Is “notDone” the Same as “!/done”?
The Effect of Different Ways for Expressing Negation

Aviad Baron
aviad.baron@mail -huji.ac.il
The Hebrew University
Jerusalem, Israel

Abstract

Negation has been studied extensively in the fields of linguistics,
psychology, and logic. However, it has been almost entirely over-
looked in the realm of code comprehension research and the teach-
ing of programming. Negations in code are interesting for several
reasons. First, negations can be expressed either using logic opera-
tors (like ! or !=) or else by words embedded in variable names (as
in notDone). Second, different types of negations can be combined
together in the same expression. To explore whether using different
negative expressions affects code comprehension, we conducted a
controlled experiment involving 268 participants. The task was to
understand short code snippets containing various logical expres-
sions and types of negations. The results showed significant differ-
ences between the comprehension of different code snippets, both
in terms of time needed and in terms of the correctness achieved.
This illustrates a cognitive complexity that has important implica-
tions for writing more readable code and for guiding refactoring
practices. In particular, we suggest that students be taught to avoid
negations if possible, e.g. by using len > @ rather than len != 0 to
verify that an array is not empty.

CCS Concepts

» General and reference — Design; Experimentation; « Theory
of computation — Programming logic.

Keywords

Code comprehension, Logical expression, Negation

ACM Reference Format:

Aviad Baron and Dror G. Feitelson. 2025. Is “notDone” the Same as “!done”?
The Effect of Different Ways for Expressing Negation. In ACM Conference
on International Computing Education Research V.1 (ICER 2025 Vol. 1), August
3-6, 2025, Charlottesville, VA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3702652.3744213

1 Introduction

Negation is a fundamental feature of human language. As linguist
Larry Horn writes [12], “In many ways, negation is what makes
us human, imbuing us with the capacity to deny, to contradict, to
misrepresent, to lie, and to convey irony.” The processing of sen-
tences with and without negation, including instances of double

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICER 2025 Vol. 1, Charlottesville, VA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1340-8/2025/08

https://doi.org/10.1145/3702652.3744213

Dror G. Feitelson
feit@cs.huji.ac.il
The Hebrew University
Jerusalem, Israel

negation and various logical relations, has been the focus of exten-
sive research. Studies have also utilized tools such as fMRI to map
the processing of logic to specific brain regions, offering insights
into how the human mind navigates and comprehends intricate
logical structures [1, 7, 10, 11, 15, 16, 26, 27].

Program comprehension is a critical cognitive process in soft-
ware development, as developers dedicate a substantial portion of
their time to understand existing source code [18, 28]. This process
has a significant impact on maintenance and refactoring, as devel-
opers construct mental models that represent the code’s structure
and functionality [5, 24]. It is also exceedingly important when
canvassing code suggested by generative language models. The
less code developers write themselves, the more important it is that
they read and understand the code that is generated automatically.

The insights gained from research on understanding logical ex-
pressions and negation in natural language do not necessarily ex-
tend to the comprehension of code. Programming languages utilize
precise mathematical notation that differs significantly from the
nuances of natural language. As a result, issues such as the scope of
negation, which are important in linguistic contexts, become irrele-
vant in programming. Moreover, the formal syntax and semantics
of code allow for the construction of more complex expressions,
such as lengthy formulas involving multiple variables and logical
operators, which have no direct counterparts in natural language.
In addition, programmers typically possess a strong background in
logic and mathematics, making them an unrepresentative sample
of the general population.

Negation in code, including the embedding of negation in vari-
ables names, is a challenge faced by many developers (e.g. [8, 9, 14]).
However, the pedagogical literature rarely addresses the question of
how to write Boolean conditions in a readable manner, particularly
regarding the definition of Boolean conditions with negation and
the choice among different logically-equivalent formulations. For
example, The Pragmatic Programmer [25], a widely acclaimed book
on the mastery of programming, does not address the question
of how to write readable Boolean expressions with negation at
all. Clean Code [17], another well-known programming handbook,
mentions it only briefly in a single example (on p. 302), saying just
that negations should be avoided.

In computing education research too there has been essentially
no work on what makes Boolean expressions hard or easy to un-
derstand. Stefik and Siebert’s classic study on the intuitiveness of
programming language constructs included some elements of such
expressions [23]. While they did not include the negation operator,
they did show that non-programmers considered unequal to be the
most intuitive way to express the notion of inequality between
operands, whereas programmers preferred the != notation. As their

https://orcid.org/0009-0008-3713-3276
https://orcid.org/0000-0002-2733-7709
https://doi.org/10.1145/3702652.3744213
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3702652.3744213

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

focus was on individual language elements, they did not investigate
alternatives for actually forming Boolean expressions.

Likewise, research on the comprehension of logical expressions—
and particularly those involving negation—remains surprisingly
sparse in the software engineering and code comprehension litera-
ture. Early work by Iselin considered loop conditions with “equals”
and “not equal” operators (in Cobol) [13]. Ajami et al. conducted a
study comparing three expression that use negation with a similar
condition without negations [2]. Their findings revealed a signifi-
cant difference in the time required to understand the code between
two of the negative forms—specifically, a De Morgan pair—and the
third negative form. However, the study did not provide an expla-
nation for this observed difference. Baron et al. investigated the
comprehension of negation in Python, focusing primarily on the
logical not operator [4]. Their findings confirmed that negation is
indeed more challenging to process. Additionally, they identified
two significant factors: “syntactic regularity” and “logical regular-
ity”. They argued that expressions are easier to understand when
all variables have negations or none do, and when all literals have
the same truth value (either true or false).

Against this backdrop, we perform an exploratory study of the
relative understandability of various forms of negation that are used
in code. For example, we compare the loop condition while(!done),
which uses a logic operator, with the condition while(notDone),
which expresses exactly the same idea but embeds it in a variable
name. In addition, we extend the scope to using various different
operators. For example, checking that an array is not empty can
be done by comparing its length to zero using !=, and also using
>, which does not involve a negation. As far as we know, such
variations have never been investigated before.

Note that the differences between these expressions are expected
to be extremely subtle. It is not clear in advance that they are even
measurable. For example, one might think that any experienced
programmer learns to interpret and read ! as not, and therefore
there will be no effect. But from a cognitive point of view, even if
developers may learn to interpret the different expressions correctly,
they may be employing different parts of their brains to do so: an
operator may be processed in the part of the brain that deals with
arithmetic and logic, while a word may engage the language center.
It stands to reason that the performance of these two paths will not
be identical.

