
Open-Source Textbooks: Infrastructure for
Customized Learning Materials

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

Abstract

Writing a good textbook is akin to writing a useful software package. Both are highly cre-
ative endeavors that require a combination of sharp technical skills and artful design. In recent
years, the software community has developed the open-source approach to software construc-
tion, in which improved results are obtained by sharing the talents of multiple developers. We
propose to extend these ideas to the creation of study materials, specifically textbooks.

With open source textbooks teachers can build upon a repository of existing materials. If
no available textbook meets their requirements, they can mix from several sources to tailor
an up-to-date customized textbook to fit the needs of their specific course. They can also add
new materials that were not previously available in the repository, thus contributing to the
collaborative process of creating new teaching materials.

Using open-source study materials is expected to be highly beneficial both in educational
terms and in economic terms. It will enable teachers to develop specialized study materials
with relatively low effort and at low cost, because they willbe based on reusing existing ma-
terials. This is already important in the context of traditional textbooks, and may be expected
to grow in importance when moving to more advanced interactive learning materials for use in
e-learning systems.

Contents

1 Introduction 2

2 Background and Related Work 3

3 A Framework for Open-Source Textbooks 5
3.1 System Architecture 5
3.2 Document Structure 5
3.3 Editing Environment 8
3.4 Versioning and Attribution 9

4 Comparison with Open-Source Software Development 10

5 Conclusions 11

1

1 Introduction

Universities and students typically spend large sums of money on textbooks and other study mate-
rials. These expenditures are continuous, because study materials have to be kept up-to-date, and
new textbooks (and new editions of old ones) are published every year. But despite the investment,
it is often found that the obtained materials do not quite fulfill each teacher’s needs. A partial (and
expensive) solution is to acquire several competing books,and use a different part from each one.

The Internet has created great opportunities for new educational approaches. There is great
excitement regarding on-line remote learning environments, and the option of interactive learning
environments that adjust themselves to the progress of eachstudent. In addition, more conventional
course materials are also provided on-line.

The Achilles heel of most such projects is the creation of content. Unlike the technical issues
involved in e-learning, the content issues cannot be solvedby clever engineering. Moreover, cre-
ating content for one course does not solve the problems of other courses. Creating content is
difficult: it requires thorough knowledge of the study material, and a knack for presenting it in an
interesting and understandable manner. In short, even for e-learning good teachers are required,
and they are a scarce resource.

To ease this situation, we recommend to create an infrastructure for open-source textbooks (ini-
tially we focus on traditional textbooks, but this can be extended to learning materials in general,
including interactive ones). This infrastructure will enable teachers to build upon study materials
prepared by others when creating their own courses, insteadof having to do everything themselves.
By pooling resources, it will be possible to create more advanced, accurate, focused, and useful
study materials in a shorter time. Note that this is different from other forms of collaborative au-
thoring: instead of having many people working on a single, shared text, we have people working
on many parallel, competing versions, and borrowing from each other.

Surprisingly, as far as we know such systems are not currently available. In fact, the whole
issue of document reuse and construction by multiple independent authors has received very little
attention in the literature, as opposed to more technical issues of describing document structures for
automatic composition. The little work that has been done has focused on abstract developments,
such as specialized languages to describe document structures and meanings [13, 4, 14]. We know
of only two applied efforts [3, 1], and these have not led to available and usable systems.

Note that we are not talking about e-books, where the focus ison digital delivery using the
Internet. We are talking about the process of creating books, regardless of how they will be used,
which can be both printing on paper and electronic access. Inparticular, new print-on-demand
technology facilitates the economical production of low-volume printed books, as would be needed
for a specialized version of a textbook (see, for example,www.lulu.com).

The next section reviews other projects that have similar goals or use similar terminology.
Section 3 then presents our system design, and the features it supports. Section 4 comments on the
similarities and differences between open-source textbooks and open-source software.

2

www.lulu.com

2 Background and Related Work

“Open-source” is a methodology in which one individual or organization does not develop a soft-
ware system in isolation and behind closed doors. Rather, the source code for the system is made
available to all, and the community at large is encouraged tocontribute criticisms and additions.
This is the methodology that was used to create highly successful projects such as the Linux oper-
ating system and the Apache web server. It is now used for the development of tens of thousands
of other software systems (seesourceforge.net).

