
Perpetual Development:
A Model of the Linux Kernel Life Cycle

Dror G. Feitelson

School of Computer Science and Engineering
The Hebrew University, 91904 Jerusalem, Israel
Tel: +972 2 658 4115; email: feit@cs.huji.ac.il

Abstract

Software evolution is widely recognized as an important andcommon phenomenon, whereby the
system follows an ever-extending development trajectory with intermittent releases. Nevertheless
there have been only few lifecycle models that attempt to portray such evolution. We use the evo-
lution of the Linux kernel as the basis for the formulation ofsuch a model, integrating the progress
in time with growth of the codebase, and differentiating between development of new function-
ality and maintenance of production versions. A unique element of the model is the sequence of
activities involved in releasing new production versions,and how this has changed with the growth
of Linux. In particular, the release follow-up phase beforethe forking of a new development ver-
sion, which was prominent in early releases of production versions, has been eliminated in favor
of a concurrent merge window in the release of 2.6.x versions. We also show that a piecewise
linear model with increasing slopes provides the best description of the growth of Linux. The
perpetual development model is used as a framework in which commonly recognized benefits of
incremental and evolutionary development may be demonstrated, and to comment on issues such
as architecture, conservation of familiarity, and failed projects. We suggest that this model and
variants thereof may apply to many other projects in addition to Linux.

Key words: Software evolution, Software release, Maintenance, Linuxkernel

“Linux is evolution, not intelligent design.”
Linus Torvalds

1. Introduction

Classical software lifecycle models typically partition the software’s life into two periods: de-
velopment and maintenance. The models focus on the development, further partitioning it into
phases and articulating its iterative nature. Maintenanceis typically not discussed in much detail,
despite the wide agreement that it is vital and consumes considerable resources. It is simply stated
that the same principles and techniques used in developmentcontinue to apply, and that actually
all of development is done so as to facilitate maintainability.

Preprint submitted to Elsevier October 25, 2011

The implication of such models is that the full system size isexpected to be achieved at the end
of development. Only then is the system delivered to the customer and installed in the field. This
applies even for very large and complex systems. The customer is expected to have participated in
the requirements engineering and in the testing, but is not expected to have actually used the system
for real. Once the system is installed, maintenance involves both correction of faults (corrective
maintenance) and updates and improvements (adaptive and perfective maintenance) — but is not
expected to involve any major additional development. As the term “maintenance” implies, the
goal is essentially to extend the usability of the system, not to enlarge it.

Comparing this approach with those underlying other fields, we find a strong match with the
construction of large physical systems. For example, an ocean liner, a shopping mall, a new airport,
or a cathedral are designed and built with inputs from the customer who initiated them, but they
cannot be used before completed. Once completed, they are used and maintained for an extended
period. The construction and maintenance are clearly distinct periods with different characteristics.

But there are other large systems that are built in a completely different manner, both in the
physical world and in cyberspace. These are not created fromscratch in one fell swoop, but rather
evolve from humble origins over a long period of time. In particular, evolution is often seen in new
technologies, even when we like to think of the changes they spawn as revolutionary. Consider
automobiles as an example. The first step in producing automobiles was to replace a horse with a
motor, while maintaining the overall structure. Gear boxesand improved suspension came later.
So did batteries for starting the motor and accessories suchas a radio receiver. Thus while each
individual car was developed and then maintained, the overall dynamics were of evolution from
one year to the next. Each step improved the usability of the new cars, and enabled a larger fol-
lowing to emerge. This happened in parallel with the development of an infrastructure for gasoline
distribution and an improved and incrementally growing road system — neither gas stations, roads,
nor cars would be justified without the others.

A similar process may underlie the evolution of dynamic social systems — a university, a
multinational corporation, the stock exchange, or a bazaar, for example. Such systems are the
product of a long process of give and take that refined their details, so their evolution is guided
by continuous interactions between the system and its environment. This interaction is extremely
important, as it is the impetus for further developments andguides the way towards developments
that will actually be useful in practice. Thus the system is never “designed” in the normal meaning
of the word, and its requirements are not and can not be specified in advance. Nevertheless, this is
the easier and safer path to follow, as having to design everything in advance can be a lot of work
and may lead to great risks if something is not done right.

Large software systems also often evolve in this manner, possibly in parallel to the evolution
of the social or business systems that use them. For example,the software systems underlying the
operations of Amazon.com, Ebay, and Facebook are much more complex and feature rich now
then they were when these companies were founded. But this wasnot designed in advance, and
the specific features that would emerge could not be anticipated. Instead, the software evolved
and grew together with the company, an epitome of Lehman’s “E-type” systems [38]. A similar
process can also happen with software that has a general usercommunity rather than being used by
a specific company. In this paper we focus on modeling the evolution of one such system, namely

2

the Linux kernel.
Evolutionary development has been recognized as an important paradigm at least since the

seminal works of Lehman [39] and Gilb [21]. In fact, is can be argued that today most of the
software industry follows evolutionary principles at least to some degree. This is especially marked
in software product lines, where successive software products explicitly follow and extend each
other. It is also the underlying basis of the agile software movement. However, evolution can
in principle take many forms. For example, Lehman’s first lawof software evolution was that
evolving systems change continuously. This implies that while new features are added, old ones
should be removed at a similar rate. His sixth law, formulated nearly a decade later, was that
evolving systems continuously grow. This implies that change is actually the result of many more
additions than deletions. In retrospect this appears to be the more common approach, and indeed
this is what we observe in Linux [51, 70].

In software engineering terms the process of evolutionary development can be viewed as ex-
tending the notions of iteration and incrementation, with actual production use by real users as an
integral part of the loop. The novelty of our model is that each cycle is not viewed independently,
but rather the continuation from one cycle to the next is emphasized. One of the byproducts of
this point of view is the deprecation of the terms “delivery”and “maintenance”. Instead, the soft-
ware continues to evolve and grow in a process ofperpetual development, with regular releases
of new production versions replacing the singular deliveryof the finished product. This is indeed
what we find for the Linux kernel, and also in many other (mainly open source) projects. Another
byproduct is exposing the relationship between parallel versions of the project that exist at the
same time. In particular, maintenance is applied to production versions that exist in parallel to the
main development version.

Our main goal in this paper is to articulate the perpetual development model, using the Linux
kernel as a motivating example. Using the Linux data, we demonstrate the central role of the
growth of the system over time, the continuous nature of development and release activities, and
how they differ from maintenance activities. By providing a detailed analysis of Linux develop-
ment, we attempt to uncover development patterns that are potentially widely used, but have not
been articulated and studied in the literature. We then briefly speculate on the implications of these
development patterns.

The choice of Linux is not accidental. Linux is perhaps the best-known and most success-
ful open-source project in the world, to the point of becoming the poster-child of the whole
open source movement. The source code of its full development history is freely available from
www.kernel.org and numerous mirrors worldwide — at present totaling 1322 versions (Table 1
and Table 8). Importantly, Linux’s development defies common management theory [60]. At the
same time, it does not fit into any common software lifecycle model. This motivates us to suggest
the perpetual development model. This model is descriptiverather than prescriptive. Its goal is
to create a framework for discussing what is actually being done in the field and why, rather than
attempting to dictate ideals. In particular, we note that Linux development is a dynamic process
in constant flux, and adapts to overcome problems that occur as the system grows. Thus different
variants of the model apply to different parts of Linux’s evolution.

The rest of this paper is organized as follows. In the next section we review related work on

3

designation number versions
production 159 1.0, 1.2, 2.0, 2.2, 2.4
development 397 1.1, 1.3, 2.1, 2.3, 2.5
pre-release 56 pre2.0, 2.2.0-pre, 2.3.99-pre, 2.4.0-test, 2.6.0-test
2.6 production 463 2.6.*
2.6 release candidates 247 2.6.*-rc
total 1322

Table 1: Linux versions and their designations. Only full versions are counted, ignoring patches that were used
especially in the early years.

modeling the development of long-lived evolving projects.The perpetual development model is
then presented in Section 3. Section 4 elaborates on releases, which are of central importance in
the model. This is followed by a detailed discussion of Linux’s growth in Section 5. Finally, we
present some possible implications of the model in Section 6and conclude in Section 7.

2. Lifecycle Models for Long-Lived Software Projects

Classical software lifecycle models typically cover the development from a concept to a deliv-
ered software product. A recurring feature in early models such as the waterfall model and the V
model was the quest for stability. First, one needs to get allthe requirements right. This is then
used to formalize comprehensive specifications. Given the specifications, we can create a design
that satisfies them, and so on. But this scenario is often simply irrelevant in real life, because
the clients can’t articulate all their requirements in advance, so specifications are never complete,
leading to designs that will have to change when more requirements are discovered [49].