We therefore needed to design an experiment that isolates these
differences, and perform it with enough participants to observe
the differences that may be present. We collected data from 268
professional developers from around the world, nearly two thirds of
them with more than 2 years of experience. Together, they provided
3052 individual measurements. These results enabled us to iden-
tify various differences that exist in the understanding of similar
Boolean expressions, both in terms of achieving correctness and in
terms of the time needed to do so.

The experiment comprised three parts. The first part compares
logical expressions containing different operators: ‘greater than’,
‘equal to’ with negation, and ‘not equal to’. In the second part, we
examine different types of negation and the interactions between
them, particularly focusing on variable names that include negation.
The third part of the experiment explores variable names with and
without negation in the context of a while loop. In total this led

Aviad Baron and Dror G. Feitelson

to the use of 42 short code snippets. Our participants were tasked
with determining the output that would be printed by each such
code snippet.

This study has the potential to offer practical guidelines for
writing code, as well as cognitive insights into how negation is
represented in the coding world, mapping these expressions and
understanding the interactions between them. Our contributions
in this paper are:

o Extending existing research on negation in natural language
to a completely new context.
o Identification of different types of negations that reflect the
coding world. These include
- Explicit Logical negation: the ! operator
— Operators that contain an embedded negation: the != op-
erator

— Names that contain negation, as in notDone

— A feeling of negativity, as in empty or when a condition
has a value of false.

e Comparison of equivalent ways to write a negative expres-
sion and their relative processing difficulty.

e Establishing the effect of interactions between these nega-
tions, like a double negation involving a variable name and
operator together.

o Guidelines for writing readable variables names and Boolean
expressions, for novice students in computer science courses
as well as practitioners.

2 Research Questions

Our experiment focuses on comparing the understanding of short
code snippets that involve various logical expressions with nega-
tion. We started by identifying the different types of negation that
may occur in code. The first is obviously the logical negation op-
erator itself, written as ! in languages like C and JavaScript. But
there are many other ways to express the notion of negativity, like
the ‘not equals’ operator !=, and even using “not” in a variable
name. All these different forms of negativity can complicate code
comprehension. The research questions concern the significance of
these different forms and possible interactions between them.

In this context, our research questions are as follows. The first
concerns different negation operators:

(RQ1) What is the effect of different negation operators? This ques-
tion can be divided into two sub-questions:

(RQ1a) What is the effect of using a negative operator? Here we
want to compare expressions with negative operators,
namely ! and !=, with expressions that do not contain
them.

(RQ1b) What is the difference between different negation opera-
tors? Here the focus is on equivalent ways to express the
same logic: for example, either using != or alternatively
applying ! to an expression with ==.

The next question extends the discussion to include negativity in

variable names.

(RQ2) Do negated variable names make the code more difficult to
understand? This introduces the human element: we expect
that a human developer may be affected by the word “no”

Is “notDone” the Same as “Idone”?

embedded in a variable name, even though formally there is
no logical negation present.
Another issue is the effect of the construct that provides the context
for the logical expression:

(RQ3) Whatare the interactions between different types of negation
and conditions in a while loop?

In addition, there are some general crosscutting questions:

(RQ4) What are the interactions between different types of nega-
tion? Is double negation more difficult to process? Are code
snippets with multiple instances of negation harder to un-
derstand?

(RQ5) Does a condition that evaluates to false make the code more
difficult to understand?

(RQ6) Does using words with a negative connotation have an effect?
Natural language allows us to express a negative notion
without using negation explicitly, for example “empty” or
“fail”. Does using such words have a similar effect to using
explicit negations?

Finally, an important practical question is: What are the implications

of all the above for code writing?

In our present exploration of all these questions, comprehension
is defined as finding what a code snippet prints, and difficulty is
measured by the time this took and the fraction of wrong answers.
The questions of whether the results depend on these choices are
left for future work.

3 Experimental Design and Execution

The experiment included five groups of code snippets, with 4 to 12
snippets in each. Two of the groups included simple expressions,
two had if statements, and one had while loops. Each participant
was given 14 code snippets selected randomly to represent the differ-
ent groups and sub-groups. These snippets were ordered randomly.
In addition all participants were given an introductory snippet as
explained below. For all snippets, participants were asked to deter-
mine what the code would print. The code snippets were written
in JavaScript, which is currently the most popular programming
language according to the Stack Overflow developer survey!. The
experiment was approved by the faculty ethics committee.

3.1 Experiment Design

The present paper focuses on simple expressions and on logical
conditions in while loops, so we only describe these parts of the
experiment.

The first part focused on basic operators, particularly negation,
in order to answer questions RQ1 and RQ5. Each code snippet
contains a basic expression, with the following code structure. The
first line is the initialization of an array, either with fruits or as
an empty array. The second line prints the result of some test on
the array’s size. This is expressed in different ways, comparing the
length of the array to 0 with or without using negation:

e fruits.length != 0

e ! (fruits.length == 0)
e fruits.length > @

e fruits.length == 0

Ihttps://survey.stackoverflow.co/2024/technology

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

Each of these options is applied to an empty array or to an array
with some contents, for a total of 8 snippets. For instance, in the
following code, the array is not empty and the expression is fruits
.length > o.

let fruits = ["Cherry", "Pear", "Apple"];
console.log(fruits.length > 0);

As another example, in the following code the array is empty and
the expression is ! (fruits.length ==).

let fruits = [];
console.log(!(fruits.length == 0));

The second part of the experiment contained code snippets with
Boolean variables, designed to answer Research Questions RQ2,
RQ4 and RQ6. Some of the names included an embedded “no”,
thereby introducing an apparent semantic negation but without
an explicit negation operator. We aimed to examine the effect of
such names relative to other negations. As in the previous part, the
code snippets contained an array of fruits, either full or empty. The
variable names used to describe the array were:

e a positive name, hasFruit;

e a name with explicit negation, hasNoFruit; and

e aname with the same meaning but without explicit negation,

isEmpty.

In each snippet the variable was initialized according to its mean-
ing (so names were not misleading). It was then printed with or
without a logical negation operator. One example is the following
snippet. The array is empty, the variable is named hasNoFruit, and
the condition includes negation:

let fruits = [];
let hasNoFruit = fruits.length == 0;
console.log(!hasNoFruit);

As another example, in the following code the array is full, and the
variable isEmpty is printed without negation:

let fruits = ["Cherry", "Pear", "Apple"];
let isEmpty = fruits.length == 0;
console.log(isEmpty);

In total, in this part we have 12 code snippets: two possibilities
for whether the array is full or empty, multiplied by three names for
the Boolean variables, multiplied by two possibilities for whether
there is a negation operator in the expression.