While the details depend on the exact license being used (andthere are many nuances), open-
source typically also implies open-content. This means that the source code can be modified by
others and used as part of new projects. The only requirementis usually that the new projects also
be open. Note that open-source and open-content should not be confused with open-access, which
refers to no-cost access to content that is published by traditional means, with no option to re-use
or modify it.

When applied to textbooks, the open-source/open-content approach will enable teachers to
create new study materials by combining many existing pieces. We envision a repository where
teachers can deposit partial study materials of various sizes — not only complete books for whole
courses, but also individual study units, figures, animations, definitions of exercises, etc. These
can then be combined as needed in each case. This is similar tothe notion of reusable learning
objects [12], but more modest in scope as explained below.

We define open-source textbooks as supporting three features:

collaboration — the creation of an open-source textbook is a collaborativeprocess involving
contributions from multiple authors. Of course an initial version can be the work of a single
author, and later a small group of authors may still dominate, but others will also contribute
content or editing.

customization — an important use of open-source textbooks is to be customized by a teacher to
match the detailed structure of a specific course. While there may be a single master version,
as is commonly the case with open-source software, there canalso be multiple additional
versions with various degrees of overlap.

evolution — open-source textbooks can track progress in the field without resorting to discrete
new editions. Each time a course is given, a new book can be created with the latest up-
dates. This is similar to the concept of a continuously updated core handbook proposed by
Engelbart [6].

using this definition, we can compare our ideas with other similar projects. The most com-
mon form of collaborative books are edited collections. This sort of collaboration nevertheless
maintains the distinction between the contributions of individual authors, and does not allow users
to modify content according to their needs. The idea of collaborative creation of content has been
promoted by various web sites in recent years, but this has typically not amounted to much in terms
of real collaborations and real content. Making course materials available on the web has also been
done before, e.g. in the MIT OpenCourseWare project (ocw.mit.edu). But the current proposal

3

sourceforge.net
ocw.mit.edu

aims to go much further, by providing thesourcesof study materials, and tools to actually use the
available resources to create new ones.

There are, however, several projects that are somewhat similar to our proposal. The best known
and most successful are wikis [9]. A wiki is an environment for collaborative authoring using the
web. The largest and most successful is probably the Wikipedia (www.wikipedia.org). This
is a free encyclopedia in which any user can add new articles and edit existing ones. Amazingly,
this has led to the creation of nearly 700,000 articles in English, and hundreds of thousands more
in dozens of additional languages1. However, there is only one shared version, and there is limited
support for typesetting and graphics; for example, mathematical formulas are either avoided or
typeset separately and inserted in the form of an image. These limitations are true also of the
more recent Wikibooks effort (www.wikibooks.org), which specifically targets the creation of
topical textbooks rather than a general encyclopedia. In particular, there is no support for divergent
versions of a book, where different instructors choose different structures and different pieces of
text.

Another project is the “structured and intelligent documents assembly workbench” (SAW) [1].
This is superficially very similar to our proposal in its attempt to support the creation of new
documents using the fragments of existing ones. However, the approach and mechanics are very
different, with much emphasis on automatic classification and search for suitable materials. (It is
based on earlier work that dealt mainly with parsing MS Word documents and collecting desired
fragments based on massive manual tagging [2].) The system most similar to our design in terms
of document structure is that of Barta and Gil [3], except fortheir base of personal MS Word
documents without specific facilities for sharing.

In our framework for open-source textbooks, the construction of new material will be done by
a combination of linking existing pieces, editing them, andadding new materials where no appro-
priate ones were found (naturally, such new materials should then be deposited in the repository
for future use by others.) This is superficially similar to the “cut-and-paste” approach often used
today. The difference is in scope and ownership. While todaypeople typically combine mate-
rials that they have previously created and that they own, weenvision a large-scale system that
facilitates thesharingof resources.

