Open-Source Textbooks: Infrastructure for
Customized Learning Materials

Dror G. Feitelson
School of Computer Science and Engineering
The Hebrew University, 91904 Jerusalem, Israel

Abstract

Writing a good textbook is akin to writing a useful softwaigcgage. Both are highly cre-
ative endeavors that require a combination of sharp teahskills and artful design. In recent
years, the software community has developed the opensayuroach to software construc-
tion, in which improved results are obtained by sharing #hents of multiple developers. We
propose to extend these ideas to the creation of study ralatespecifically textbooks.

With open source textbooks teachers can build upon a reppsif existing materials. If
no available textbook meets their requirements, they canfrom several sources to tailor
an up-to-date customized textbook to fit the needs of theicifip course. They can also add
new materials that were not previously available in the sépoy, thus contributing to the
collaborative process of creating new teaching materials.

Using open-source study materials is expected to be higieficial both in educational
terms and in economic terms. It will enable teachers to @dgvepecialized study materials
with relatively low effort and at low cost, because they Wil based on reusing existing ma-
terials. This is already important in the context of traafitil textbooks, and may be expected
to grow in importance when moving to more advanced interadéarning materials for use in
e-learning systems.

Contents
[1__Introduction|
[2__Background and Related Work

I3 A Framework for Open-Source Textbooks

1 Introduction

Universities and students typically spend large sums ofeypa@m textbooks and other study mate-
rials. These expenditures are continuous, because stugyiatshave to be kept up-to-date, and
new textbooks (and new editions of old ones) are published/exear. But despite the investment,
it is often found that the obtained materials do not quitélf@ach teacher’s needs. A partial (and
expensive) solution is to acquire several competing boakg use a different part from each one.

The Internet has created great opportunities for new ettunzdtapproaches. There is great
excitement regarding on-line remote learning environmeartd the option of interactive learning
environments that adjust themselves to the progress ofstadbant. In addition, more conventional
course materials are also provided on-line.

The Achilles heel of most such projects is the creation oteat Unlike the technical issues
involved in e-learning, the content issues cannot be sdiyedever engineering. Moreover, cre-
ating content for one course does not solve the problemshafr aourses. Creating content is
difficult: it requires thorough knowledge of the study matkrand a knack for presenting it in an
interesting and understandable manner. In short, evenlgaraing good teachers are required,
and they are a scarce resource.

To ease this situation, we recommend to create an infrasteufor open-source textbooks (ini-
tially we focus on traditional textbooks, but this can beeexted to learning materials in general,
including interactive ones). This infrastructure will &tateachers to build upon study materials
prepared by others when creating their own courses, instdzal/ing to do everything themselves.
By pooling resources, it will be possible to create more aded, accurate, focused, and useful
study materials in a shorter time. Note that this is diffefeom other forms of collaborative au-
thoring: instead of having many people working on a sindieyed text, we have people working
on many parallel, competing versions, and borrowing frochezther.

Surprisingly, as far as we know such systems are not cuyremdilable. In fact, the whole
issue of document reuse and construction by multiple incdeéget authors has received very little
attention in the literature, as opposed to more technisakis of describing document structures for
automatic composition. The little work that has been dorsefbeused on abstract developments,
such as specialized languages to describe document sgsietod meanings [13,,14,114]. We know
of only two applied efforts[[3,11], and these have not led tailable and usable systems.

Note that we are not talking about e-books, where the focus idigital delivery using the
Internet. We are talking about the process of creating haekmrdless of how they will be used,
which can be both printing on paper and electronic accesgaiticular, new print-on-demand
technology facilitates the economical production of loattme printed books, as would be needed
for a specialized version of a textbook (see, for exammev. I ul_u. conj.

The next section reviews other projects that have similagor use similar terminology.
SectiorB then presents our system design, and the featsrgspiorts. Sectidd 4 comments on the
similarities and differences between open-source textbaad open-source software.

www.lulu.com

2 Background and Related Work

“Open-source” is a methodology in which one individual agamization does not develop a soft-
ware system in isolation and behind closed doors. Ratheisdlrce code for the system is made
available to all, and the community at large is encouragezbturibute criticisms and additions.
This is the methodology that was used to create highly ssbagsrojects such as the Linux oper-
ating system and the Apache web server. It is now used foraghelopment of tens of thousands
of other software systems (sgeur cef or ge. net)).