In the third part we examine the interaction between variable
names with and without negations and understanding the condi-
tions in a while loop, in order to answer RQ3. There were two sets
of 3 snippets each. In each set there were 3 names, one positive
and two negative, with the negation either embedded in the name
or using the negation operator. The loop control statements in the
first set were:

e while (hasMoreWork)
e while (notDone)
e while (!done)
The loops iterated over an array with numbers, and the control

variables were initialized accordingly. Below is one of the code
snippets from this set:

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

let numbers = [1, 2, 31;

let hasMoreWork = numbers.length > 0;

while (hasMoreWork)({
console.log(numbers[numbers.length -11);
numbers.pop();
hasMoreWork = numbers.length > 0;

In the second set, the code snippets represent a scenario of using
a buffer. The three names used were hasSpace and notFull, which
have the same meaning, one with a negation and the other without,
and full, which has the opposite meaning and is accompanied by a
negation operator in the loop condition. An example of one of the
code snippets is:

let numbers [];
let notFull = true;
while (notFull){
if (numbers.length < 3){
numbers.push(1);
Yelse({
notFull = false;

}

console.log(numbers);

In the different parts of the experiment we deliberately included
variable names with “no” in the middle, like hasNoFruit, and names
with “not” at the beginning, such as notDone. The variable name with
“no” was used in the second part of the experiment to investigate
the case of double negation. The idea was to avoid having two
negations in close proximity, to ensure the negation calculation is
done in two separate steps and is not quickly canceled out due to
the proximity of the negations (as would happen in an expression
like !'notDone).

The full experiment also included codes about misleading names
and using ifs, which are not included in this paper.

3.2 Methodological Considerations

The programming language chosen for the experiment is JavaScript,
for several reasons. Firstly, it is a widely popular language that many
developers are familiar with, as mentioned above. Another reason
is that negation is expressed in JavaScript using ! rather than the
word “not”. This is similar to other important languages like Java
and C/C++. It also offers an advantage because, unlike in Python,
the expression is more distanced from natural language. This allows
for a distinction between logical negation using ! and negation in
variable names using “not” or “no”. An experiment in Python would
not capture the distinct differences between types of negation as
clearly.

One of the main methodological consideration was to create the
most atomic code snippets possible. This ensures that no additional
elements were included beyond what was necessary to examine the
factors in the research questions. This approach aimed to keep the
experiment as clean as possible, minimizing any threats to validity
arising from confounding influences that could affect the results.

It is sometimes observed that the first question in an experiment
takes more time to answer, as participants need to get accustomed

Aviad Baron and Dror G. Feitelson

to the environment and what is required of them (e.g. [2, 22]). Ad-
ditionally, we were concerned that there might be a slight bias due
to naming the array “fruits” if the first randomly-chosen snippet
actually had an empty array, so the code in fact did not contain any
mention of fruits. To avoid these problems and provide training,
a generic initial code snippet not related to the experiment was
included for everyone. This snippet differed from the other code
snippets so as not to provide any priming for any of them. Nonethe-
less, it did include the initialization of an array with fruits to ensure
the context was clear. The chosen initial code snippet was:

let fruits = ["Cherry", "Pear", "Apple"];
let hasApple = false;
for (let fruit of fruits){
if (fruit == 'Apple')
hasApple = true;

3
console.log(hasApple);

Above the code snippet was a reminder about the console.log
command in JavaScript, which is the common method for out-
putting information (since a print function does not exist). In addi-
tion, we had a reminder for pop just before the participant received
a question involving this command. These reminders are expected
to help participants who may not be versed in JavaScript, but can
still contribute to the experiment because the experiment is focused
on basic expression and does not really depend on specific features
of the language.

In the questions of parts 1 and 2, due to their brevity and the clear
binary nature of the answer (true or false through the evaluation
of an expression), we methodologically preferred to structure them
as multiple-choice questions. This is because even typing out “true”
or “false” takes some time, and given that the total time is very
brief, we aimed to prevent any influence from the time taken to
write the response. Therefore, we opted for a format where the
answer could be selected with a single click in a multiple-choice
question format. In part 3 (the while questions) there are many
possible wrong answers, so it is not practical to use a multiple-
choice format.

Only a subset of code snippets (14 in total) was selected for
each participant, to reduce the length of the experiment and reduce
fatigue and attrition. Having fewer questions may also prevent
settling into a more technical and routine reading, that might not
accurately reflect a general understanding of the code snippets. The
selection method ensured that the snippets were distributed across
different groups, leading to a greater variety of code examples and
minimizing the impact of technical and focused reading due to
structural similarities within groups.

Additionally, the order of code snippets was randomized to pre-
vent any systematic bias in the results that could arise from the
sequencing of the code snippets rather than their difficulty.

3.3 Experiment Execution

The experiment started with an introductory page explaining what
the experiment is about. This included details about the number
of questions, the approximate time the experiment is expected to
take, and a general overview of the experiment’s purpose: “Our

Is “notDone” the Same as “Idone”?

goal is to understand the cognitive mechanisms of reading different
logic patterns in codes”. Additionally, participants were informed
that the experiment involves measuring response times, and they
were instructed to respond only when fully focused and without
any distractions.

The experiment was conducted using the Qualtrics platform.
Qualtrics supports measuring response times, with the key metric
being the total seconds the question was visible before the respon-
dent clicked for the last time.

A total of 268 participants were recruited using programming-
related channels (e.g. in Reddit). Among those who reported their
educational background, 78 held a Bachelor’s degree, 28 held a
Master’s degree, and 6 held a Ph.D. Additionally, 55 participants
were self-taught, had received vocational training, or learned to
program in high school. Regarding professional experience, among
those who provided this information, 61 participants reported hav-
ing 0-2 years of experience, 70 participants had above 2 up to 6
years, and 33 participants had more than 6 years of experience. In
terms of gender, among those who reported their gender, the par-
ticipant group was predominantly male, with 150 male participants,
8 female participants, and 1 non-binary/third-gender participant.