The mechanisms of linking are related to those of hypertext.Sophisticated systems for docu-
ment linking and construction have been designed in the last30 years. We propose to borrow the
most useful concepts and use them in the proposed framework.Examples include the hierarchical
structuring of documents out of fragments [3, 11], and the use of paired displays to compare and
edit two version of the same document [11]. However, it is quite different from the content-linking
and transclusion concepts of project Xanadu [11]. That project is obsessed with keeping track of
all links and copies for all time. While this may be importantfor the evolution of knowledge in
scientific papers, it is burdensome for textbooks. Rather, in preparing course materials, it is more
important to present a cohesive and comprehensive picture,at the possible expense of not recording
the potentially convoluted path in which it was originally created.

1These numbers are for August 2005.

4

www.wikipedia.org
www.wikibooks.org

3 A Framework for Open-Source Textbooks

At the present time our proposal is but a paper design, and notyet a working environment. The
design is based on using the facilities of various text processing and formatting environments, such
as LaTeX [8]. Naturally this design may be expected to changeas part of an effort to actually
implement it.

3.1 System Architecture

The first major design decision that we need to make concerns the system architecture. This is a
matter of coupling between the central repository of learning materials (e.g. textbooks, sections,
figures, and exercises) and its distributed users (the authors that write new materials and create
new organizations). There are two main options. In the centralized option, all work is carried out
directly with the central repository via the Internet. In the decoupled option, users of the system
work on a local copy and only interact with the central repository to obtain new materials or deposit
completed new creations.

The centralized approach has the benefit of simplifying the clients. All interaction (including
editing) is carried out via a standard web browser, as was originally done in SAW [1] and is
now common in all wikis [9]. However, this suffers from two drawbacks. One is that it is much
more vulnerable to communication difficulties, which may hurt the interactive nature of editing
to the point of making it unsatisfactory. The other is that browsers actually provide a rather poor
programming and editing environment, so various advanced features that we would like to have
may prove to be too difficult to implement. The decoupled approach avoids these problems at the
expense of another one: users will have to download and install the editing environment on their
own machines. In addition, there will be no way to ensure thatusers deposit the fruits of their labor
in the repository for others to use.

At the present time it seems that our ideas are easier to implement using the decoupled ap-
proach, in the interest of providing a better working environment for users. Specifically, our de-
scription will be based on a Linux environment. However, a real implementation may differ.

3.2 Document Structure

The next issue that needs to be tackled is the structure of documents, regardless of where they are
stored. We suggest to initially use the LaTeX system for typesetting, as it is the most popular one
used in computer science academia, and enjoys a good translator to HTML [5]. Moreover, it is
eminently suitable for partitioning documents into parts and combining them again, because all
formatting is controlled by simple ASCII commands, and pageand section numbers are assigned
automatically. However, we are left with the choice betweennative LaTeX commands, and the
newer LyX graphical front end, which regrettably uses a different file format. An initial imple-
mentation would probably use LaTeX in the interest of simplicity, while keeping the door open to
migration to LyX later on.

The logical structure of educational documents such as textbooks is rather self evident — it is
hierarchical, with the whole divided into chapters, sections, subsections, etc. But there are com-

5

plications. One is that when pieces of a document are moved from one document to another, they
may be promoted or demoted in the hierarchy. For example, a section from one book may become
a subsection in another. To support this cleanly, all subsections must become sub-subsections, etc.
Another complication is that there may also be inserts that are independent and not part of the sec-
tion hierarchy, for example figures, exercises, and definition boxes. To further complicate matters,
these may have different forms depending on the viewing media. For example, a figure may be a
postscript file for processing by LaTeX and printing, but an animated gif file for inclusion in an
HTML version.

For all document types, a major design issue is how to store them. In the interest of simplicity
and applicability, we prefer to avoid the definition of new standards [10]. Rather, we will use the
conventional LaTeX format as much as possible.

If all we were interested in was the creation of printed books, we could opt for files that contain
the nested structure of chapters, sections, etc. — just likea normal LaTeX file. But we intend small
fragments to be interchangeable (e.g. different users willmove sections around, add exercises,
modify figures, etc.). It therefore seems advisable that thesmallest interchangeable units be the
basic storage units. Larger units, such as chapters or complete books, will actually just be an index
structure that identifies the constituents that need to be stringed together.