While the details depend on the exact license being usedtlnd are many nuances), open-
source typically also implies open-content. This meanstti@source code can be modified by
others and used as part of new projects. The only requireimestally that the new projects also
be open. Note that open-source and open-content shoulemoitfused with open-access, which
refers to no-cost access to content that is published bititradl means, with no option to re-use
or modify it.

When applied to textbooks, the open-source/open-conygroach will enable teachers to
create new study materials by combining many existing gied®e envision a repository where
teachers can deposit partial study materials of variowssiz not only complete books for whole
courses, but also individual study units, figures, animmatialefinitions of exercises, etc. These
can then be combined as needed in each case. This is simtlae tootion of reusable learning
objects|[12], but more modest in scope as explained below.

We define open-source textbooks as supporting three feature

collaboration — the creation of an open-source textbook is a collaborgiheeess involving
contributions from multiple authors. Of course an initiatsion can be the work of a single
author, and later a small group of authors may still dominaé others will also contribute
content or editing.

customization — an important use of open-source textbooks is to be cusaahby a teacher to
match the detailed structure of a specific course. Whileethey be a single master version,
as is commonly the case with open-source software, theralsanbe multiple additional
versions with various degrees of overlap.

evolution — open-source textbooks can track progress in the field withesorting to discrete
new editions. Each time a course is given, a new book can laectevith the latest up-
dates. This is similar to the concept of a continuously updlabre handbook proposed by
Engelbart([6].

using this definition, we can compare our ideas with otheilamprojects. The most com-
mon form of collaborative books are edited collections. sT$ort of collaboration nevertheless
maintains the distinction between the contributions ofiriial authors, and does not allow users
to modify content according to their needs. The idea of baltative creation of content has been
promoted by various web sites in recent years, but this asaly not amounted to much in terms
of real collaborations and real content. Making course nedseavailable on the web has also been
done before, e.g. in the MIT OpenCourseWare projeci¥,. m t . edu). But the current proposal

sourceforge.net
ocw.mit.edu

aims to go much further, by providing tilseurcesof study materials, and tools to actually use the
available resources to create new ones.

There are, however, several projects that are somewhdasbmour proposal. The best known
and most successful are wikis [9]. A wiki is an environmemtdollaborative authoring using the
web. The largest and most successful is probably the Wikap®@ewv. w Ki pedi a. or g). This
is a free encyclopedia in which any user can add new articldsedit existing ones. Amazingly,
this has led to the creation of nearly 700,000 articles inliShgand hundreds of thousands more
in dozens of additional IanguaﬂesHowever, there is only one shared version, and there isddni
support for typesetting and graphics; for example, mathiealsformulas are either avoided or
typeset separately and inserted in the form of an image. elhedtations are true also of the
more recent Wikibooks effortw. w K1 booKS. or g), which specifically targets the creation of
topical textbooks rather than a general encyclopedia. fincpidar, there is no support for divergent
versions of a book, where different instructors choosestiffit structures and different pieces of
text.

Another project is the “structured and intelligent docutseassembly workbench” (SAW)I[1].
This is superficially very similar to our proposal in its atfet to support the creation of new
documents using the fragments of existing ones. Howeverapiproach and mechanics are very
different, with much emphasis on automatic classificatiot search for suitable materials. (It is
based on earlier work that dealt mainly with parsing MS Waoduiments and collecting desired
fragments based on massive manual tagdihg [2].) The systeshsimilar to our design in terms
of document structure is that of Barta and Glil [3], excepttfwir base of personal MS Word
documents without specific facilities for sharing.

In our framework for open-source textbooks, the constomotif new material will be done by
a combination of linking existing pieces, editing them, addiing new materials where no appro-
priate ones were found (naturally, such new materials shihven be deposited in the repository
for future use by others.) This is superficially similar te tltut-and-paste” approach often used
today. The difference is in scope and ownership. While tqaagyple typically combine mate-
rials that they have previously created and that they ownemasion a large-scale system that
facilitates thesharingof resources.