4 Results

Our experiment included multiple code snippets in three parts,
and many comparisons were made in the process of analyzing the
results. However, we note that these actually relate to individual
questions, which are each of interest independently. For example,
the comparison of != with ! applied to == is unrelated to the com-
parison of names with and without negations in loop conditions. In
such situations a correction for multiple experiments is not required
[3, 20].

To mitigate any remaining concerns, an additional viewpoint
is as follows. In the following we report 25 p-values, 14 of which
are smaller than 0.05. With this number of comparisons and this
threshold one would expect 0-2 false positives, not 14. Considering
each comparison as a Bernoulli trial with p=0.05, the probability
of 14 successes in 25 trials is 0.0000000000015. If you have 1 or 2
positive results they indeed may reflect chance. If you have 14 the
vast majority must be true.

4.1 Part 1: Operators Expressing Negations

Recall that in this part, we are examining simple logical expressions.
The comparison is between the expressions:

e fruits.length != 0

e !(fruits.length == 0)
e fruits.length > @

e fruits.length ==

For each code snippet, we have two results: the fraction of par-
ticipants who understood it correctly, and the time they took to do
so. Figure 1 shows the CDFs (cumulative distribution functions) of
the time taken. The time is on the horizontal axis, and the graph
shows the probability of solving the problem within a given time.
Therefore, a line positioned further to the right indicates a longer
duration needed for a correct response. The graphs account for
correctness by assigning an infinite time to incorrect answers. As a
result, the CDFs do not achieve a maximum value of 1, but instead

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

converge to the fraction of correct answers. When the code snip-
pets are very basic, participants almost always responded correctly,
making this fraction 1 or nearly 1. But in some cases there are siz-
able differences in correctness, as can be seen by the gap between
the right-end of the plot and 1.

Sl

ul
empty

Cumulative fraction of results

- l(==),
->, full
- > empty
—==, full

- ==, empty

20 30

Time in second

Figure 1: CDFs of the time to correct answers for logical
expressions of part 1.

Figure 1 shows an overview of all the results of this part of
the experiment together. Generally, significant differences can be
observed between the various conditions. The two versions that
were the fastest to understand were when the array is full and
the condition checks if it is greater than zero, and when the ar-
ray is empty and the condition checks if its size equals zero. Con-
versely, conditions involving negation are less readable, with the
least readable case being those using the logical negation operator
I'(fruits.length == 0).

To uncover the factors that lead to these results we analyze the
effect of each one separately.

40

0.75

w
o

0.50

Time in seconds
N
o

0.25

=
o

Cumulative fraction of results

0 Non-negated Negated

— Non-negated
— Negated

0.00 10 20 30 40
Time in second

Figure 2: CDFs and boxplots of time to correct answers for
negated vs. non-negated logical expressions. The CDFs in-
clude incorrect answers as oo, the boxplots do not.

4.1.1 The Effect of Negativity. The first factor we considered, in
order to examine Research Question RQ1, is the effect of negative
operators. Our code snippets can be partitioned into two groups of
4 by their negativity. The “negative” group includes the expressions
with a “!” in them: either using the operator != or directly negating

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

the ‘equals’ operator. The “non-negative” group uses > or == with no
such negations. Figure 2 compares the combined results of these two
groups. In addition to the CDFs which incorporate the correctness
results as explained above, it also shows boxplots of the time needed
for correct answers only. This shows that the negative expressions
take longer to process than the non-negative ones, and also lead
to more errors. We conclude that the negations may induce some
burden which makes these expressions harder to understand than
expressions without negations.

More formally, the independent variable has two levels, repre-
senting the negative and positive groups. The dependent variable
is the time of responses. The comparison is between subjects. We
would like to check whether the average time needed to process
the different versions (in pairs) is equal. For this we will use a t-
test, where the null hypothesis is that the times are equal, and the
alternative hypothesis is that the expected values are different. The
results of these tests is that there is a statistically significant differ-
ence between negative and non-negative expressions (p < .0001),
and the effect size, as measured by Cohen’s d, is 0.66 indicating
a medium effect. Thus the null hypothesis was rejected. In addi-
tion, we would like to check whether the expected values of the
percentage of errors made in different situations are unequal. For
this we will use a between-subjects Z-test for proportions. The
null hypothesis is that the expected percentage of the participants
who answer correctly is equal in both cases, and the alternative
hypothesis is that the expected values are different. According to
the statistical test this difference too is significant (p = .002), and
the effect size, as measured by Cohen’s h, is 0.22 indicating a small
effect.

40

w
o

Cumulative fraction of results
Time in seconds
N
o

'

0.005 10 20 30 70
Time in seconds

Figure 3: CDFs and boxplots of of the time to correct answers
for logical expressions with != vs. I(==).

4.1.2 Expression of Negativity. In the previous subsection we bun-
dled two forms of negativity together: The use of the ‘not equal’
operator !=, and the construct where an explicit logical negation !
is applied to the ‘equals’ operator == [in the sequel we refer to this
construct as ! (==) for brevity]. We now compare these two forms
to each other, which is also part of Research Question RQ1. The
results, shown in Figure 3, indicate that != is more readable than
1(==). Applying the t-test as previously showed that the difference
is statistically significant (p < .0001), and the effect size, as measured
by Cohen’s d, was 0.41 indicating a small effect. But there was no

Aviad Baron and Dror G. Feitelson

significant difference in the ratio of correct answers out of the total
responses (p = .619).

We explain this by noting that the processing of ! (==) involves
two stages. For instance, consider the expression

I'(fruits.length==0)

It includes the first processing stage of finding the truth value of
fruits.length==0, followed by the second stage of applying the
negation. In contrast, the expression using !=, which also means
“not equal to”, operates in a single step. This interpretation leads us
to the following analysis, which reinforces the explanation provided
here.

1.00 40

12}

=l

20.75 30

- @

° 2

S 3

50.50 @20

= =)

[0 [

2 g

g [=

2025 10

=]

3 —
—True
—False

0.0, 10 20 30 40 O Tree False

Time in seconds

Figure 4: CDFs and boxplots of the time to correct answers
for logical expressions with different truth values.

4.1.3 Effect of the Truth Value. Another possible factor we consid-
ered is the truth value itself, in order to examine Research Question
RQ5 — maybe there is some cognitive hindrance attached to dealing
with falsehood? To look into this we focus on 3 of our 4 expressions,
excluding the one with an explicit negation of the ‘equals’ operator.
The reason for doing so is that this expression contains two steps
of calculating the truth value: the ‘equals’ and then its negation. By
construction these two steps have opposite truth values. Therefore
it is not possible to assign instances of this expression to either true
or false.