More specifically, there will be two basic types of files: sectional units and inserts. A sectional
unit file has the following generic format:

\sect{ section-title }
text
\include{ subsection-file-name }

This has three parts. It starts with a generic section header(\sect{...}) that specifies the section
title. Note, however, that in contrast with LaTeX, this doesnot indicate the level of nesting: there
are no distinct commands for sections, subsections, etc. This is followed by some introductory
text, of the type that appears at the beginning of a section, before the first subsection heading. If
there are no subsections, the full text of the section appears here (this is the case at the bottom
of the hierarchy). At the end come a list of subsections. These are actually links to other files,
denoted using the\include command, as in LaTeX. It is these inclusion relationships that are
used to specify the hierarchical structure of the book, and to assign each sectional unit to the
correct level. For example, files included in a section are understood to be one level lower in
the hierarchy, that is, subsections As an immediate result of this structure, we utilize LaTeX’s
automatic section numbering, so users need not be concernedwith this issue when they are re-
organizing their textbooks. The whole structure is illustrated in Fig. 1.

Inserts are a piece of text that can be incorporated in other text, such as a figure, a table, a
definition box, or an exercise. In the case of figures, this is awrapper around the actual figure that
is in some graphical format, e.g. postscript. For both figures and tables, an appropriate caption is
included. For example, a figure insert will have the following format:

6

\sect{OS Book}

\include{Introduction}

\include{Processes}

\include{Memory

Management}
\sect{Introduction}

This is a great book.

\sect{Scheduling}

Scheduling is important.

\sect{Concurrency}

When multiple processes

exist, you need to handle

mutual exclusion

sect{Virtual Memory}

Virtual memory is

supported by hardware.

\sect{Paging}

Paging is done with

the LRU algorithm.

\sect{Processes}

A process is a program

being executed.

\include{Scheduling}

\include{Concurrency}

\sect{Memory

Management}

\include{Virtual Memory}

\include{Paging}

\title{OS Book}

This is a great book.

\section{Processes}

A process is a program

being executed.

\subsection{Scheduling}

Scheduling is important

\subsection{Concurrency}

When multiple processes

exist, you need to handle

mutual exclusion

\section{Memory

Management}

\subsection{Virtual

Memory}

Virtual memory is

supported by hardware.

\subsection{Paging}

the LRU algorithm.

\section{Introduction}

Paging is done with

OS Book

2. Processes

This is a great book.

1. Introduction

A process is a program
being executed.

2.1 Scheduling
Scheduling is important

2.2 Concurrency
When multiple processes
exist, you need to handle
mutual exclusion.

3. Memory
Management

3.1 Virtual Memory
Virtual memory is
supported by hardware.

3.2 Paging
Paging is done with
the LRU algorithm.

internal representation

export

LaTeX

typeset

final product

Figure 1: Relationship between the hierarchical structure of a book as reflected in the internal
storage, the exported LaTeX document, and the final product.

\begin{ figure }
\includegraphics{ graphic-file-name }
\caption{ caption-text }
\end{ figure }

which is exactly as in LaTeX. This insert file will be includedin some sectional unit text, using the
same\include command that is used to include subsections. This naturallyfacilitates automatic
numbering depending on the inclusion pattern, which is a basic feature in LaTeX. In particular,
figures and tables will be numbered consecutively within each chapter.

The actual content of tables is easily incorporated in the insert file itself, using LaTeX’s table
formatting commands. But figures pose special problems because of how they are generated. To
qualify as open source, it should be possible for users to modify the figures. But this typically
requires additional data and files that are not part of the final product — for example, a gnuplot
script and its associated data files. Each figure should therefore be accompanied by an archive
containing the files needed to generate and modify it.

Note that the above is less ambitious than general reusable learning objects [12]. By focusing
on printable textbooks based on LaTeX, and assuming some editing by users who want to create a
textbook from existing components, the basic units are simplified. In particular, they need not be
reusable without modification in different contexts, and they need not be completely independent
of media. These simplifications should greatly reduce the doubts that our concept is realizable.