The mechanisms of linking are related to those of hypert8aphisticated systems for docu-
ment linking and construction have been designed in theSlagears. We propose to borrow the
most useful concepts and use them in the proposed frame®rdmples include the hierarchical
structuring of documents out of fragmenits([3] 11], and theeafspaired displays to compare and
edit two version of the same document|[11]. However, it idedifferent from the content-linking
and transclusion concepts of project Xanddu [11]. Thatgatds obsessed with keeping track of
all links and copies for all time. While this may be importéot the evolution of knowledge in
scientific papers, it is burdensome for textbooks. Ratlngpyéparing course materials, it is more
important to present a cohesive and comprehensive pictutee possible expense of not recording
the potentially convoluted path in which it was originalkgated.

1These numbers are for August 2005.

www.wikipedia.org
www.wikibooks.org

3 A Framework for Open-Source Textbooks

At the present time our proposal is but a paper design, anglet@ working environment. The
design is based on using the facilities of various text pgsitg) and formatting environments, such
as LaTeX [8]. Naturally this design may be expected to chasypart of an effort to actually
implement it.

3.1 System Architecture

The first major design decision that we need to make conchesytstem architecture. This is a
matter of coupling between the central repository of laagnnaterials (e.g. textbooks, sections,
figures, and exercises) and its distributed users (the euthat write new materials and create
new organizations). There are two main options. In the eénéd option, all work is carried out
directly with the central repository via the Internet. Iretllecoupled option, users of the system
work on a local copy and only interact with the central refmgito obtain new materials or deposit
completed new creations.

The centralized approach has the benefit of simplifying tlemts. All interaction (including
editing) is carried out via a standard web browser, as wagnaliy done in SAW [[1] and is
now common in all wikis[[B]. However, this suffers from twoasvbacks. One is that it is much
more vulnerable to communication difficulties, which maythiie interactive nature of editing
to the point of making it unsatisfactory. The other is thaivisers actually provide a rather poor
programming and editing environment, so various advaneatiufes that we would like to have
may prove to be too difficult to implement. The decoupled apph avoids these problems at the
expense of another one: users will have to download andllitis¢aediting environment on their
own machines. In addition, there will be no way to ensureubats deposit the fruits of their labor
in the repository for others to use.

At the present time it seems that our ideas are easier to ingrieusing the decoupled ap-
proach, in the interest of providing a better working enwireent for users. Specifically, our de-
scription will be based on a Linux environment. However,a neplementation may differ.

3.2 Document Structure

The next issue that needs to be tackled is the structure ofdeats, regardless of where they are
stored. We suggest to initially use the LaTeX system for $gteng, as it is the most popular one
used in computer science academia, and enjoys a good tanslaHTML [5]. Moreover, it is
eminently suitable for partitioning documents into pansl @ombining them again, because all
formatting is controlled by simple ASCIl commands, and page section numbers are assigned
automatically. However, we are left with the choice betwaative LaTeX commands, and the
newer LyX graphical front end, which regrettably uses aedéht file format. An initial imple-
mentation would probably use LaTeX in the interest of sikiplj while keeping the door open to
migration to LyX later on.

The logical structure of educational documents such abdexs is rather self evident — it is
hierarchical, with the whole divided into chapters, satdiosubsections, etc. But there are com-

5

plications. One is that when pieces of a document are moeed éne document to another, they
may be promoted or demoted in the hierarchy. For examplesteoadrom one book may become
a subsection in another. To support this cleanly, all sulmecmust become sub-subsections, etc.
Another complication is that there may also be inserts tretralependent and not part of the sec-
tion hierarchy, for example figures, exercises, and defimitioxes. To further complicate matters,
these may have different forms depending on the viewing andébr example, a figure may be a
postscript file for processing by LaTeX and printing, but aimeated gif file for inclusion in an
HTML version.

For all document types, a major design issue is how to stamthn the interest of simplicity
and applicability, we prefer to avoid the definition of nevarsfards([10]. Rather, we will use the
conventional LaTeX format as much as possible.

If all we were interested in was the creation of printed boakescould opt for files that contain
the nested structure of chapters, sections, etc. — jusalit@mal LaTeX file. But we intend small
fragments to be interchangeable (e.g. different usersmalve sections around, add exercises,
modify figures, etc.). It therefore seems advisable thasthallest interchangeable units be the
basic storage units. Larger units, such as chapters or ebpeipboks, will actually just be an index
structure that identifies the constituents that need torbegsd together.

