleaves sending of network traffic

Figure 6. Effect of the grace period.
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Figure 7. Effect of the rebirth mechanism. Figure 8. Effect of self-throttling by MPlayer.

with other non-networking activities. The first occurs allocation for the high-priority client, and it just follows
at about 1.4 million Kcycles. This sleep is shorter than the consumption. The low-priority client gets its fair
the grace peridtiso the allocation continues to grow. allocation of CPU capacity, which is somewhat less
Thus, when the process resumes its activity, it has athan it needs, and indeed it also prints out a warning

relatively high priority and blocks out the other pro- that the system is to slow to show the requested video
cess for a short time. The second sleep occurs at abougt its full rate.

2.1 million Kcycles. This one is much longer, so after
the grace period ends the process is recognized as inac7, Conclusions
tive, and it receives no more allocations. Therefore the
full bandwidth allocation is given to the other process,

which uses it to increase its transmission rate. Then, . . . ) S
. o and improved pacing of allocations to high-priority
when the high-priority process wakes up and resumes_. o S ;
clients. The basic implementation is generic, and can

sending, its allocations are renewed, and the other pro- .
. . . be used as the policy module for any schedulable re-
cess drops down again to its reduced allocation.

. . . source. This is done using “glue” code that interfaces
If a process refrains from action for a longer time, RSVT to the desired subsystem. We presented our ini-
the rebirth mechanism kicks in. This is demonstrated 4 ' b

- o . . tial implementation, which includes glue code for the
in Fig. 7 The scenario is the same as in the previous P 9

. g . networking QoS mechanism to controls network trans-
case, except that when the high priority process remains 9Q

. : : o E missions, and glue code for the modular scheduler core
inactive for too long, its extra allocation is removed (at .

. to control CPU scheduling. In future work we plan to
around 2.2 million Kcycles).

Another interesting effect, using MPlayer and CPU also |_mplement contr(_)I of disk 1/0O by integrating with
. . S the Linux 1/O scheduling framework.
RSVT scheduling, is shown in Fig. 8. Two MPlayer . . . -
. . . . o The current implementation, while providing a proof
processes are decoding videos, with relative priorities ) . . )
- of concept, is not complete. In particular, it is lacking
of 1 and 4 controlled by RSVT. In addition an X server Supbort for arouns of processes and for the inheritance
is displaying the resulting frames, running under CFS PP group P

. . 2 . or partitioning of both allocations and consumptions
and thus with higher priority than the MPlayers (this P g . L P
: . . across process forks. Implementing this will obviously
saves the need to propagate usage information as in
" ) . . Increase the usefulness of the system, but does not
[11]). Initially the allocations indeed reflect the relative .
L . . .. contribute much at the conceptual level.
priorities. But the consumptions are similar, because it

Another interesting avenue for future research is to
tums out that MPlayer does not really need so much extend RSVT by combining relative allocations with
CPU power in order to decode such a video. After y 9

. | Il ions. For example, it migh h
a short time RSVT therefore starts to curb the extra absolute .ocato s- Fore 6.‘ ple, it might be t 'e case
that one client should receive half the allocation of

4 For this experiment we used an extended grace period of 60 ms. another, but not less than 20Mb/s. This can be im-

RSVT is a flexible proportional share scheduler. It pro-
vides adjustable allocations among competing clients,
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plemented by verifying that the allocations satisfy the [11] Y. Etsion, D. Tsafrir, and D. G. FeitelsonPfocess pri-
specification, but requires the addition of admission oritization using output production: scheduling for mul-
controls to ensure that the specified rates do not surpass  timedid. ACM Trans. Multimedia Comput., Commun.
the available capacity. & App. 2(4), pp. 318-342, Nov 2006.

Finally, the whole RSVT development s part of a vi- [12] R. P. Goldberg, Survey of virtual machine research
sion of a global scheduling framework that controls rel- Computer 7(6), pp. 34-45, Jun 1974.

. I . f dif . di d [13] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and
ative allocations of different resources in a coordinate A. Sivasubramaniam, Xen and co.: Communication-

manner [9]. This is to be integrated with the KVM ker- aware CPU scheduling for consolidated Xen-based
nel virtualization module. Realizing this vision is a ma- hosting platforms In 3rd Intl. Conf. Virtual Execution
jor part of our future work in the coming years. Environments, pp. 126—136, Jun 2007.
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