7

outdent

edit window repository selection

by topicby source

book−1

organization−chap−2

processes−chap−2

book−3

storage−chap−2

intro−chap−2

book−2

os−book

intro−chap

scheduling−sect

file−system−chap

memory−mgmt−chap

process−descriptor−sect

process−intro−sect

process−chap

select indent

Figure 2:User interface for skeleton construction, enabling the choosing and organization of com-
ponents from the repository.

3.3 Editing Environment

The interface to using the repository of available sectional units and inserts is the editing environ-
ment. The editing environment has to support two main functions: construction of a skeleton from
existing components, and editing the final combination to ensure that it flows smoothly. The final
edit is essentially just like any other editing task, so conventional text editing tools are expected to
suffice. But constructing a document from components is morenovel.

The basic design we envision for document construction is based on two windows: a new doc-
ument window and a resources window (Fig. 2). The resources window is used to display the
available fragments from existing documents. It can be fashioned like a hierarchical file browser.
At the top level are alternative “books”. Opening them reveals chapters, and then sections and sub-
sections. All this can be displayed in two orthogonal organizations: a source-oriented organization,
in which the branches in the hierarchy are consecutive partsof the same book, or a topic-oriented
organization, in which branches are alternatives of the same part from different sources, as identi-
fied by a search procedure.

To construct a new document, a drag-and-drop mechanism willbe used to select document
fragments from the resources window. These will be placed inthe desired location in the new
document window, thus creating the desired sequence. An indentation mechanism will be used to
specify the desired level of each unit — whether it is the at the same level as the preceding unit, a
subunit of it, or a new unit at a higher level.

Each unit incorporated in the new book can be edited in a separate buffer. This applies only
to the direct text of this unit, not to subunits or other surrounding text. The main function of such
editing is to incorporate inserts into the flow of the text. Normally, the selection of a sectional unit
from the repository implies the selection of all the insertsincluded in it as well.

Sometimes it may be necessary to compare fragments to decidewhich one to select, or to see
how they relate to other fragments that have already been selected. This can be supported by
enabling the user to load any fragment from the repository into another editor window. This will
lead to a situation in which two windows are used to display the new document and some other
fragment side by side. It is desirable that these will share acommon scrolling mechanism, with
highlighting to enhance the coupling between the two documents (similar to the mechanisms of

8

transpointing windows suggested in the Xanadu project [11]). However this will only be possible
if the two versions are indeed closely related to each other,and if the user uses the system’s native
editor rather than employing the editor of his choice.

When the desired structure is achieved, it will be exported to create a single conventional
LaTeX document that can be further edited. The exportation process will automatically adjust
the level of nesting, i.e. turn the generic\sect header into\section, \subsection, or
\subsubsection headings — using one level deeper than that of the including file each time
(Fig. 1).

The inverse procedure will also be possible, i.e. to import astandard LaTeX file into the system
for additional structural modifications. To do so, the editing environment will parse the file and
partition it into its sectional units and inserts.

3.4 Versioning and Attribution

Two related problems with collaborative authoring of open-source textbooks are versioning and
attribution. Versioning is the problem of producing multiple competing versions of the same text.
This is problematic because users are then faced with too many choices, and may end up wasting
too much time on comparing versions. Attribution is the problem of attributing contributions to
their correct authors. This is important because one of the main motivations for joining open-source
projects is recognition.

Dealing with these problems is more of a cultural issue than atechnical one, but the technology
can help in fostering a desirable solution. In the context ofour framework for open-source text-
books, there is a need to enable two types of editing. One is minor editing for correcting typos and
other non-consequential modifications. It is highly desirable that anyone would be able to make
such corrections without branching a new version of file. A simple mechanism to achieve this is
a wiki-like editing system. The other type of editing is making a major revision, in which the file
is drastically changed. This should lead to a new version that possibly competes with the original
one. However, such branching should not be taken lightly, and cultural pressure should be applied
to limit it. And indeed, in open-source software development forking off new versions of a project
— while possible — is generally frowned upon [15].

Branching new versions is obviously related to authorship and ownership. Based on the anal-
ogy with open-source software, it seems advisable that eachfile (representing a sectional unit or
an insert) have a single main author, who is its owner. Anyonecan make small corrections to this,
as noted above, but if you want to make a major modification youneed to start from scratch and
create your own file. When inserting a file into the repositorythe author is noted, and this enables
the list of contributors to be generated automatically whena new book is created by collecting
existing fragments (and even counting exactly how much eachone contributed).