More specifically, there will be two basic types of files: s&cal units and inserts. A sectional
unit file has the following generic format:

\sect{ section-title }
t ext
\i ncl ude{ subsection-file-nanme }

This has three parts. It starts with a generic section hggdect {. . . }) that specifies the section
title. Note, however, that in contrast with LaTeX, this doesindicate the level of nesting: there
are no distinct commands for sections, subsections, etts iFHollowed by some introductory
text, of the type that appears at the beginning of a sectieforé the first subsection heading. If
there are no subsections, the full text of the section agpeare (this is the case at the bottom
of the hierarchy). At the end come a list of subsections. &lee actually links to other files,
denoted using th&i ncl ude command, as in LaTeX. It is these inclusion relationships e
used to specify the hierarchical structure of the book, andssign each sectional unit to the
correct level. For example, files included in a section ardeustood to be one level lower in
the hierarchy, that is, subsections As an immediate res$uli® structure, we utilize LaTeX’s
automatic section numbering, so users need not be concueitiedhis issue when they are re-
organizing their textbooks. The whole structure is illagtd in Fig[L.

Inserts are a piece of text that can be incorporated in othéy such as a figure, a table, a
definition box, or an exercise. In the case of figures, thisiwsapper around the actual figure that
is in some graphical format, e.g. postscript. For both figwed tables, an appropriate caption is
included. For example, a figure insert will have the follogviormat:

\sect{OS Book}
\includef{Introduction} OS Book
\include{Processes} \title{OS Book} 1 ducti
\include{Memory \sect{introduction) \section{Introduction} - Introduction
sect{Introduction - .
Th t book. This is a great book.
Management} This s a great book, Isis a great boo
T \section{Processes} 2. Processes
/ | A process is a program ’)
/ \ : being executed. A process is a program
!)| \sect{Schedghpg} \subsection{Scheduling} being executed.
I |\sect{Processes} - Scheduling is important. Scheduling is important 2.1 Scheduling
,' A process is a program | <~ \subsection{Concurrency} Scheduling is important
' | being executed. export _ | Whenmuttiple processes t 22C
. . eset .2 Concurrency
| [Vinclude{Scheduling} |, _ \vsvi?ncrﬁﬂﬁﬁﬂf?ﬁiiesses exist, you need to handle | —LPeo St | o fiple processd
' Ninclude{Concurrenc T tual exclusi i
| { d exist, you need to handle \r;‘gc‘t‘izn?;\‘nce‘::('f” exist, you need to hand
\ mutual exclusion Vanagement] ry mutual exclusion.
\
R \subsection{Virtual 3. Memory
\Q sect{Virtual Memory} Memory} Management
\sect{Memor Virtual memory is v Virtual memory is 3.1 Virtual Memory
M ty 7| supported by hardware. supported by hardware. Virtual memory is
Venagement \subsection{Paging} supported by hardware,
\include{Virtual Memory}] Paging is done with _
\include{Paging} & \sect{Paging} the LRU algorith 3.2 Paging _
Paging is done with € LhY algonithm. Paging is done with
the LRU algorithm. the LRU algorithm.
internal representation LaTeX final product

Figure 1: Relationship between the hierarchical structure of a baokeélected in the internal
storage, the exported LaTeX document, and the final product.

\begi n{ figure }

\i ncl udegraphi cs{ graphic-file-name }
\caption{ caption-text }

\end{ figure }

which is exactly as in LaTeX. This insert file will be includedsome sectional unit text, using the
same\i ncl ude command that is used to include subsections. This natueatijtates automatic
numbering depending on the inclusion pattern, which is aclfaature in LaTeX. In particular,
figures and tables will be numbered consecutively withirhedm@pter.

The actual content of tables is easily incorporated in tierirfile itself, using LaTeX’s table
formatting commands. But figures pose special problemsusecaf how they are generated. To
qualify as open source, it should be possible for users toifjnttae figures. But this typically
requires additional data and files that are not part of the firmuct — for example, a gnuplot
script and its associated data files. Each figure shouldftrerée accompanied by an archive
containing the files needed to generate and modify it.

Note that the above is less ambitious than general reusadnleihg objects [12]. By focusing
on printable textbooks based on LaTeX, and assuming sortiegedy users who want to create a
textbook from existing components, the basic units are Kiieg. In particular, they need not be
reusable without modification in different contexts, aneytineed not be completely independent
of media. These simplifications should greatly reduce théthothat our concept is realizable.