The alternative is to consider development as a learning process, where requirements and speci-
fications grow together as more experience is gained and risks are understood. This is incorporated
into models by employing an iterative and incremental process [36]. In principle, this can con-
tinue beyond the initial delivery of a working system to its users. Indeed, Boehm mentions the
applicability of the spiral model — complete with risk assessment at each stage — to proposed
enhancements that may be applied to systems already in operational use [5]. Likewise, Kruchten
suggests the application of additional “generations” of the unified process to handle system evolu-
tion [35]. But their main focus remains the basic initial development.

As a result of focusing on the initial development, up to product delivery, common lifecycle
models do not apply to the full life-span of long-lived software products. In particular, they do
not describe the relationship between successive releasesof the product. This has prompted the
development of specialized lifecycle models to fill this gap.

One such model is the evolution-tree model of Tomer and Schach [67]. The levels of this
tree represent stages of development: requirements, analysis, design, and implementation. The
evolution of a software product is then described as successive branches of the tree, where each
new version backtracks and then branches out from some levelin the previous branch. Thus if only
the implementation is modified relative to the previous version, the new branch will start at the third

4

level, but if there are new requirements the new branch will start directly from the root. At the same
time, development artifacts such as design documents may bereused across corresponding levels
in successive branches.

Another model is the staged model of Rajlich and Bennett [59]. This model creates a frame-
work for describing the evolution of a software product, with each version passing through the
stages of evolution, servicing, phaseout, and finally closedown. Notably, the “versioned” vari-
ant of the model allows for multiple serviced versions branching off from the main sequence of
evolved versions. A system that cannot continue to evolve, but is still serviced, turns into a legacy
system. This model provides two important features that arelacking in the Tomer and Schach
model. First, it places a much stronger emphasis on the continuity of the whole process, as new
versions always start from a previous one without backtracking. Second, it allows for the parallel
existence of multiple versions, and in particular, for new development that is done in parallel with
the maintenance of an existing production version. Thus it decouples evolution from maintenance,
and avoids the rat-hole of arguments whether these terms aresynonymous [22]. A related model
is the split and re-integrate model of Nakakoji et al. [53]. This may be viewed as a refinement of
the Rajlich and Bennett model, where developments done in one branch are propagated to another
branch that is developed in parallel. Capiluppi et al. have observed that in open-source projects a
legacy system may be picked up and revived by a new set of developers, thus returning it to the
evolution phase [9].

Our model is also a refinement of this approach, which adds another dimension: how the
product grows during its evolution. In addition, we emphasize the implications of continued devel-
opment and parallel branches, as opposed to the managerial aspects as emphasized by Rajlich and
Bennett. Thus we do not deal with issues like staffing, choice of language, change of technology,
etc. The model can also be viewed in relation to Raymond’s works on open-source development
(also inspired by Linux) [60], where we try to formulate a lifecycle model to his technical obser-
vations and description of social processes.

Indeed, Linux evolution has been studied by several authors. Several authors have studied
Linux growth, especially in connection with Lehman’s Laws of software evolution [24, 61, 28, 31,
30]. This is also related to the potential increase in complexity, and the ensuing consequences re-
garding maintainability [64, 63, 65, 30]. Others consider mechanisms of evolution, and especially
the use of cloning [23, 51, 2, 54, 46]. Perhaps the closest to our work is the paper by Godfrey and
Tu [24]. In particular, our rendition of Linux growth and parallel versions in Fig. 2 extends graphs
drawn by them, as does the discussion of individual subsystems in Section 5.3. But all these works
typically do not formulate an explicit lifecycle model.

3. The Perpetual Development Model

Conventionally, lifecycle models describe the sequence of actions that need to be taken and the
transitions between them. The perpetual development modelis more about continuous activities,
and in particular, activities that happen in parallel. However, it also includes singular decision
points where activities change or branch off from each other.

5

feedback

and fixes
requests

feedback

and fixes
requests

feedback

and fixes
requests

release

release

release

deve
lopment

initia
l

co
ntin

ued

 d
eve

lopment production use and maintenance

production use and maintenance

production use and maintenance

si
ze

time

users
upgrade

users
upgrade

Figure 1:Basic version of the perpetual development model.

3.1. Modeling Growth and Parallel Activities

Practically all lifecycle models use 2D pictures for illustration. The waterfall is typically drawn
as a diagonal sequence of blocks, possibly with some other elements, where the direction from top-
left to bottom-right correlates with some notion of progress and time. The spiral model, as its name
suggests, is drawn as a spiral, where the angle reflects the sequence of activities within each cycle,
and the radius reflects the cycle number. In the models of Tomer and Schach and Rajlich and
Bennett both dimensions correlate with time, one depicting progress within a version and the other
progress from one version to the next. However, neither dimension explicitly reflects time with a
linear scale.

The perpetual development model explicitly uses the two dimensions to portray time (on the
X axis) and size (on theY axis). “Size” can be interpreted literally, or alternatively it can be
interpreted as the feature set provided by the software. As quantifying features may be harder to
define, we limit the discussion to physical size.

Given these axes, the model consists of a continually growing development backbone, from
which stableproduction versionsbranch out at intermittentrelease points(Fig. 1). Thus several
versions of the product may exist simultaneously. In this framework, the following activities occur:

1. Users of production versions provide feedback and new requirements to developers, and bug
alerts to maintainers.

2. Maintainers maintain the current production versions. This may also involve interactions with
developers working on the next version.

3. Developers, at the same time, continue to develop the system. In doing so they use the input
from the users and maintainers of the current versions.

4. The development activity is punctuated by releases of newversions. Developers therefore
alternate between two types of activity: implementing new features and performing a release.
We expand on this issue in Section 4.

6

Linux kernel distributions

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

lin
es

 o
f c

od
e

[1
0^

6]

0

1

2

3

4

5

6

7

8

9

10

1.2

2.0

2.2

2.4

2.6.16

2.6.27

1.1 1.3

2.1

2.3

2.5

2.6

Figure 2:Perpetual development of Linux from 1994 to 2011. Up to 2003,versions with odd major number (1.3, 2.1,
etc.) were development versions, and those with even numbers (1.2, 2.0) were stable production versions. In version
2.6 only production versions are released, while new development work is reflected only in release candidates.

5. When new production versions are released, users may upgrade to the new version. This may
be a slow process, and not all users necessarily upgrade.

It is important to be precise regarding the meaning of the term “release”. In the model we use
this term exclusively to mean the release of a new productionversion of the system — an event
sometimes referred to as a “major” release. We distinguish this from the “minor” releases that oc-
cur when a new instance of an existing version is made available. In production versions such new
instances typically reflect some maintenance work that has been done, e.g. the correction of a bug
or the application of a security patch; in development versions, they may reflect additional progress
in the development. To avoid ambiguity, we shall refer to such minor releases as “updates”. And
when we refer to a Linux kernel version, such as 2.4, we are actually referring to a series of such
minor versions, of the form 2.4.x.

The model and the list of parallel activities are based on observation of the development of the
Linux kernel from its initial release in 1994 to mid 2011, as depicted in Fig. 2 [30]. For size we use
lines of code; this and other possible size metrics are discussed below in Section 5.1. The growth of
the backbone need not necessarily be strictly linear as in Fig. 1, and indeed the Linux data exhibits
some fluctuations and a generally increasing growth rate [24]. This is discussed in Section 5.2.
The production offshoots remain relatively stable as may beexpected (the initial growth of 2.2 and
2.4 is discussed below).

An important feature of the model is to demote the status of product delivery (as was also
done in the long-term lifecycle models cited above in Section 2). Delivery is no longer a focal
point of the process, dividing the product lifetime into development and maintenance. Rather, it
becomes one of many similar points along the continuous process of development, where new

7

production versions are released. When such new releases aremade, users start to upgrade to the
new production version at their own pace, but some may choosenot to upgrade at all. Production
versions therefore generally need to be maintained well beyond the release of the next version.
For example, Linux kernel version 2.4, which was first released in January 2001, was still being
maintained in late 2010. More recently, versions 2.6.16, 2.6.27, and 2.6.32 were each maintained
for several years. In fact such behavior is not unique to Linux. A notable example is the release of
Windows Vista, where many users elected not to upgrade but rather to keep using Windows XP.

Another important feature of the model is to delimit the scope of maintenance activities. Main-
tenance implies an effort to preserve and sustain the usability of the system, possibly with pe-
ripheral modifications, but it does not involve continuing to build the core of the system. This
distinction between maintenance and continued development, which is central to our model, is
missing from many discussions of maintenance, which implicitly assume there is only one ver-
sion of the product (e.g. [32]). It also relieves the forced inclusion of continued development in
“perfective maintenance” [45], which is necessary if one insists on using the “maintenance” label
for everything that happens beyond the first delivery. Thus,while maintenance does in fact apply
to versions of the product that are in production use, it is not the main activity but rather done in
parallel to continued development of the backbone. And froma terminology aspect, maintenance
is not a synonym for evolution.