Figure 4 shows that conditions with a false truth value are less
readable than those with a true truth value. Thus the truth value
of the statement does seem to have an impact. This observation is
also supported by the statistical test, which indicated significance
(p = .0068). However, the effect-size as measured by Cohen’s d is
0.23 (small), and there is no difference between them in terms of
the number of correct answers.

In interpreting this result, we do not necessarily claim that “truth
is easier than falsehood”. But we do note that truth inherently corre-
sponds to reality. In our case, the code the experiment participants
see is very short, and contains two elements: the initialization of
an array and an expression describing this array. If the expression
actually describes the array this immediately “pops out”—for exam-
ple when the array is initialized as empty and the expression says
its length equals 0. But when the expression does not correspond to
the array initialization—for example when the array is initialized to
empty but the expression says its length is greater than 0—this may

Is “notDone” the Same as “Idone”?

lead to some cognitive dissonance, and hence to a slightly longer
processing time.

This insight can be used to also explain the difference between
the two versions of the expression we excluded previously. In Figure
1 we can see that the expression ! (==) with a true value takes more
time to process than the same expression with a false value. The
reason may be that when the complete expression evaluates to false

the inner expression evaluates to true—namely, the expression
indeed describes the array initialization in the previous line, which
is faster to see.

4.2 Part 2: Negativity in Variable Names

Recall that in this section, we are examining logical expressions
involving Boolean variables with the names hasFruit, hasNoFruit
, and isEmpty. We evaluate these names under conditions where
there is a logical negation or where there is none, and in situations
where the condition evaluates to true or to false.

o
=]

©
3
o

hasFruit, full

hasFruit, empty

— lhasFruit, full

= IhasFruit, empty
hasNoFruit, full
hasNoFruit, emf)ty

= IhasNoFruit, ful

Cumulative fraction of results
o
[
o

0.25 - lhasNoFruit, empty
isEmpty, full
isEmpty, empty

— lisEmpty, full
- lisEmpty,empty
0 10 20 30 40

Time in second

Figure 5: CDFs of the time for comprehending the 12 snippets
in part 2.

Figure 5 presents an overview of all the results for this section.
Again it can be observed that there are significant differences be-
tween the code snippets. The most obvious differences are that the
light-colored lines, representing positive snippets, are above the
dark ones, representing negativity. For example, the most readable
code was when the array is full, the variable name is hasFruit, and
there is no negation operator. In contrast, when the array is full,
the variable is hasNoFruit, and there is a negation operator in the
print statement, the expression took the most time to understand.
We now turn to analyze the different effects one by one.

4.2.1 Negative Names. As noted above, we considered two alterna-
tive ways to express negativity in names, to answer Research Ques-
tions RQ2 and RQ6. The first is explicit negativity, as in the name
hasNoFruit. The second is semantic negativity, as in the equivalent
name isEmpty. We compare them with the positive name hasFruit.

We compare the combined results for each of these three names
in Figure 6. We can see that the most readable name, in terms of
both time and correctness, is hasFruit. According to the boxplots
isEmpty has a very similar time distribution, but it does suffer from
slightly more errors. However, the difference is not statistically
significant (p = .396 overall and p = .229 for correct answers). The
least readable name is the one with explicit negation, hasNoFruit.

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

o =
~ o
(%2 o
Time in seconds
I
IS

o
N
@
5

Cumulative fraction of results
o
0
o

— hasFruit l

— hasNoFruit
—isEmpty
10 20 30 40
Time in seconds

)
o
2

hasFruit hasNoFruit isEmpty

Figure 6: CDFs and boxplots of the time to correct answers
for logical expressions with different variables names.

And the differences between this name and the previous two are
indeed statistically significant (p = .0002 and p = .0044). The effect
sizes, as measured by Cohen’s d, were 0.39 and 0.31, respectively,
indicating a small effect. In addition, the first is also statistically
significant for correctness (p = .0022) and the effect size is 0.57
(medium), while the second is not (p = .055).
Our conclusion is that a name with explicit negation like hasNoFruit

may place a burden on processing. Therefore, instead of using a
name with explicit negation (hasNoFruit), it is preferable to choose
a synonym without negation(isEmpty), which may ease processing,
or use the opposite non-negated option hasFruit. While we did not
find a statistically significant difference between using the positive
hasFruit and the semantically negative isEmpty, the separation of
the CDFs in the graph indicates that the positive name might suffer
from fewer errors. This is an interesting lead as there are also other
cases of such negativity in connotation, such as failure versus suc-
cess. But establishing whether they indeed have an effect requires
further investigation.

40

0.75

w
o

Time in seconds
N
o

Cumulative fraction of results
o
(%))
o

0.25 10
— lhasFruit
—hasNoFruit
0.00y 10 20 30 40 0~ ThasFruit _hasNoFruit

Time in seconds

Figure 7: CDFs and boxplots of the time to correct answers
for negated naming versus the negation operator.

4.2.2 Negated Name vs. Negation Operator. Returning to examine
Research Question RQ1, considering the possibility of negation in
names exposes two alternatives to express the exact same logic:
either use the word “no” or the operator !. In our experiment this
is represented by the pairs of code snippets where the expression

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

being printed is either hasNoFruit or 'hasFruit. We compare them
directly in Figure 7. The result is that overall there is no statistically
significant difference (p = .847), and indeed, the boxplots show that
the distributions of time to correct answer are practically identical.
But ! does have a statistically significant advantage in terms of
the ratio of correct answers to total responses (p = .043) and the
effect size is 0.26 (small). Namely, a negated variable name results in
somewhat more errors compared to a positive name with a logical
negation.

40

0.75

Time in seconds
N w
o o

N
o

Cumulative fraction of results
o
I
o

— hasFruit
— IhasNoFruit

0.00y 10 20 30 40 0" hasFruit thasNoFruit
Time in seconds

Figure 8: CDFs and boxplots of the time to correct answers
for a double negated vs. non-negated expression.

4.2.3 Negated Names and Double negation. We showed above that
names with negation, for example containing the word “no”, take
longer to process. But they may also interact with logical negation
expressed using the ! operator.