An important additional benefit of this organization concerns labeling and cross references.
LaTeX provides convenient support for cross references by using two commands:\label to
create a label that refers to the nearest enclosing structure (typically a figure caption or a sectional
unit), and\ref which prints the number associated with the referenced label. The problem with
using this mechanism in multi-authored collaborative texts is that labels need to be unique. The
solution is that each author should only be responsible for labels in his own text. The global

9

labels are then generated by concatenating the author name with the label, thereby guaranteeing
uniqueness.

A result of this approach to ownership is that open-source textbooks will be created as collec-
tions of fragments that are each created by a single author, rather than as the result of multiple
editing sessions of authors that modify each others work. The person who makes the collection
(i.e. the instructor who is creating a customized book for his course) then becomes an editor who
needs to smooth the boundaries and make the different fragments fit together.

4 Comparison with Open-Source Software Development

The success of open-source software has been used by others to argue for open-source learning
materials in general and open-source textbooks in particular. Many of the considerations and pro-
cedures of open-source software development seem to carry over directly to open-source textbooks.
For example, one can have a core group of developers (read authors or editors) that retain control
over the project, while other contributors make focused contributions and suggestions. At the same
time, the periphery can help with debugging (read finding typos and inconsistencies). Licensing
issues are also similar, e.g. using “copyleft” to allow dissemination and modification while pre-
venting direct commercial use. In fact, the modification-enabling licenses of open-source software
are more appropriate for open-source textbooks than the open-access licenses more common for
literature. Acknowledgments can be used to keep track of contributors, however minor.

In addition, software engineering concepts can been applied to the building blocks of such
study materials. For example, it has been suggested that thereusability of learning objects will be
improved if their authors attempt to reduce the coupling among them, and to improve their internal
cohesion [7].

Both open software and open text suffer from versioning problems. Ownership of text can
be defined in the same way as ownership of code: the owner is whoever has the right to make
modifications in the “official” version [15]. But this doesn’t imply that others are not allowed to
make modifications. It just implies that if they are not satisfied by the official version, they need to
work on a personal branch. Such branching is frowned upon in the context of general development
of large software projects, as it leads to competing versions. However, it is commonly used to
demonstrate or perform research on new functionality, possibly with the intention of proposing that
it be incorporated later into the main branch. The same can happen with textbooks. For example,
a number of authors may collaborate on a single version of a textbook, while other authors use it
as a basis for diverging versions that better fit their specific needs.

While these and other similarities exist, text and softwareare actually not the same. A major
difference is the intended consumer. Text is intended to be read by humans, whereas software is
intended for a compiler.

Humans may be more forgiving than a compiler, but may also be more sensitive. On one hand,
humans can read and use text that is far from perfect. They cancompensate for gaps in the flow
and for spelling errors. They can work with incomplete drafts and even benefit from their use,
as exemplified by the Wikipedia and Wikibooks. Thus open-source textbooks allow much more
flexibility in mixing and matching — there is no minimal requirement of having all components

10

for the whole to function. You can create a partial book for anad-hoc specific need by combining
parts of two existing books. You can’t do this when combiningtwo software systems; you need
to first reconcile the details of the interfaces, and even then, chances are that subtle differences in
the semantics will require some debugging. In general, compilers require a much higher level of
perfection than humans — a single syntax error will cause thewhole program not to compile. With
text, one part cannot break another except for a possible effect on cross references.

On the other hand, humans are more sensitive to style. A compiler doesn’t care if different
modules are coded in different styles, as long as the interfaces match. Even convoluted code that is
hard to understand can compile into a correct and useful executable. But humans attach much more
importance to style, and the flow of the text. In fact, a human assessment of a textbook’s quality
may be influenced more by the style than by the actual content.This may be problematic for
textbooks created using an open-source methodology, because different sections and subsections
might be written by different authors, leading to a choppy reading experience.