7

edit window repository selection
(Cselect) (Cindent) (outdent) by source <« > by topic
os—book book-1
intro—chap book-2
process—chap intro—chap-2
process—intro—sect organization-chap-2
process—descriptor-sect storage—chap-2
scheduling-sect processes—chap-2
memory—mgmt—chap book-3
file—system-chap

Figure 2:User interface for skeleton construction, enabling theosiray and organization of com-
ponents from the repository.

3.3 Editing Environment

The interface to using the repository of available seclianés and inserts is the editing environ-
ment. The editing environment has to support two main famsti construction of a skeleton from
existing components, and editing the final combination wuea that it flows smoothly. The final
edit is essentially just like any other editing task, so @mional text editing tools are expected to
suffice. But constructing a document from components is movel.

The basic design we envision for document constructionsetan two windows: a new doc-
ument window and a resources window (Hij. 2). The resourdadow is used to display the
available fragments from existing documents. It can beifesdd like a hierarchical file browser.
At the top level are alternative “books”. Opening them résehapters, and then sections and sub-
sections. All this can be displayed in two orthogonal orgations: a source-oriented organization,
in which the branches in the hierarchy are consecutive pattsee same book, or a topic-oriented
organization, in which branches are alternatives of theespant from different sources, as identi-
fied by a search procedure.

To construct a new document, a drag-and-drop mechanisnbwillsed to select document
fragments from the resources window. These will be placetthéndesired location in the new
document window, thus creating the desired sequence. Aantatlon mechanism will be used to
specify the desired level of each unit — whether it is the atddme level as the preceding unit, a
subunit of it, or a new unit at a higher level.

Each unit incorporated in the new book can be edited in a aspauffer. This applies only
to the direct text of this unit, not to subunits or other sunding text. The main function of such
editing is to incorporate inserts into the flow of the text.ridally, the selection of a sectional unit
from the repository implies the selection of all the insamtduded in it as well.

Sometimes it may be necessary to compare fragments to dehidb one to select, or to see
how they relate to other fragments that have already be@mttsel. This can be supported by
enabling the user to load any fragment from the repositay amother editor window. This will
lead to a situation in which two windows are used to displayribw document and some other
fragment side by side. It is desirable that these will shateramon scrolling mechanism, with
highlighting to enhance the coupling between the two documésimilar to the mechanisms of

8

transpointing windows suggested in the Xanadu projed))[IHdwever this will only be possible
if the two versions are indeed closely related to each o#mer,if the user uses the system’s native
editor rather than employing the editor of his choice.

When the desired structure is achieved, it will be exportedreate a single conventional
LaTeX document that can be further edited. The exportatimegss will automatically adjust
the level of nesting, i.e. turn the geneilsect header into\secti on, \subsecti on, or
\subsubsect i on headings — using one level deeper than that of the includiagéich time
(Fig.[D).

The inverse procedure will also be possible, i.e. to impataadard LaTeX file into the system
for additional structural modifications. To do so, the edjtenvironment will parse the file and
partition it into its sectional units and inserts.

3.4 \Versioning and Attribution

Two related problems with collaborative authoring of osenice textbooks are versioning and
attribution. Versioning is the problem of producing mulkéigompeting versions of the same text.
This is problematic because users are then faced with toy otasices, and may end up wasting
too much time on comparing versions. Attribution is the peatp of attributing contributions to
their correct authors. This is important because one of thie motivations for joining open-source
projects is recognition.

Dealing with these problems is more of a cultural issue thigelanical one, but the technology
can help in fostering a desirable solution. In the contextwfframework for open-source text-
books, there is a need to enable two types of editing. Onerismeiditing for correcting typos and
other non-consequential modifications. It is highly dddeahat anyone would be able to make
such corrections without branching a new version of file. e mechanism to achieve this is
a wiki-like editing system. The other type of editing is madkia major revision, in which the file
is drastically changed. This should lead to a new versiongbssibly competes with the original
one. However, such branching should not be taken lightly,catural pressure should be applied
to limitit. And indeed, in open-source software develophferking off new versions of a project
— while possible — is generally frowned upan[15].