We first analyze this case by focusing on code snippets with two
logically-equivalent expressions in the print statement in order to
examine Research Question RQ4: hasFruit and !hasNoFruit. The
results are shown in Figure 8. Obviously the expression with the
'hasNoFruit took significantly longer (p < .0001, and an effect size
of 0.83 (large)), and also caused many more incorrect answers (p
=.011, with an effect size 0.51 (medium)). We contend that this
reflects a “double negation”, where one negation is a formal logical
negation with the operator !, and the other is a semantic negation
in the word “no”. In other words, from the point of view of a human
developer, variable names can lead to situations involving multiple
negations, even if there is only one explicit negation in the logical
expression.

The possibility of multiple negations of different types in the code
leads us to counting their combined effect in the next subsection.

4.2.4 Multiple negations of Different Types. In the previous subsec-
tions we highlighted different types of negativity that may appear in
the code. We also showed that they may combine to create “double
negations”, where the components are actually of different types. To
further investigate this, we now consider all possible combinations
together.

The significant components identified above are the following:

o the explicit logical negation of using the ! operator;
e negation in the variable name, by embedding a “no” in it;
o the false truth value of a condition or assignment.

Aviad Baron and Dror G. Feitelson

40

0.75

w
o

Time in seconds
N
o

N
o

Cumulative fraction of results
o
0
o

— 0 Negativity

1 Negativity

y — 3 Negativity

0.005 10 20 30 0
Time in seconds

il

O viegaiy T Regatvty 2 Negaty 3 Negavty

Figure 9: CDFs and boxplots of the time to correct answers
for code snippets with different negativity counts.

We counted how many of these appear in each of the 12 code
snippets, and group the snippets according to this number, from
not having any negative component to having a maximum of 3
negative components. For example, the following snippet:

let fruits = [];
let hasFruit = fruits.length > 0;
console.log(!hasFruit);

is counted as 2: the expression initializing the variable is false, and
the print statement contains the negation !.

Figure 9 presents the results. It indicates that the number of
negations significantly affects the difficulty of understanding the
code: the more negative components a piece of code contains, the
longer it takes to process. In terms of statistical significance, the
differences between 0 and 1 negative components and between 1
and 2 negative components are statistically significant (p = .0007
and p = .0058), and the effect size is small (Cohen’s d of 0.43 and
0.23). The differences between 2 and 3 is not statistically significant
(p = .328). In terms of error rate, the difference between 0 and 1 is
statistically significant (p =.009), while the others are not.

4.3 Part 3: Negations in Controlling while Loops

1.00 100
2]
=
80.75 75
5 3
=
8 3
8 @
© 0.50 ® 50
= £
z £
g [
=1
£0.25 25
3
—hasMoreWork
= notDone
—Idone

0 25 50 75 100 O asHioreWark notone Tdone
Time in second

Figure 10: CDFs and boxplots of the time to correct answers
for the first set of while snippets.

Is “notDone” the Same as “Idone”?

=}
=]

100

£2]
S
§0.75 75
s 35
§
8050 % 50 I
= P
o o
= 1S
8 =
S
£0.25 25
3
—hasSpace
= notFull
= ull
0 25 50 75 100 0 hasSpace notFull Ifull

Time in second

Figure 11: CDFs and boxplots of the time to correct answers
for the second set of while snippets.

In this section, we examine the interaction between negation in
variable names and logical negation within conditions in a while
loop, to address Research Question RQ3. In Figure 10, we can
see the results of the first set. Surprisingly, the name with the
negation notDone was not less readable than the others, and actually
there were no statistically significant differences at all (the three
comparisons led to p = .105, p = .878, and p = .181). We discuss this
below.
In Figure 11, we see the results of the second set. In this case
it is evident that the name with the negation notFull is the least

readable one—similar to the conclusions from the previous sections.

And its difference from the positive name hasSpace is statistically
significant (p = .018) and the effect size is 0.49 (small). The other
differences between these conditions are not significant (notFull
vs. Ifull p = .389, and hasSpace vs. ! full p = .118).

Note the apparent disagreement between these two sets of results
concerning negated names: in the first, notDone is quite readable,
but in the second, notFull is the least readable. We believe the
difference results from a unique interaction between the variable
name notDone and the while loop construct: reading the condition
while (notDone) spells out the essence of a generic loop where the
execution of a block of code is repeated as long as the computation
is not finished. It is true that while (hasMoreWork) is semantically
equivalent; but the first expression is more succinct and in some
sense seems more natural. This match between the program text
and the semantics compensates for the presence of the negation in
the variable name, leading to higher readability.

The names used in the second set represent the property of a
buffer being full or not. Thus they do not relate to a generic loop
structure, and we do not see the same effect. Therefore in this case
the name with the negation turned out to be less readable, as was
the case in the previous sections.

Another observation is that the results are not as clean as those
in the previous sections. As noted above, only one difference was
found to be statistically significant?. This indicates that there are
probably more factors at play, and it is harder to isolate the effect
of the way variable names are formed. The conclusion is that many

2Note that in this part it is necessary to make a Bonferroni correction because the two
sets of the while questions are parallel, and therefore there are two comparison that
test each research question. However, the test that came out significant still remained
significant after the correction.

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

more experiments with careful selection of the different treatments
are needed.

5 Pedagogical implications for teaching code
writing

In our study, we identified negation factors that contribute to the
complexity of code. In this section, we aim to discuss the practi-
cal implications of our findings for writing more readable code.
We observed that code may contain a wide range of negative ex-
pressions in various forms, all of which make processing more
challenging. Therefore, as a general recommendation for writing
code, it is usually advisable to avoid negations.

First, we found that the logical negation operator complicates
processing, so when a condition can be expressed without this
operator, it is generally preferable to do so. For instance, consider
the case of checking that an array is not empty. The direct way to
express this is using ! (array.length == 0). But we found that the
alternative form array.length > 0 is much more readable.

Additionally, using a variable name with a negation is generally
not recommended, as such names are harder to process. Moreover,
they can lead to even more difficult situations, such as double nega-
tion. For example, if we name a variable isNotActive, beyond the
difficulty in processing the negation in the name, negating this
variable would result in a situation like ! isNotActive, which is even
harder to process. Therefore, we recommend using a variable name
without negation that conveys the same meaning (a synonym) or
using the variable name without negation and simply initializing it
differently.

Another observation we made is based on the comparison be-
tween the ‘not equals’ operator != and the negation of the ‘equals’
oparator, where we found that the former is more readable. This
led us to the insight that when there are different ways to express
the same condition, it is important to consider the number of com-
putational steps required as a factor in choosing the most effective
expression. Expressions with more computational steps will proba-
bly be more difficult to understand.