An interesting question that arises from the distinction between continued development and
maintenance is who performs these activities. In the context of open-source projects, maintainers
and developers may be the same people, as developers may haveownership or at least a feeling of
responsibility for their code, and will therefore maintainit in parallel to performing other develop-
ment activities. Thus one may expect maintenance activities to be strongly correlated with a subset
of development activities that happen at roughly the same time. For example, bugs found during
continued development may point to similar bugs in parallelproduction versions, and vice versa.
Moreover, users may also be the same people, as the communityof kernel hackers largely develops
and maintains Linux for their own use. One may also extend this to the “real” end users, which are
mainly Linux distribution companies like Red Hat, Debian, and Novell/SUSE, who nevertheless
contribute significantly back to the community1.

The graphical representation of perpetual development also provides a framework for demon-
strating the known benefits of iterative and incremental development with evolutionary delivery,
such as [21]

• The lead time to the first working software is short. Thereafter, a working version always
exists for the benefit of users. Thus there is little danger ofthe project coming to nothing.

• Real users doing real work are effectively brought into the development loop. Their work
acts as a test of system functionality, and helps in uncovering problems [60].

• Having actual users work with the system also uncovers new requirements that were not

1Canonical, the company behind Ubuntu, seems to focus more ondesktop software than on the operating system
kernel.

8

anticipated in advance, and allows for prioritization of different requirements that have not
been implemented yet. The user requirements and the system that solves them co-evolve
together [38, 48].

• The relatively short time between releases implies focus and limited scope. This is the
evolutionary alternative to progress in the “cone of uncertainty” [4]: rather than starting with
wide uncertainty and working to reduce it, maintain a much smaller scope (and hence smaller
uncertainty) throughout.

• The relatively short time between releases also implies that prioritization and bounding be-
comes crucial: at each step, one needs to decide what to do andwhat not to do, based on
user input or on the effect on the bottom line [16].

In addition, it highlights issues that are often not noticed, such as

• The danger of releasing an unstable version is reduced, because users upgrade to the new
version only gradually, and they have the previous version as a fallback.

• The continued growth of the system implies that new code is generated all the time. This
calls into question the notion that eventually incrementalchange and refactoring will become
the dominant activities rather than “clean” development from scratch [58].

• The long time scale and recurrent nature of the project implies that new technology may
be incorporated in the development process as it becomes available, as opposed to freezing
everything at the outset.

The novelty of the perpetual development model is mainly in articulating the continuous and
parallel aspects of software development that are often left implicit or beyond the scope of the
lifecycle model. The difference from common models based oniteration and incrementation is
that the process is not expected to end with a “final” release [4] — it just goes on and on as long as
it is useful. Of course it will most probably end eventually,but the mindset is one of perpetuation.
We allege that this mindset is not unique to Linux, and is often present in open-source projects [60]
and in agile development [3].

3.2. Relationship with Agile Development

The perpetual development model may seem to be redundant dueto its similarity with evolu-
tionary development in general [21], or agile development in particular [3]. However, these terms
actually denote different things.

As described in the introduction, we first make the distinction between projects which undergo
evolutionary development and projects which are developedand then maintained (Fig. 3). This
distinction relates to the nature of the project. Evolutionary development is suitable in situations
where the rate of change is high, and the project requirements cannot be defined in advance. A
develop-maintain style is suitable for those situations where one must define the full project in
advance. In such cases, the learning process inherent in theevolutionary approach must be replaced
by careful planning and modeling. Indeed, this was the impetus for the development of tools like
statecharts [26]. These were developed as part of an effort to nail down the requirements for the

9

evolutionarydevelop−maintain

development
perpetual

all software projects

agile

Figure 3:Relationship between evolutionary software development,perpetual development, and agile development.

software controlling a new fighter plane, a good example of a situation where essentially all the
software is needed for an operational system, the system does not change much after initial delivery
(except for new versions for new models of the plane, similarto a product line), and it is practically
impossible to carve out a small initial chunk that would be useful in itself.

Perpetual development is one approach to accomplish evolution, namely evolution by contin-
uing to develop the product. This implies continued growth,as reflected by Lehman’s 6th law.
Note, however, that growth is not necessarily implied by theterm “evolution” by itself. In the
animal kingdom, for example, there are some cases where evolution involved growth in size (think
dinosaurs, giraffes, and whales), but many where it did not (e.g. bacteria and other single-cell
organisms). For software it is also possible to envision evolution by changing and adapting the
codebase, rather than by adding to it. However, it seems thatin practice perpetual development is
a common approach to software evolution, and perhaps the dominant one.

The dictionary definition of “agile” is something that is light and quick. In software develop-
ment, this term has come to mean an iterative process with little if any long-term planning2. Still,
many agile projects are terminal projects, where the agile approach is followed for the duration,
but it is expected to end either when all the desired featuresare done or when the allotted time
(and possibly budget) is exhausted. At the same time, there is an emphasis (made explicit as one
of the core practices of Extreme Programming, for example) on maintaining a “sustainable pace”
of development that can continue indefinitely. Perpetual development focuses on this aspect, and
highlights the continuous nature of the work as an enabler ofall the other features. This is in
contrast to most interpretations of agile development, which emphasize the contrast with “death
march” projects and overtime, and the importance of technical elements such as the lack of formal
detailed planning and the use of pair programming.

Furthermore, a major difference is that perpetual development is a lifecycle model, whereas
agile development is a methodology. Thus instantiations ofagile development, such as Extreme
Programming or SCRUM, each promote specific procedures and practices. Examples include

2See The Agile Manifesto, available athttp://www.agilemanifesto.org/, for guiding principles.

10

maintaining a backlog of features, conducting daily standup meetings, and adhering to a strict
release schedule. Our case study of Linux is a good example ofthis distinction: Linux is definitely
an instance of perpetual development, but it does not subscribe to any specific agile methodology.
Thus, while it currently adheres to a regular release schedule with a cycle of 2–3 months, this was
not always the case, and it is not part of the definition of the model.

3.3. Variants in the Linux Case Study

The Linux data shown in Fig. 2 is similar to the model introduced in Fig. 1, but not identical to
it. Indeed, the model attempts to gloss over differences, and present the most salient concepts in a
clean manner. Reality is often more complex.

It is easy to identify three phases in the Linux kernel’s development (as reflected in Fig. 2),
which can be viewed as variations on the more abstract and general model. The first is the version
1 kernels, from 1994 to 1996. During this period most of the activity was in development, and
only few maintenance updates were made to production versions. The second phase, from 1996 to
2004, is characterized by the release of three long-lived production versions (2.0, 2.2, and 2.4) that
were maintained in parallel. Significant developments wereperformed between these versions.
This led to big differences between them and long intervals between their release dates which
were extended even further by the protracted release process itself. Such long intervals contradict
the desired rapid release cycle of open source software [60]. Indeed, in the third phase (kernel
version 2.6 since 2004) production kernels are released regularly every 2–3 months. To reduce the
maintenance effort most of these are not maintained much beyond the release of the next production
version.

An especially troubling aspect of the Linux data is the significant growth observed in the initial
periods of the 2.2 and 2.4 production versions. This contradicts the assumed role of these versions,
where production versions are only maintained and not expanded with new developments. The
explanation is that new developments were indeed originally injected into the development versions
(specifically 2.3 and 2.5). However, due to the long delay expected until the release of the next
production version, many new developments were then propagated into the existing production
versions [24]. The switch to the more rapid release cycle of 2.6 is perhaps a reaction to this state
of affairs, and an attempt to institutionalize a more orderly process for the quick dissemination of
new developments.

In summary, the Linux data exposes two main variants of the perpetual development model.
In one the production releases are far between, and contemporaneous development and production
versions are coupled together. In the other production releases are frequent, and production ver-
sions are largely decoupled from development. This distinction is related to the distinction between
releases based on features and releases based on schedule. In the next section, we show that the
mechanics of the releases themselves are also different.

4. Releases and Decision Points

As noted above, the focal points of the perpetual development model are the major release
points where new production versions are released. These define the structure of the system’s

11

Release of Linux kernel 1.2

11/94 1/95 3/95 5/95 7/95 9/95

lin
es

 o
f c

od
e

[1
0^

3]

150

175

200

225

250

275

300

1.21.1

1.3

Release of Linux kernel 2.0

1/96 3/96 5/96 7/96 9/96 11/96 1/97

lin
es

 o
f c

od
e

[1
0^

3]

300

400

500

600

700

2.0

1.3

pre2.0

2.1

Release of Linux kernel 2.2

9/98 11/98 1/99 3/99 5/99 7/99 9/99 11/99 1/00

lin
es

 o
f c

od
e

[1
0^

6]

1

1.2

1.4

1.6

2.2

2.1

2.2−pre

2.3

Release of Linux kernel 2.4

1/00 7/00 1/01 7/01 1/02 7/02 1/03

lin
es

 o
f c

od
e

[1
0^

6]

1.5

2

2.5

3

3.5

4

2.4

2.3

2.3.99−pre

2.4.0−test

2.5

Figure 4:Releases of Linux kernel versions 1.2, 2.0, 2.2, and 2.4.

development and the relationship between its branches. It is therefore of interest to investigate
the process of performing such a release in some detail. In Linux, this refers to the releases of
the major production versions (1.2, 2.0, 2.2, and 2.4), and to the “third digit” releases of the 2.6
versions starting with 2.6.11. As we show, these two sets of releases are rather different from each
other.