Branching new versions is obviously related to authorshigh@vnership. Based on the anal-
ogy with open-source software, it seems advisable that #lacfrepresenting a sectional unit or
an insert) have a single main author, who is its owner. Anyaaremake small corrections to this,
as noted above, but if you want to make a major modificationry@ed to start from scratch and
create your own file. When inserting a file into the repositbi/author is noted, and this enables
the list of contributors to be generated automatically whamew book is created by collecting
existing fragments (and even counting exactly how much eaehcontributed).

An important additional benefit of this organization comsetabeling and cross references.
LaTeX provides convenient support for cross referencesdiygutwo commandsi| abel to
create a label that refers to the nearest enclosing steutitpically a figure caption or a sectional
unit), and\r ef which prints the number associated with the referenced.|dlte problem with
using this mechanism in multi-authored collaborativegagtthat labels need to be unique. The
solution is that each author should only be responsibledbels in his own text. The global

9

labels are then generated by concatenating the author naiméhe label, thereby guaranteeing
uniqueness.

A result of this approach to ownership is that open-sourcéte®ks will be created as collec-
tions of fragments that are each created by a single autaitrerr than as the result of multiple
editing sessions of authors that modify each others worle gérson who makes the collection
(i.e. the instructor who is creating a customized book ferdaurse) then becomes an editor who
needs to smooth the boundaries and make the different fragrfietogether.

4 Comparison with Open-Source Software Development

The success of open-source software has been used by ailspue for open-source learning
materials in general and open-source textbooks in paaticMany of the considerations and pro-
cedures of open-source software development seem to caarginectly to open-source textbooks.
For example, one can have a core group of developers (reldraur editors) that retain control
over the project, while other contributors make focusedridmutions and suggestions. At the same
time, the periphery can help with debugging (read findingpypnd inconsistencies). Licensing
issues are also similar, e.g. using “copyleft” to allow disénation and modification while pre-
venting direct commercial use. In fact, the modificatiormdalimg licenses of open-source software
are more appropriate for open-source textbooks than the-apeess licenses more common for
literature. Acknowledgments can be used to keep track dfiormors, however minor.

In addition, software engineering concepts can been apptiehe building blocks of such
study materials. For example, it has been suggested thegukability of learning objects will be
improved if their authors attempt to reduce the coupling agnithem, and to improve their internal
cohesion([7].

Both open software and open text suffer from versioning lemols. Ownership of text can
be defined in the same way as ownership of code: the owner isweghtas the right to make
modifications in the “official” version [15]. But this doesnimply that others are not allowed to
make modifications. It just implies that if they are not da&is by the official version, they need to
work on a personal branch. Such branching is frowned updmeicontext of general development
of large software projects, as it leads to competing vessiddowever, it is commonly used to
demonstrate or perform research on new functionality,ipbsaith the intention of proposing that
it be incorporated later into the main branch. The same cppdrawith textbooks. For example,
a number of authors may collaborate on a single version ofthdek, while other authors use it
as a basis for diverging versions that better fit their spendieds.

While these and other similarities exist, text and softwaeeactually not the same. A major
difference is the intended consumer. Text is intended teebd by humans, whereas software is
intended for a compiler.

Humans may be more forgiving than a compiler, but may also & sensitive. On one hand,
humans can read and use text that is far from perfect. Theg@apensate for gaps in the flow
and for spelling errors. They can work with incomplete drafhd even benefit from their use,
as exemplified by the Wikipedia and Wikibooks. Thus openrs®textbooks allow much more
flexibility in mixing and matching — there is no minimal regeiment of having all components

10

for the whole to function. You can create a partial book foadrhoc specific need by combining
parts of two existing books. You can't do this when combiniwg software systems; you need
to first reconcile the details of the interfaces, and even,tbkances are that subtle differences in
the semantics will require some debugging. In general, densprequire a much higher level of
perfection than humans — a single syntax error will causei@e program not to compile. With
text, one part cannot break another except for a possitgetadh cross references.

On the other hand, humans are more sensitive to style. A dengmesn’t care if different
modules are coded in different styles, as long as the irdesfenatch. Even convoluted code that is
hard to understand can compile into a correct and usefuléaiele. But humans attach much more
importance to style, and the flow of the text. In fact, a humsseasment of a textbook’s quality
may be influenced more by the style than by the actual cont€his may be problematic for
textbooks created using an open-source methodology, bedhfierent sections and subsections
might be written by different authors, leading to a chopmdiag experience.