6 Threats To Validity

Construct validity. We measured the difficulty of understanding
different expressions by measuring time and checking the correct-
ness of the answers. This faces two threats. Difficulty is not directly
observable. We assume difficulty is reflected in time to solution and
in correctness, which are commonly used proxies [19]. However,
there have been indications that they are not always correlated,
because correctness may also be impaired by unmet expectations
[2]. We therefore measure both, and in our case they are indeed
correlated in most of the cases, thereby providing a measure of
support for each other. Note too that while assessing difficulty is
interesting from a theoretical perspective, in practical terms the
effects on time (and hence productivity) and correctness (bugs) are
actually the important factors.

Internal validity. Many of our design decisions in formulating
the code snippets for the experiment were taken to reduce threats
to validity, as explained in Section 3.2. But it is possible that re-
peated exposure to short code snippets could alter reading patterns

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

in such a way that they become focused on certain specific ele-
ments, thereby reducing the influence of other relevant factors. For
example, due to habituation, the presence of a variable name with
a negation might no longer have an effect, as the variable name
has already been seen, leading the eye to focus only on certain
parts of the code without a thorough reading of the entire snippet.
However, we believe this threat is not significant for two reasons.
First, even a partial examination of the code is important, as it can
indicate differences in the difficulty of understanding and the vari-
ous contributing factors. Second, this concern is mitigated by the
fact that we provided relatively few code snippets, some of which
are entirely different—such as the while loop questions—thereby
minimizing the potential for significant impact in this regard. In
addition, because we randomized the presentation of the code snip-
pets, any effect (if it exists) would be spread evenly across all the
codes and there will be no systematic effect.

External validity. Research findings are always limited to the
specific circumstances in which the research was conducted. For
example, variable names could exhibit a much greater variety, and
logical expressions might appear in a wider range of contexts. In our
study, however, we sought to measure the most atomic conditions
possible in order to isolate the specific factors under investigation.
Thus we can not know whether the results generalize to more com-
plex situations as may appear in real code. We also can not know
whether similar results will be found in different populations, for ex-
ample school children learning to program. Additional experiments
and replication are always needed to establish the circumstances
where results are valid.

7 Conclusions

Negation has been a focal point of research in natural language, as
illustrated by the publications on the subject previously mentioned
in the introduction. However, the context of code presents a novel
and intriguing domain. In coding, there is a unique combination
of different kinds of negations: natural language elements, such as
variable names, alongside formal mathematical language, including
logical operators. Moreover, these different types of negations may
interact with each other. This makes code completely different from
pure natural language in this respect.

The way code is read and understood differs significantly from
that of reading and understanding prose [6, 21]. In addition, the
developers who read code, with their formal mathematical train-
ing, most probably think differently about negations in code from
laymen who use negations in natural language. Despite this, nega-
tion has been scarcely studied in the coding world, particularly
regarding the relationships between various kinds of negations.

In this research, we aimed to characterize negation in the coding
world: identifying the types of negation that exist and understand-
ing their basic impact on code comprehension. Our study revealed
that these negations significantly impact the processing of different
code segments. Figure 9 illustrated the overall impact of combi-
nations of different types of negations on the difficulty of code
comprehension. Our findings indicate that even a single negation,
regardless of its type, increases both the time required for compre-
hension and the likelihood of errors compared to code without any
negations. Figure 8 depicts the interaction of a double negation,

Aviad Baron and Dror G. Feitelson

where a variable name is negated alongside the use of a negation
operator. This interaction further complicates the understanding
of the code, highlighting the challenges posed by multiple layers of
negation.

Additionally, we observed that the differences in comprehension
can be quite substantial. For instance, Figure 1 shows that even in
relatively simple expressions, the impact of negation can be dra-
matic in terms of both the time taken and the number of errors
made. For example, when checking whether an array is non-empty,
the expression ! (length == @) was significantly less comprehen-
sible than length > @. This finding underscores the importance of
the structure of the condition, as there are considerable disparities
between seemingly simple expressions.

These insights emphasize the critical role that negation plays
in code comprehension and highlight the need for careful con-
sideration in how negations are expressed and structured within
code. The significance of this research is twofold. First, it enhances
our understanding of code comprehension, and provides empiri-
cal support for recommendations on writing logical expressions
and Boolean variables in code, including pedagogical guidelines
for teaching novice developers. Additionally, it expands the study
of negation into a new and interesting context beyond its use in
natural language.

Data Availability

All experimental materials and data are available on Zenodo using
the DOI 10.5281/zenodo.14974143.

References

[1] Galit Agmon, Yonatan Loewenstein, and Yosef Grodzinsky. 2022. Negative Sen-
tences Exhibit a Sustained Effect in Delayed Verification Tasks. J. Exp. Psy.:
Learning, Memory, & Cognition 48, 1 (Jan 2022), 122-141. https://doi.org/10.1037/
xIm0001059

[2] Shulamyt Ajami, Yonatan Woodbridge, and Dror G. Feitelson. 2019. Syntax,
Predicates, Idioms — What Really Affects Code Complexity? Empirical Software
engineering 24, 1 (Feb 2019), 287-328. https://doi.org/10.1007/s10664-018-9628-3

[3] Richard A. Armstrong. 2014. When to use the Bonferroni correction. Ophthalmic
& Physiological Optics 34 (2014), 502-508. https://doi.org/10.1111/0po.12131

[4] Aviad Baron, Ilai Granot, Ron Yosef, and Dror G. Feitelson. 2024. Understanding
Logical Expressions with Negations: Its Complicated. In Proceedings of the 28th
International Conference on Evaluation and Assessment in Software Engineering,
EASE 2024, Salerno, Italy, June 18-21, 2024. ACM, 303-312. https://doi.org/10.
1145/3661167.3661180

[5] Ruven E. Brooks. 1983. Towards a Theory of the Comprehension of Computer

Programs. Intl. J. Man-Machine Studies 18, 6 (1983), 543-554. https://doi.org/10.

1016/50020-7373(83)80031-5

Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Pater-

son, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Movements in

Code Reading: Relaxing the Linear Order. In Proc. 25th International Conference

on Program Comprehension. 255-265. https://doi.org/10.1109/ICPC.2015.36

[7] Viviane Déprez and M. Teresa Espinal (Eds.). 2020. The Oxford Handbook of
Negation. Oxford University Press.