Note that we do not refer to updates (or “minor releases”) of existing versions — the third-digit
releases before version 2.6.11, and the fourth-digit releases of 2.6.11 and later. In Linux, such
updates are made when “enough” content accumulates or when there is a new security patch that
needs to be disseminated quickly. This is a subjective decision made by whoever is responsible for
the version in question.

4.1. Idealized Release Model
Based on the Linux case study we can take a more detailed look atthe activities surrounding

releases of new production versions. We initially focus on the four major production versions: 1.2,
2.0, 2.2, and 2.4. A zoom into the update activity surrounding each of these releases is shown in
Fig. 4. This indicates that a release is not a point, but a whole sequence of activities in itself.

While not identical, these four releases exhibit the same general structure. Using the release of
kernel version 2.0 as an example, the last update of version 1.3, which was 1.3.100, took place on
10 May 1996. On 12 May 1996 version pre2.0.1 was released, indicating the beginning of work

12

release

forkdecide to release

pr
ior

 de
ve

lop
men

t

and maintenance
production usefollowup

co
nti

nu
ed

 de
ve

lop
men

t

test
stabilize and

si
ze

time

Figure 5:Idealized model of the anatomy of a release.

towards the release of the 2.0 version. There were a total of 14 updates in the pre2.0 series, ending
with pre2.0.14 on 6 June 1996. Three days later, on 9 June 1996, version 2.0 was released. The
fork of a new development version took place on 30 September 1996, with the release of kernel
version 2.1.0. By that time, 21 updates of version 2.0 had taken place.

The differences between the four releases are also instructive, and seem to indicate that the
release process was refined with time. Thus release 1.2 did not have a separate pre-release series
of updates leading up to the release itself. At the other extreme, release 2.4 had two separate series:
one of preparing the new version, and another of testing (andpresumably correcting) it.

Based on the above, we can generalize an idealized release process that includes the following
set of decision points and activities between them (Fig. 5):

1. Decide to release. The decision at this point in time is to stop developing new functionality,
and prepare to release what has accumulated so far. Except for version 1.2, this is reflected
by a new pre-release series of kernel updates. The followingactivity is one of stabilizing and
improving the code, based on internal testing by the developers. Additional development is
done mainly to fill holes in existing functionality, not to add new functionality, so the rate of
growth is expected to be reduced.

2. Perform the release. This is the actual point of the release itself, where the new production
kernel is released and the series of its updates is started. The initial updates reflect a period
of support and followup, in which developers continue to stabilize and improve the code, but
now this is based on feedback and bug-reports from actual users. Again, this may include
some additional development.

3. Fork a new development version. This decision signifies that the released version is consid-
ered stable and usable. It is reflected in the data by the forking of a new development version,
which will be pursued in parallel to the maintenance of the production version that has just
been released.

13

series updates duration result
pre2.0 14 28 2.0
2.2.0-pre 9 28 2.2.0
2.3.99-pre
2.4.0-test

9
13

}

22
71

225

}

296
test1
2.4.0

Table 2:Stabilization work leading up to the release of production versions in Linux. Duration is in days.

version forked from delay relationship
1.3.0 1.2.10 97 modified
2.1.0 2.0.21 113 modified
2.3.0 2.2.8 106 identical
2.5.0 2.4.15 322 identical

Table 3:Forking of development versions from production versions in Linux. Delay denotes the time from the release
of the production version in days.

In addition, there is a final decision point related to production versions:

4. Discontinue maintenance. The decision to stop supporting a production version is usually
taken only after the subsequent production version is well established. It does not mean that
this version will immediately cease to be used — only that it will not be further maintained,
so no additional updates will be made. In Linux the decision to cease maintenance is not
necessarily the final word, as distributors (such as Red Hat orDebian) may continue to main-
tain a version that is important to them even when it is no longer “officially” maintained. For
example, Red Hat guarantees support for its Enterprise Linuxversions for 10 years from their
release date.

In a business setting, there may be additional phases due to financial or legal considerations [59].
This seems to be largely irrelevant for open-source systemssuch as Linux.

This model of a release is different from the common softwarerelease life cycle [71]. In the
common model, the pre-alpha phase denotes development, andthe alpha phase is testing. This
distinction is irrelevant for Linux, as testing, to the degree that it is done, is a continuous activity
(similar to the testing workflow in the Unified Process). The “decide to release” point above is
essentially equivalent to the decision to perform a beta release in the more conventional software
release life cycle. Indeed, Linux also uses the terminologyof “release candidate” for such versions.
The main differences come with the release itself. The release decision point is semantically
equivalent to the common “release to manufacturing” (RTM),meaning that the software is passed
from the development unit to the manufacturing unit and reproduced; this subsequently leads to
“general availability”. In Linux and other open-source software distributed on the Internet there
is no manufacturing step, and released software is immediately available. But more importantly,
support by the development team continues after release. This followup phase, which continues
until the decision to fork a new development version, is missing from the common model.

Data regarding all four major releases is provided in Tables2 and 3. All show the basic structure

14

Release of Linux kernel 2.0

2/96 4/96 6/96 8/96 10/96 12/96 2/97 4/97

da
ys

 fr
om

 p
re

v
up

da
te

0

5

10

15

20

25

30

35

40

45

50

2.0

1.3 pre2.0

2.1

Figure 6:Update rate around the release of Linux kernel version 2.0.

described above, albeit with some occasionally major variations. Table 2 shows that the stabiliza-
tion phase is typically relatively short. Preparing for versions 2.0 and 2.2 took less than a month.
In the case of the version 1.2 release there was even no explicit switch to work on stabilization.
On the other hand, the work towards version 2.4 was much longer, and took nearly 10 months.
This was divided into a bit more than 2 months of preparation,followed by more than 7 months of
testing.

Table 3 shows that in all four releases the followup phase wasrather long: more than 3 months
for versions 1.2, 2.0, and 2.2, and nearly 11 months for 2.4. The first new development version was
either essentially identical to the previous production update, or else it already reflected some new
developments. As shown in Fig. 4, in both 2.2 and 2.4 there is some growth in the stabilization
and followup phases, and continued growth of the productionversion even after forking the new
development version. This indicates that in these versionsthe distinction between production and
development may not be as crisp.

Beyond the structure of these releases, one should notice their protracted nature. The process
of preparing a release, testing it, and performing the required followup always took more than 4
months; for 2.4 it took no less than 20 months. Similar problems have been observed in other
systems as well [52]. In Linux the solution was to switch to a tightly regulated schedule-based
release process, as described below.

Returning to the structure of the release, it is also instructive to observe the rate of work in the
different phases, as reflected in their update rate. This is shown in Fig. 6 for the 2.0 release (the
other three releases exhibit qualitatively similar behavior). The last months of version 1.3, and the
month of version pre2.0, were characterized by a typical rate of a new update every 2–3 days. The
first four months of 2.0, and the continued development of 2.1, exhibit a more moderate average
rate of releasing a new update approximately every 5 days, with isolated instances of 20 days or
more. But once 2.1 was forked, the intervals between updates of 2.0 go up first to around 10–13
days, and then to durations that are better measured in months rather than days. Thus we can see

15

Linux series growth rates

gr
ow

th
 r

at
e

[li
ne

s/
da

y]

0

250

500

750

1000

1250

1500

1750

2000

1.1 1.3 2.1 2.3 2.52.0 2.4

development
preparation
followup
production

1.2 2.2

pr
e2

.0

2.
2.

0−
pr

e

til
l 2

.2
.1

8

al
l

2.
3.

99
−

pr
e

2.
4.

0−
te

st

til
l 2

.4
.2

5

al
l

Figure 7:Growth rates of the different series and their main segments.

that the initial followup part of a new production release isindeed more similar to development
work than to the subsequent maintenance work.

Related to the above is the growth rates exhibited in the different segments. The model in Fig.
5 implies a reduced growth rate in the preparation and followup phases, relative to the development
versions. This is indeed the case as shown in Fig. 7 (where growth rate is expressed in lines per
day, averaged over the full duration of each phase). For eachmajor release, we see some reduction
from the preceding development growth rate, and an increasein the following development growth
rate. Thus the sustained work rate (as reflected in updates) is indeed at least partially diverted to
activity other than development of new functionality. Eventhe initial (growing) phases in 2.2 and
2.4 adhere to this pattern. However, except for 1.2 and to some degree 2.0, the growth rate merely
drops and does not become very small, and it is higher for later versions.