5 Conclusions

A number of attempts to jumpstart open-source textbooks have been made in recent years. Regret-
tably, this movement has so far not taken off, with the possible exception of the Wikibooks effort.
Part of the problem may be overambitious goals and an emphasis on sophisticated technology and
legal issues. Rather than foster a collaborative environment, such actions may actually hinder it,
by creating a higher learning barrier that has to be overcomeby potential contributors. This may
also explain the relative success of wikis, which are extremely simple to use. We believe that our
proposed framework is also simple enough to be viable, whileproviding enough added benefits in
terms of typesetting and the option of producing real printed books to be attractive.

Of course a real test of these ideas would require an implementation. This needs to incorporate
two elements. The first is technical, i.e. an implementationof the repository and editing tools
described in Section 3. The second is enough initial contentto make such a repository attractive
for potential users. This can be based on lecture notes from several courses on the same subject
matter, by different instructors, in an attempt to achieve the required critical mass.

Open source software has been especially successful in creating software infrastructures —
software tools that are used by many other developers to create more software; one of the reasons
for this success being the prestige that developers get whenthe products of their work is used. It
can therefore be hoped that a similar success can be achievedfor educational infrastructure, in the
form of open-source textbooks.

References

[1] H. Ahonen, B. Heikkinen, O. Heinonen, J. Jaakkola, P. Kilpeläinen, and G. Lindén, “De-
sign and implementation of a document assembly workbench”. In 7th Intl. Conf. Electronic
Publishing, pp. 476–486, Springer Verlag, Apr 1998. Lect. Notes Comput. Sci. vol. 1375.

11

[2] H. Ahonen, B. Heikkinen, O. Heinonen, and P. Kilpeläinen, A System for Assembling Spe-
cialized Textbooks from a Pool of Documents. Technical Report C-1997-22, University of
Helsinki, Department of Computer Science, Mar 1997.

[3] D. Barta and J. Gil, “A system for document reuse”. In 7th Israeli Conf. Computer systems
and Software Engineering, pp. 83–94, IEEE Computer Society Press, Jun 1996.

[4] L. K. Branting and J. Lester, “Justification structures for document reuse”. In 3rd European
Workshop on Case-Based Reasoning, pp. 76–90, Nov 1996. Lect. Notes AI vol. 1168.

[5] N. Drakos, “From text to hypertext: a post-hoc rationalisation of LaTeX2HTML ”. Computer
Networks and ISDN Systems27(2), pp. 215–224, Nov 1994.

[6] D. Engelbart and J. Ruilifson, “Bootstrapping our collective intelligence”. ACM Comput.
Surv.31(4es), Dec 1999. Article 38.

[7] R. Jones, “Designing adaptable learning resources with learning object patterns”. J. Digital
Information6(1), Dec 2004. Article 305.

[8] L. Lamport,LaTeX: A Document Preparation System. Addison Wesley, 2nd ed., 1994.

[9] B. Leuf and W. Cunningham,The Wiki Way: Quick collaboration on the Web. Addison-
Wesley, 2001.

[10] D. M. Levy, “Document reuse and document systems”. Electronic Publishing — Origination,
Dissemination, and Design6(4), pp. 339–348, 1993.

[11] T. H. Nelson, “Xanalogical structure, needed now more than ever: paralleldocuments, deep
links to content, deep versioning, and deep re-use”. ACM Comput. Surv.31(4es), Dec 1999.
(Online electronic supplement).

[12] P. R. Polsani, “Use and abuse of reusable learning objects”. J. Digital Information3(4), Feb
2003. Article 164.

[13] R. Rada, “Hypertext writing and document reuse: the role of a semanticnet”. Electronic
Publishing3(3), pp. 125–140, Aug 1990.

[14] J. C. Ramalho, J. J. Almeida, and P. Henriques, “Algebraic specification of documents”.
Theoretical Comput. Sci.199(1–2), pp. 231–247, 1998.

[15] E. S. Raymond, “Homesteading the noosphere”. URL
http://www.catb.org/˜esr/writings/cathedral-bazaar/homesteading/, 2000.

12

	Introduction
	Background and Related Work
	A Framework for Open-Source Textbooks
	System Architecture
	Document Structure
	Editing Environment
	Versioning and Attribution

	Comparison with Open-Source Software Development
	Conclusions