[8] IBM forum. 2019. Negative variable names. (2019).
https://www.ibm.com/support/pages/negative-variable-names.

[9] Quora forum. 2018. Is it bad practice to have a negative boolean variable name
like *didntLose’ instead of "didLose’? (2018). https://www.quora.com/Is-it-bad-
practice-to-have-a-negative-boolean-variable-name-like-didntLose-instead-of-
didLose.

[10] Yosef Grodzinsky et al. 2020. Logical negation mapped onto the brain. Brain
Structure and Function 35 (2020), 19-31. ttps://link.springer.com/article/10.1007/
500429-019-01975-w

[11] Laurence R. Horn. 1989. A Natural History of Negation. University of Chicago
Press.

[12] Laurence R. Horn (Ed.). 2010. The Expression of Negation. De Gruyter Mouton.

Errol R. Iselin. 1988. Conditional Statements, Looping Constructs, and Program

Comprehension: An Experimental Study. Intl. J. Man-Machine Studies 28, 1 (Jan

1988), 45-66. https://doi.org/10.1016/S0020-7373(88)80052-X

—
2

=
&

https://doi.org/10.1037/xlm0001059
https://doi.org/10.1037/xlm0001059
https://doi.org/10.1007/s10664-018-9628-3
https://doi.org/10.1111/opo.12131
https://doi.org/10.1145/3661167.3661180
https://doi.org/10.1145/3661167.3661180
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1109/ICPC.2015.36
ttps://link.springer.com/article/10.1007/s00429-019-01975-w
ttps://link.springer.com/article/10.1007/s00429-019-01975-w
https://doi.org/10.1016/S0020-7373(88)80052-X

Is “notDone” the Same as “Idone”?

[14]

[15]

[16]

[17

(18]

[19

[20

[21]

Dave Jachimiak. 2018. Avoid Negative Variable Names.
https://davej.io/2018/05/negative-naming.html.

Marcel Adam Just and Patricia Ann Carpenter. 1971. Comprehension of negation
with quantification. Journal of Verbal Learning and Verbal Behavior 10 (1971), 244~
253. https://www.sciencedirect.com/science/article/abs/pii/S0022537171800518
Sangeet Khemlani, Isabel Orenes, and P.N. Johnson-Laird. 2014. The negations of
conjunctions, conditionals, and disjunctions. Acta Psychologica 151 (2014), 1-7.
https://www.sciencedirect.com/science/article/abs/pii/S0001691814001206
Robert C. Martin. 2009. Clean Code: A Handbook of Agile Software Craftmanship.
Prentice Hall.

Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I Know What You
Did Last Summer: An Investigation of How Developers Spend Their Time. In
Proc. 23rd International Conference on Program Comprehension. 25-35. https:
//doi.org/10.1109/ICPC.2015.12

Vaclav Rajlich and George S. Cowan. 1997. Towards Standard for Experiments in
Program Comprehension. In 5th International Workshop on Program Comprehen-
sion. 160-161. https://doi.org/10.1109/WPC.1997.601284

Mark Rubin. 2024. Inconsistent multiple testing corrections: The fallacy of using
family-based error rates to make inferences about individual hypotheses. Methods
in Psychology 10, Article 100140 (Nov 2024). https://doi.org/10.1016/j.metip.2024.
100140

Mor Shamy and Dror G. Feitelson. 2023. Identifying Lines and Interpreting
Vertical Jumps in Eye Tracking Studies of Reading Text and Code. ACM Trans.

(2018).

[22

[23

[24

[26

[27

[28

]

ICER 2025 Vol. 1, August 3-6, 2025, Charlottesville, VA, USA

Applied Perception 20, 2, Article 6 (Apr 2023). https://doi.org/10.1145/3579357
Andreas Stefik and Ed Gellenbeck. 2011. Empirical Studies on Programming
Language Stimuli. Softw. Quality 7. 19, 1 (Mar 2011), 65-99. https://doi.org/10.
1007/511219-010-9106-7

Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programing Language Syntax. ACM Trans. Computing Education 13, 4, Article 19
(Nov 2013). https://doi.org/10.1145/2534973

Margaret-Anne D. Storey. 2005. Theories, Methods and Tools in Program
Comprehension: Past, Present and Future. In Proc. 13th International Work-
shop on Program Comprehension. IEEE Computer Society, 181-191. https:
//doi.org/10.1109/WPC.2005.38

David Thomas and Andrew Hunt. 2020. The Pragmatic Programmer. Pearson
Education.

Ye Tian and Richard Breheny. 2015. Dynamic Pragmatic View of Negation
Processing. Negation and Polarity: Experimental Perspectives 1 (2015), 21-43.
https://link.springer.com/chapter/10.1007/978-3-319-17464-8_2

P. C. Wason. 1959. The Processing of Positive and Negative Information. Quarterly
Journal of Experimental Psychology 11 (1959), 92-107. https://doi.org/10.1080/
17470215908416296

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. 2018. Measuring Program Comprehension: A Large-Scale Field Study
with Professionals. IEEE Transactions on Software Engineering 44, 10 (Oct 2018),
951-976. https://doi.org/10.1109/TSE.2017.2734091

https://www.sciencedirect.com/science/article/abs/pii/S0022537171800518
https://www.sciencedirect.com/science/article/abs/pii/S0001691814001206
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1109/WPC.1997.601284
https://doi.org/10.1016/j.metip.2024.100140
https://doi.org/10.1016/j.metip.2024.100140
https://doi.org/10.1145/3579357
https://doi.org/10.1007/s11219-010-9106-7
https://doi.org/10.1007/s11219-010-9106-7
https://doi.org/10.1145/2534973
https://doi.org/10.1109/WPC.2005.38
https://doi.org/10.1109/WPC.2005.38
https://link.springer.com/chapter/10.1007/978-3-319-17464-8_2
https://doi.org/10.1080/17470215908416296
https://doi.org/10.1080/17470215908416296
https://doi.org/10.1109/TSE.2017.2734091

	Abstract
	1 Introduction
	2 Research Questions
	3 Experimental Design and Execution
	3.1 Experiment Design
	3.2 Methodological Considerations
	3.3 Experiment Execution

	4 Results
	4.1 Part 1: Operators Expressing Negations
	4.2 Part 2: Negativity in Variable Names
	4.3 Part 3: Negations in Controlling [language=Java]|while| Loops

	5 Pedagogical implications for teaching code writing
	6 Threats To Validity
	7 Conclusions
	References