The alternations between development and release activityecho early models of large system
development. In these models, it was suggested that successive releases emphasize either “progres-
sive” or “anti-regressive” work [37, 72]. Progressive workwas the development of new features,
while anti-regressive work included work to improve the structural design of the software and up-
dating documentation. Interestingly, it was shown (based on a high-level assumed mathematical
model) that the best progress would be achieved by alternating these activities, rather than trying
to carry them out concurrently [72]. Such alternations alsooccur in the simulations of Cook et
al. [12], due to the assumption that activities such as refactoring absorb developer resources that
would otherwise be devoted to producing new features. In ourmodel, this alternation appears
around each release of a new production version, rather thanat successive releases. In principle,
it can also occur multiple times within a release cycle. For example, evidence from Microsoft
mentions code stabilization efforts that are performed every few months [15].

4.2. Compressed Release Model
The idealized release model discussed above hinges upon thedecision to release. In the major

Linux production versions these decisions were related to the development of a major feature, such

16

release
end of merge

m
er

ge
 w

in
do

w

m
er

ge
 w

in
do

w

stabilize and

test

followup and maintenance

si
ze

time

Figure 8:Model of the anatomy of a compressed release.

as multi-platform support and SMP support. However, such developments took an order of two
years to complete, causing major delays in the release of other lesser features. With version 2.6 it
was therefore decided to switch to a periodic scheme with a new release around every 2–3 months.
This also reduced the pressure on developers, because if onerelease is missed the next one is not
far off.

A faster release cycle was problematic with the idealized release model, as an underlying notion
in that model is that the same people alternate between development and release activities. With
the growth of Linux this became increasingly untrue. Core developers became more involved with
administrating the kernel versions, while other developers more commonly contributed complete
subsystems that had been developed externally. At the same time, a “stable team” was formed to
take care of updates to previous production versions. This enabled a three-way parallelization of
activities:

• Development of new functionality. This is done independently by many developers in their
own environment (importantly, this is explicitly supported by thegit model of distributed
version control, where each developer has his own private copy of the codebase). Such
development may take a long time, and is not reflected in any way in the Linux kernel
releases and updates until it is merged during a convenient merge window.

• Stabilization and testing. This is orchestrated by the coredevelopers, notably Linus Torvalds,
in cooperation with the developers who made contributions in the most recent merge window.
It is reflected as updates to the current rc version.

• Maintenance and updates of the previously released version, reflected in updates to that
version.

This parallelization allows the release cycle to be compressed and completed within about 10
weeks. The compressed release cycle is shown in Fig. 8. The life of a new version starts with a

17

Releases of Linux kernel 2.6

9/08 11/08 1/09 3/09 5/09 7/09 9/09 11/09

lin
es

 o
f c

od
e

[1
0^

6]

6

6.25

6.5

6.75

7

7.25

7.5

7.75

8

2.6.28−rc

2.6.29−rc

2.6.30−rc

2.6.31−rc

2.6.28

2.6.29

2.6.30

2.6.31

Figure 9:Compressed releases in the Linux 2.6 series.

merge window. This is a relatively short period (around two weeks) where developers are invited to
submit their new developments3. When the merge window ends, a stabilization period (of around
two months) takes place. The updates of this not-yet-released new version are called “release
candidates” and designated by an “rc” suffix. When the new version is considered stable, it is
released. In parallel, a new merge window is opened for the next version. The released version
is handed over to the stable team, which performs maintenance updates (bug fixes and security
patches) as needed.

Data from several recent Linux 2.6 releases is shown in Fig. 9. Note that there is no “devel-
opment version”, and there are no updates during the merge window. All development work is
done externally by the developers in their own environment,in parallel to the release of previous
versions. In few cases the first rc update serves to extend themerge window, but in most cases the
rc updates do not contain any significant growth.

Given that the main changes in the compressed release model result from merging new func-
tionality during a merge window, one may expect that the rateof growth will increase and that no
code will ever be removed. This is not the case. Data collected by Greg Kroah-Hartman from the
git repositories of versions 2.6.11 through 2.6.354 shows that thousands of lines are removed in
each new version. However, additions outnumber deletions by an average factor of 2.12.

Importantly, the 2.6 releases are time-driven rather than being content-driven. Merge windows
are relatively short, and the time to stabilize is also limited. If stabilization is not achieved, merged
functionality may be removed and delayed to the next version. This leads to rapid dissemination

3These new features are expected to have been reviewed and signed off by subsystem maintainers, and incorporated
in the Linux “next” version, but this is not reflected in any official releases.

4Available atwww.kernel.org/pub/linux/kernel/people/gregkh/kernel_history/kernel_stats.ods

18

of innovations and developments, but also means that stableversions have a very short lifetime.
As a result, some versions are singled out for “longterm” maintenance, and updated in parallel to
subsequent releases.

5. The Growth of Linux

The Linux data indicates that the kernel distribution grew by a factor of 78.6 over 171
4

years
— an average annual compounded growth rate of 28.8% (as measured by LoC). Portrayal of how
a software system grows is a central component of the perpetual development model. “Continued
growth” is also Lehman’s 6th law of software evolution [43].While not one of the original three
laws proposed in 1974, it nevertheless figures prominently in the research literature. This may
perhaps be attributed to the fact that it is the easiest to measure directly. For all these reasons, it is
of interest to study the growth of Linux in some detail.

5.1. Measuring Growth

In Fig. 2 we used lines of code as a metric for the size of the Linux kernel. This is probably
the most commonly used size metric in software engineering,and has also been used before to
portray the growth of Linux [24, 64, 18]. However, there are other options. We therefore start the
discussion with a comparison of different metrics. This shows that they are highly correlated, and
therefore which metric is used is not very important.

The metrics we checked are the following:

• Lines of actual code. This excludes blank lines used for formatting and comment lines most
commonly used in block comments. However it does include lines that contain both code
and a comment.

• Total lines. This is a variant that includes all the lines: code, blank, and comments.

• The number of files. This is often used as a proxy for the numberof modules. The number
of modules was used by Lehman (e.g. [38]) and others to quantify the size of closed-source
software, but the precise meaning of “modules” was seldom defined.

• The size of the compressed (withgzip) tar archive containing all the kernel sources, as down-
loaded fromwww.kernel.org. This metric was also used by Godfrey and Tu [24].

The first three metrics were calculated usingcloc (available fromcloc.sourceforge.net). This was
used with all default settings, including the check for duplicate files and avoiding double-counting
when this happens (surprisingly, it does). Notably,cloc counts the lines of all programming lan-
guages it can identify. In Linux this is mostlyC (.c and.h files), assembly, andmake, but there are
also a few files in other languages. To give a notion of the distribution, the output ofcloc on kernel
version 2.6.39.1 is shown in Table 4. While one may claim that XML and HTML are not really
programming languages and should therefore be excluded, wenote that such languages contribute
less than 1% of the total. We therefore believe that using thedefault settings does not lead to any
significant errors.

19

Language files blank comment code
C 16087 1501193 1531754 7742940
C/C++ Header 13589 314821 536253 1632046
Assembly 1217 39850 49723 247005
XML 139 3119 948 40974
make 1390 6015 6374 22643
Perl 41 2973 2462 13900
Bourne Shell 61 638 1475 3644
yacc 5 453 322 2987
Python 18 542 267 2535
C++ 1 209 57 1521
lex 5 203 237 1317
awk 8 90 79 714
Bourne Again Shell 28 74 55 446
HTML 2 58 0 378
NAnt scripts 1 87 0 356
Lisp 1 63 0 218
ASP 1 33 0 137
XSLT 6 13 27 70
sed 1 0 3 30
vim script 1 3 12 27
SUM: 32602 1870437 2130048 9713888

Table 4:Results of counting lines of kernel version 2.6.39.1 usingcloc.

tot. lines files tar size
code lines 0.99998 0.99833 0.99940
total lines 0.99828 0.99951

files 0.99823

Table 5:Correlation coefficients between the different size metrics shown in Fig. 10.

We noted the compressedtar archive size and appliedcloc to all 1322 available versions of the
Linux kernel from version 1.0 to version 2.6.39.1 (including 2.6 release candidates). As shown in
Fig. 10, the different metrics are obviously very closely related. Similar-looking graphs are also
obtained for other size metrics, such as the Halstead Volumeor the number of functions [30]. The
correspondence between the metrics is demonstrated quantitatively by calculating their correlation
coefficients. The results, shown in Table 5, are all extremely close to 1. Growth as measured by
files and LoC was also compared by Herraiz et al. with similar results to ours [28]. In the sequel
we therefore use LoC.

20

Linux kernel distributions

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

lin
es

 o
f c

od
e

[1
0^

6]

0

1

2

3

4

5

6

7

8

9

10

1.2

2.0

2.2

2.4

2.6.16

2.6.27

1.1 1.3

2.1

2.3

2.5

2.6

Linux kernel distributions

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

to
ta

l l
in

es
 [1

0^
6]

0

2

4

6

8

10

12

14

1.2

2.0

2.2

2.4

2.6.16

2.6.27

1.1 1.3

2.1

2.3

2.5

2.6

Linux kernel distributions

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

nu
m

be
r

of
 fi

le
s

[1
0^

3]

0

5

10

15

20

25

30

35

1.2

2.0

2.2

2.4

2.6.16

2.6.27

1.1 1.3

2.1

2.3

2.5

2.6

Linux kernel distributions

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

ta
rb

al
l s

iz
e

[M
B

]

0

10

20

30

40

50

60

70

80

90

100

1.2

2.0

2.2

2.4

2.6.16

2.6.27

1.1 1.3

2.1

2.3

2.5

2.6

Figure 10:Growth of Linux as reflected by different size metrics.