5 Conclusions

A number of attempts to jumpstart open-source textbooks haen made in recent years. Regret-
tably, this movement has so far not taken off, with the pdesception of the Wikibooks effort.
Part of the problem may be overambitious goals and an engpbasiophisticated technology and
legal issues. Rather than foster a collaborative envirarnseich actions may actually hinder it,
by creating a higher learning barrier that has to be overdoyneotential contributors. This may
also explain the relative success of wikis, which are exélgraimple to use. We believe that our
proposed framework is also simple enough to be viable, witd&iding enough added benefits in
terms of typesetting and the option of producing real pdrteoks to be attractive.

Of course a real test of these ideas would require an impl&tien. This needs to incorporate
two elements. The first is technical, i.e. an implementatibthe repository and editing tools
described in Sectiod 3. The second is enough initial coritentake such a repository attractive
for potential users. This can be based on lecture notes feweral courses on the same subject
matter, by different instructors, in an attempt to achidaerequired critical mass.

Open source software has been especially successful itingremftware infrastructures —
software tools that are used by many other developers ttecneare software; one of the reasons
for this success being the prestige that developers get Wieeproducts of their work is used. It
can therefore be hoped that a similar success can be acti@vedlicational infrastructure, in the
form of open-source textbooks.

References

[1] H. Ahonen, B. Heikkinen, O. Heinonen, J. Jaakkola, PpKi&inen, and G. Lindén,De-
sign and implementation of a document assembly workberich7th Intl. Conf. Electronic
Publishing pp. 476—-486, Springer Verlag, Apr 1998. Lect. Notes Com®ait vol. 1375.

11

[2] H. Ahonen, B. Heikkinen, O. Heinonen, and P. Kilpelain& System for Assembling Spe-
cialized Textbooks from a Pool of Documeni&chnical Report C-1997-22, University of
Helsinki, Department of Computer Science, Mar 1997.

[3] D. Barta and J. Gil, A system for document reuseln 7th Israeli Conf. Computer systems
and Software Engineeringp. 83—94, IEEE Computer Society Press, Jun 1996.

[4] L. K. Branting and J. Lester,Justification structures for document reusi 3rd European
Workshop on Case-Based Reasonpym 76—90, Nov 1996. Lect. Notes Al vol. 1168.

[5] N. Drakos, ‘From text to hypertext: a post-hoc rationalisation of LaZelXML”. Computer
Networks and ISDN Syster?g(2), pp. 215-224, Nov 1994.

[6] D. Engelbart and J. Ruilifson,Bootstrapping our collective intelligente ACM Comput.
Surv.31(4es)Dec 1999. Article 38.

[7] R. Jones, Designing adaptable learning resources with learningabigetterns. J. Digital
Information6(1), Dec 2004. Article 305.

[8] L. Lamport,LaTeX: A Document Preparation SysteAddison Wesley, 2nd ed., 1994.

[9] B. Leuf and W. CunninghamThe Wiki Way: Quick collaboration on the WelAddison-
Wesley, 2001.

[10] D. M. Levy, “Document reuse and document systéridectronic Publishing — Origination,
Dissemination, and Desigs(4), pp. 339—-348, 1993.

[11] T. H. Nelson, Xanalogical structure, needed now more than ever: paddelments, deep
links to content, deep versioning, and deep ré-useCM Comput. SunB81(4es) Dec 1999.
(Online electronic supplement).

[12] P. R. Polsani, Use and abuse of reusable learning objecis Digital Information3(4), Feb
2003. Article 164.

[13] R. Rada, Hypertext writing and document reuse: the role of a semardit Electronic
Publishing3(3), pp. 125-140, Aug 1990.

[14] J. C. Ramalho, J. J. Almeida, and P. Henrique&lgébraic specification of documerits
Theoretical Comput. Sc199(1-2) pp. 231-247, 1998.

[15] E. S. Raymond, Flomesteading the noosphére URL
http://www.catb.org/"esr/writings/cathedral-bazhamesteading/, 2000.

12

	Introduction
	Background and Related Work
	A Framework for Open-Source Textbooks
	System Architecture
	Document Structure
	Editing Environment
	Versioning and Attribution

	Comparison with Open-Source Software Development
	Conclusions