5.2. Modeling Growth

The subject of the rate of growth of large-scale projects hasaroused some interest in the litera-
ture. Depending on the system studied and the methodology used, researchers have concluded that
growth may be sub-linear, linear, or super-linear.

Lehman and Turski, in their analysis of closed-source projects, hypothesize that the rate of
growth should decrease as a result of the increasing complexity of the project [37, 44, 19]. In
particular, Turski argues that the if the size of versioni is si, and the size of versioni + 1 is si+1,
then the expected relationship is [68]

si+1 = si +
Ē

s2
i

whereĒ is the average effort invested in each release (Lehman’s fourth law states that the rate
at which effort is expended is constant, so with regularly spaced releases the effort per release
should be constant as well). The inverse square increments are justified by the notion that the
number of possible interactions betweensi modules iss2

i
, and the effort is spent considering all

these interactions. This model leads to sublinear growth, and specifically to [61]

si ∝
3
√
i

21

Indeed, some of Lehman’s data seems to fit such a sub-linear model better than a linear model
[68, 41, 40, 44]. However, other data fits a linear model quitewell [42], and a linear model was
also proposed by Capiluppi for several open-source projects[7, 11]. This leads to the conclusion
that both models may be appropriate in certain conditions. To further complicate the issue, one
of Lehman’s data sets exhibited two phases of declining growth, but a significant jump in size
between them.

An important consideration when studying growth rates is the independent variable. Lehman
consistently used the serial numbers of successive releases, regardless of the calendarial time that
passed between them [44]. This may be problematic when minorreleases of different versions
are interleaved, e.g. because a minor release of an old version (say release 2E) is made after the
initial release of the next version (say version 3). In addition, the release rate may be highly vari-
able, again leading to inconsistencies when using serial numbers [66]. Most researchers nowadays
therefore prefer to use calendar time [24, 56].

When using calendar time the observed growth rates also differ. Paulson et al. claim that linear
growth provides a good model [56], but this could be partly the result of using relatively short
observation intervals of up to about a year and a half. Izurieta and Bieman also claim a linear
growth rate for both FreeBSD and Linux [31].

Interestingly, several researchers have also observed super-linear growth rates — especially in
the context of open-source projects, and specifically, Linux. Perhaps the first were Godfrey and
Tu, who suggested a quadratic model as providing the best fit for Linux development versions [24].
Robles et al. confirm this five years later, but contend that a linear model is sufficient for BSD and
18 other projects [61]. Mens et al. studied several different metrics for the size of Eclipse, and
found that four of them grew linearly, and another two quadratically [50]. Herraiz et al. compared
the use of LoC with number of files, and showed that they lead tothe same conclusions — including
superlinear growth for many projects (but linear or even sub-linear for others) [28]. Koch extended
the scope by studying thousands of projects hosted on SourceForge, and concludes that a quadratic
model tends to provide better fits for most projects, especially large ones [33]. Thus we can say
that the quadratic model seems to provide a good descriptionof growth in some cases, despite
having no theory regarding why growth should be quadratic.

Given that several years have passed since these previous studies were conducted, we now have
much more data at our disposal. Our data in Fig. 2 clearly shows that Linux’s growth rate now is
even higher than what it was before. While this growth has someirregularities, it is interesting to
check whether the quadratic model still provides the best fit.

However, one needs to be careful about using all the data. In particular, we suggest that the
most representative results will be obtained by using a carefully chosen subset. The problem is that
curve-fitting techniques take all the data points into consideration, and typically try to minimize
the (squared) deviation between the points and the model. Ifmany points are concentrated at some
location (in our case, due to an abnormally high rate of updates), this tends to force the model to
pass through that location. But we are more interested in the general trend over time. We therefore
chose to sample the data at monthly granularity. Thus we use the first development update in each
month, or, in those cases where a development version does not exist, the first production update.

22

linear model

94 96 98 00 02 04 06 08 10

lin
es

 o
f c

od
e

[1
0^

6]

0

1

2

3

4

5

6

7

8

9

10
quadratic model

94 96 98 00 02 04 06 08 10

lin
es

 o
f c

od
e

[1
0^

6]

0

1

2

3

4

5

6

7

8

9

10
piecewise linear model

94 96 98 00 02 04 06 08 10

lin
es

 o
f c

od
e

[1
0^

6]

0

1

2

3

4

5

6

7

8

9

10

Figure 11:Models of the Linux growth rate.

model total error average error
linear 81,116,099 395,688
quadratic 42,017,782 204,965
cubic 64,497,025 314,619
exponential 75,262,951 367,136
quadratic-exponential 27,265,871 133,004
piecewise linear 17,271,571 84,252

Table 6:Errors of models of Linux growth, in lines of code. Note that the scale is 10 million, so an average error of
100,000 is only 1%. Also, the growth in 2.6 has a step shape, leading to unavoidable error by any smooth model.

In the 2.6 series we use the first release of each new version, and the first rc update in intervening
months. This leads to using a total of 205 data points.

The results of fitting various models to this data are shown inFig. 11. In the linear models
we imposed a lower-bound of 0 in cases where the model suggested a negative size. Obviously
the linear model is not a very good fit, because the Linux growth rate is increasing with time. We
nevertheless note that the correlation coefficient of the linear model with the data is pretty high, at
0.978. The quadratic model is better, and provides a reasonable fit up to about 2005. However, it is
less satisfying after that. We also checked a cubic model andan exponential model, but they were
inferior to the quadratic model.

When looking at the data, it is appealing to consider it as being composed of two phases: from
the beginning to the two large jumps in version 2.5 towards the end of 2002, and from 2003 to the
end. Trying to fit each of these phases independently leads toa good fit with a quadratic model
for the first phase (thereby reconfirming the previous results of Godfrey and Tu and others), and
a reasonable fit for an exponential model for the second phase. This two-phase model achieves
much lower error than the previous models (Table 6).

An even better fit is obtained by a simple three-segment piecewise linear model. This model
dissects the timeline of Linux development into three phases: from the initial release to the 2.2
version in May 1999, from the beginning of 2.3 to 2.6.26 in July 2008, and since 2.6.27rc in

23

Linux developers and code change

active developers
300 500 700 900 1100 1300

lin
es

 a
ffe

ct
ed

 [1
0^

6]

0

0.5

1

1.5

2

CC=0.691

CC=0.800

net gain
handled

Figure 12: Correlation between number of developers and change in codesize. Data by Greg Kroah-Hartman for
kernels 2.6.11 through 2.6.35.

August 2008 to the end in mid 2011. In these segments the linear fits imply average growth rates
of 660 lines per day, 1385 lines per day, and 3541 lines per dayrespectively. The three segments
exhibit correlation coefficients of 0.987, 0.996, and 0.993, and the combined model achieves a
significantly lower error than any of the other models checked (this could possibly be improved
further by using a fourth initial segment, as version 1.1 hardly showed any growth). In any case, the
three-phase linear model provides the best description of the growth of Linux so far, and reconciles
the linear growth models with the increasing growth rate. However, it does not make predictions
about how long phases will be and in general what may happen inthe future.

Regardless of the exact growth rate model, it is obvious that Linux is now growing faster than
ever. An interesting question is how such an increasing growth rate is sustained. Capiluppi at
al. found that a reduced growth rate of an agile project was correlated with a restructuring of the
company and a big reduction in the size of the programming team [8]. In the case of Linux it is not
unreasonable to assume that the opposite is happening: as more developers join the ranks [13], the
total rate of growth increases. Fig. 12 shows supportive evidence. This is data collected by Greg
Kroah-Hartman from the Linux git repository, and specifically versions 2.6.11 through 2.6.355.
The data collected includes the number of developers that perform commits on each version, as
well as the number of lines added, deleted, and modified. We use this to calculate the net gain of
lines in each version (by subtracting the deleted line countfrom the added line count) and the total
lines handled in each version (the sum of the three counts). As the figure shows, there is a good
correlation between the number of active developers and thenet gain, and an even better correlation
with the number of handled lines. Similar results (with an even higher correlation) were found by
Koch and Schneider for the GNOME project [34].

5Available atwww.kernel.org/pub/linux/kernel/people/gregkh/kernel_history/kernel_stats.ods

24

Linux subsystems

94 96 98 00 02 04 06 08 10

lin
es

 o
f c

od
e

[1
0^

6]

0

1

2

3

4

5
drivers

arch

Linux subsystems (zoom in)

94 96 98 00 02 04 06 08 10

lin
es

 o
f c

od
e

[1
0^

6]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 fs

sound
net

include

kernel

mm

Figure 13:Growth of Linux subsystems (top-level directories). The unmarked small ones are (in order of final size)
crypto, security, lib, block, ipc, virt, init, firmware, andusr.

Based on the above observation, we may speculate that the increased growth rate of Linux
and other open-source software projects is a manifestationof a positive feedback effect. This is the
combination of two mutually-reinforcing processes. The first is that a successful and useful project
attracts more highly-motivated and capable developers [10]. The second is that the aggregation of
such developers propels the project to ever greater heights. This is expected to be possible in open-
source projects but not in closed-source projects, becauseof the much more flexible and budget-
free staffing of open-source projects. We contend that this positive feedback generates super-linear
growth, and that this dominates the possible detrimental effects of increased complexity.

An interesting related observation is that the superlineargrowth and concurrent growth in num-
ber of developers seem to contradict Brooks’s Law [6]: instead of making progress slower, the
added developers actually make it faster. The implication is that the required communications be-
tween developers do not grow as much as was suggested by Brooks. This phenomenon, which has
been observed before [1], may be attributed to the modular structure of the system and to efficient
mechanisms for disseminating and recording design information such as the Linux kernel mailing
list.

5.3. Growth of Subsystems

The Linux kernel is actually composed of many largely independent subsystems. For example,
even within the core of the kernel, features like file systems, memory management, and commu-
nications are implemented as distinct subsystems. Then there are the multitude of drivers, and
interfaces to many different architectures. It is therefore interesting to check how each such sub-
system grows, and whether they all contribute equally to theoverall growth of Linux.

Results of measuring the subsystems (as reflected by top-level directories) are shown in Fig.
13. In general most subsystems grow similarly to the whole system, implying that they all grow at
roughly the same rate relative to their respective sizes. Toquantify this, we calculate the correlation
coefficients of the subsystem sizes with the total system size. For each subsystem, this is done over

25

CC with lin. reg. of %
subsystem total slope R

2

drivers 0.99564 8.85E-6 1.7E-6
arch 0.99669 0.00328 0.262
fs 0.99021 -0.00282 0.259
sound 0.95417 -0.00343 0.866
net 0.99148 -0.00234 0.717
include 0.71278 -0.00329 0.489
kernel 0.94324 -0.00026 0.054
mm 0.98060 -0.00047 0.438
crypto 0.96780 0.00037 0.814
security 0.94663 0.00037 0.579
lib 0.98402 4.41E-5 0.094
block 0.96162 -3.38E-5 0.274
ipc 0.94322 -0.00035 0.539
virt 0.97420 5.14E-5 0.687
init 0.90513 -0.00011 0.652
firmware 0.68636 -3.21E-5 0.847
usr 0.75877 1.40E-6 0.032

Table 7:Correlations of subsystem sizes with the full system size (CC), and linear regression of the percentage of each
subsystem from the total system size.

the range of versions where this subsystem exists, using only development (and rc) versions. The
results are shown in Table 7, and indicate a very strong correlation in most cases.

To augment this data, we also calculate the percent of the total Linux code that belongs to
each subsystem. Using this metric, proportional growth of all subsystems should lead to perfectly
horizontal lines [24]. The actual results are shown in Fig. 14, indicating some fluctuations and
discrete jumps. Calculating the linear regression of these percentages leads to very small slopes
(Table 7, given in percentage points change per year). However, theR2 values indicate that linear
models are in some cases inappropriate for this data.

The largest subsystem by far, and thus also the one that is growing at the fastest rate, isdrivers.
The second largest isarch (architecture support). These have been recognized as the largest many
times in the past, and together represent about 70% of the kernel [24, 30]. Due to their domi-
nance, it is not surprising that these two subsystems have the highest correlations with the total
system size. The two smallest and most recent subsystems,firmware andusr, exhibit relatively
low correlations, but due to their small size this is not verymeaningful.

According to Fig. 14 thedrivers subsystem is actually growing relative to all others. However,
it suffered a large drop in relative size in version 2.5.5 on 20 Feb 2002. This was the result of
moving the subdirectorydrivers/sound/ to the top level and creating thesound subsystem. This
move affected over 230,000 lines of code.

The arch subsystem, in contradistinction, exhibits a moderate reduction of relative size with

26

Linux subsystems

94 96 98 00 02 04 06 08 10

%
 o

f c
od

e
lin

es

0

10

20

30

40

50

60

70

drivers

arch

Linux subsystems (zoom in)

94 96 98 00 02 04 06 08 10

%
 o

f c
od

e
lin

es

0

2.5

5

7.5

10

12.5

15

fs

sound
net

include

kernel
mm

Figure 14:Relative sizes of Linux subsystems as a percentage of the total code size.

time. However, it exhibits several discrete upwards jumps that counteract this downwards trend.
The most significant of these occur in version 1.1.78 on 9 January 1995 and in version 1.3.94 on 22
April 1996. The first is largely due to adding math emulation support in the Intel i386 architecture.
The second is largely due to added support for the Motorola 68000 architecture. A similar gradual
reduction of relative size with occasional upwards jumps isalso observed for subsystemsfs and
net.

Another subsystem that exhibits an interesting pattern isinclude, which had a huge drop in size
in mid 2008 (as may be expected, this abnormal behavior leadsto a relatively low correlation with
the total system size). This actually took place over a couple of months, in successive updates
of version 2.6.27-rc. The changes are apparently moving several subdirectories of assembler-
related.h files (e.g.include/asm-alpha/) to thearch subsystem (e.g./arch/alpha/include/asm/). And
indeed, a corresponding increase inarch can be seen in Figs. 13 and 14.

The conclusion from the above observations is that evolution is not always a smooth process.
In many cases it is punctuated by relatively large changes ina short period of time (as has been
observed previously by Godfrey and Tu [24] and by Cook et al. [12]). These can be the addition
of a large body of code, possibly developed externally, or a reorganization where code is moved
from one place to another. However, when the complete systemis composed of many subsystems,
the overall effect may appear smoother and more consistent than the dynamics of each individual
subsystem.

6. Possible Implications of the Model

The continuous nature of perpetual development has many implications regarding how software
is developed. Here we speculate about some of them, and the applicability beyond the Linux case
study. Note that most of this discussion is not yet supportedby data, and should therefore be
regarded as proposing promising avenues for further research.

27

The Question of Architecture.A major vulnerability of many software development processes is
the definition of the system’s architecture at a relatively early stage. This is a crucial and singular
point — the analysis and design are geared towards the definition of the architecture, and the
architecture is the basis for the whole implementation. Theproblem becomes much more acute
under perpetual development, as it is explicitly acknowledged that the initial design will need to
accommodate unforeseen additions for many years to come.

A possible way to alleviate the problem is to use an architecture that is inherently open and
flexible [21]. In particular, architectures that support continuing change include the following:

• A “kernel-based” two-tier system, with a stable core and a dynamic set of libraries where
things can change quickly and relatively independently. Examples include emacs with its
basic core and many user-developed Lisp modules, and matlabwith its extensive functional
libraries [60].

• A multi-tier service-oriented architecture, e.g. the agglomeration of Internet services used in
large e-commerce sites such as amazon.com. This is essentially an open system architecture
based on independent components, with small well-defined interfaces [14]. At any given
time new components can be introduced, or existing components may be redone or extended,
with little effect on the others.

• An explicit component-based architecture, where the desired functionality is obtained by
agglomerating multiple independent components. An example is the Eclipse integrated de-
velopment environment with its many plugins [70].

In Linux such compartmentalization is used to a certain degree. For example, file systems are
largely independent of memory management, and drivers (which constitute a large fraction of
the code) are all essentially independent of each other. Thus components can each be modified
independently with little if any effect on other components.

The parallel development that is inherent in the perpetual development model may also help to
cope with radical changes to the architecture. A project maybranch off an exploratory architecture
development branch, that is developed in parallel and independently from the main development
backbone. If the new architecture succeeds it will eventually be adopted, and other modules will be
ported to adhere to it. This is analogous to redundancy in biological systems, which allows many
mutations with no deleterious effects on the organism, at the same time immediately benefiting
from advantageous mutations.

The Problem of Conservation of Familiarity.One of Lehman’s laws of software evolution is the
conservation of familiarity — that the rate of evolution is constrained by what users and devel-
opers can absorb [39]. Perpetual development thus requirestools and approaches that facilitate
conservation of familiarity.

A new developer that enters an existing project suffers an inherent disadvantage: he or she sees
the product of a potentially long evolutionary process, that does not reflect a clean and coherent
design because there never was one. There is no distinction between original basic functions and
later add-ons to fix or support emerging issues. Thus understanding an existing project all at once
is much harder than following its progression as it is being done.

28

A possible solution for getting up to speed with existing code is a code browser which de-
picts the edit history. For example, “history flows” enable one to see when each part of the code
originated, and who added it [69]. Such a view could be synchronized with a code viewer, that
uses a version control system to reconstruct the code as it was at select earlier times. This enables
the exclusion of all subsequent additions and modifications, and allows a new developer to easily
recreate and follow the process that led to the code as it now exists. Synchronizing across multiple
files (e.g. code and header files) will enable to highlight allthe code that was committed within a
specified time period, and thus represents the addition of a certain set of features.

A similar problem happens for users: early adopters have an inherent advantage, as they ini-
tially learn to use the very basic features that are implemented first, and then get to learn the more
advanced and involved features at a slow pace as they are implemented. New users, on the other
hand, have to assimilate the whole caboodle in one big lump. Apossible way to help them out is
to pre-define several views with increasing sophistication. In particular, it is important to have a
novice version with limited features to get started and learn to use the system, that stays consistent
across new releases. In Linux, the importance of conservation of familiarity is witnessed by the
fact that users may refrain from adopting newer versions of the system, thereby necessitating the
continued maintenance of older versions. But support for backward compatibility may be a better
alternative, as users will be able to benefit from improved internal implementations, and it may
reduce the burden of maintaining previous versions separately.

Maintaining Institutional Knowledge.Related to the above two points is the issue of maintaining
knowledge. Classical software development processes, suchas a waterfall model, are document-
heavy [62]. Documents serve as milestones, and as evidence that a phase has been completed
successfully and the next phase should start. Parnas has suggested that even in evolutionary sce-
narios, where documentation cannot be completed in advance, it is worthwhile to “fake it” and
maintain documentation that is in sync with the software [55]. For example, this records important
design decisions and enables new developers to better understand the project.

However, in projects like Linux it seems that detailed documentation is not maintained, which
raises the question of how they manage to continue to grow andflourish. This question is particu-
larly poignant when one takes into account the growth of Linux and the constant addition of new
developers — a situation that might lead to problems of learning and communication as suggested
by Brooks’s Law [6]. The answer seems to be that alternative mechanisms have been created to
store collective knowledge about the project [20]. These are mainly bug repositories and mailing
lists — in the case of Linux, the Linux kernel mailing list, where practically all technical discus-
sions occur in real time. In addition, large amounts of knowledge may actually be stored only in
the heads of lead developers. This may be less risky than it seems, as lead open-source developers
typically maintain close long-term relationships with their projects, irrespective of their current
employment status.

The Curse of Successful Maintenance.The field of software engineering grew from the perception
that the practice of software development is in crisis. Too many projects are late, over budget, or
do not provide the expected functionality. This is especially problematic with large-scale systems,

29

where hundreds of millions of dollars may be wasted on failedefforts. Many such failures may
be rooted in a failure to recognize and use perpetual development as described above [21, 73, 17].
Basically, projects that attempt to do too much at once will most probably fail in one way or
another [29]. An ironic outcome of this is that the burst of the hi-tech bubble in 2001 led to
an improvementin project success rates, because the reduced budgets led tosmaller, more focused
projects [27]. This underscores the importance of the incremental approach to project development:
using increments reduces the scope being considered at eachstep, which makes it realizable.

An important class of oversized projects is those that aim toreplace a previous system that has
become outdated. Famous examples of this type are the FAA airtraffic control system automation
project of 1984–1994 [57], and the more recent FBI virtual case file [25]. The problem in these
cases is that the old system was used successfully for a long time. Placing the focus on maintaining
it rather than on continued development — and, ironically, being successful in such maintenance
— led to an ever-growing gap between the system capabilitiesand what was really needed. Then,
when an upgrade was attempted, it was too late: the gap was toolarge to bridge, and trying to do
so in one fell swoop failed.

Some projects are naturally perpetual, e.g. operating systems. The question of stopping doesn’t
come up at all — it is clear that development of new versions will continue ceaselessly. The
problem is that projects like the FAA air traffic control system and the FBI virtual case file look
like one-shot affairs, that should be designed, implemented, and installed in a single phase. But
this is not necessarily so. Applying the principles of perpetual development, and seeking constant
improvements to the system in terms of both the implementation and the hardware base, may save
them from subsequent failure [17].

Towards Programming as a Service.Finally, the notion of perpetual development has an impor-
tant impact on how software development is funded and contracted. In particular, an important
consideration for organizations contracting software systems is the need to include evolution and
longevity in the contract framework [47]. Support for evolution means the contractor will continue
to develop and adapt the software as needed. This may be achieved by dissecting the project into
small increments, and extending the contract incrementally to follow the progress. Support for
longevity means that if the contractor is unable or unwilling to continue work on the project, he
will allow others to do so, e.g. by providing access to sourcecode. Much of the problems with
maintenance of legacy systems stem from lack of such facilities (although lack of documentation,
rigid architectures, and so on should not be underestimatedas well).

Conventional software contracting includes an inception phase where the feasibility of the
project is verified, and an elaboration phase where the details are fleshed out, leading to the signing
of a contract. Such a contractual framework becomes increasingly less relevant as the length of
the project is extended and the features that were identifiedat the outset become a smaller fraction
of the whole effort. In fact, additional development — and not maintenance — is the service that
should be contracted throughout the lifetime of the project. An interesting future research question
is how to define and quantify the effort and outcomes of a software development effort, in a way
that can be used in lieu of a contract that specifies the anticipated developed product.

30

7. Conclusions and Future Work

The notion of perpetual development is not new. It has been used naturally and successfully
by many large-scale projects, especially but not exclusively in the open-source community. How-
ever, it seems to be badly underrepresented in the professional literature and especially in software
engineering textbooks, which focus on isolated instances of development rather than on the con-
tinuation between many successive developments. It is alsonot prominent in the literature about
open-source and agile development, which tends to focus on managerial and process issues (rapid
releases, incremental setting of targets, pair programming, etc.).

The perpetual development model helps elucidate several aspects of large-scale evolutionary
system development. To summarize, the main contributions of this model are the following.

• Identifying growth (as in Lehman’s 6th law) as the central element in software evolution, at
least for software systems like Linux that correspond to this model. The continued growth is
possibly enabled by positive feedback between the system and a growing developer base.

• Stipulating that multiple versions co-exist at the same time (as was also specified in the
model of Rajlich and Bennett [59]). This separates evolution,which happens in the main
development branch, from maintenance, which happens in production branches.

• Recognizing release points as the points where new branches are forked, and formulating the
release process with its stabilization and followup phasesand possible variants.

At the same time, the model points out directions that would benefit from additional research.
These include

• Linux is a single system. An important goal for additional work is therefore to check the
degree to which the model developed here applies to other large systems. Initial supportive
evidence can be collected from software distribution sites. For example, the Eclipse site
indicates that each new version is preceded by a series of “milestone” releases (equivalent
to our development updates), followed by a series of releasecandidates, and that all this
happens in parallel to the (typically very few) maintenanceupdates of the previous version.
A figure similar to our Fig. 2 portraying the evolution of BIND (a DNS server project) is
given by Xie et al. [74]. Indeed, even some of Lehman’s early data shows overlap between
development and maintenance versions, where growth is observed mainly in new releases
(the FW dataset in [44]).

• Evolution by perpetual development leads to continued addition of functionality rather than
change of functionality. An interesting future research question is to contrast these two
aspects of evolution. In particular, is there evolution that manifests itself as change without
growth (e.g. in the context of software product lines)? Alternatively, does the growth actually
reflect a shift in focus, where part of the codebase falls out of use but is not removed?

• In perpetual development evolution and maintenance both happen after delivery, but in dif-
ferent contexts. We also saw that they may be interdependent, e.g. in the initial years of
Linux versions 2.2 and 2.4. An interesting future research question is the characterization

31

and analysis of such interactions, including the degree that new developments are propagated
into current production versions, and how does maintenanceof existing versions influence
the development of subsequent versions.

• The Linux case study shows that considerable work is expended on preparing code for re-
lease, as reflected by a sequence of release candidates. Doesthis have measurable effects on
properties of the code? And what are the inputs that lead to the decision that the new release
is indeed stable enough for release?

• Finally, perpetuity in software development defies intuition. It seems incredible that a system
can grow and grow without bounds. But Linux has been growing ata superlinear rate for 17
years, and does not show signs of slowing down despite its large current size. While a large
part of this is due to drivers and architecture support, the numbers are still very impressive
even if these are excluded. An important challenge is therefore to understand whether this is
due to misconceptions about the detrimental effects of growth, or to active work (and if so,
what precisely) to counter such effects.

Acknowledgment

This work was supported by a grant from The Wolfson Fund.

Appendix: Linux Versions

The location of the main Linux versions is self evident onwww.kernel.org. However, this is
not always the case for versions that are part of the release process, including pre-release versions,
testing versions, and release candidates. Table 8 lists where these can be found. Note that all
kernel versions are stored under/pub/linux/kernel/, so a location of “v1.0/linux-1.0” actually means
the URLwww.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.gz.

References

[1] P. J. Adams, A. Capiluppi, and C. Boldyreff, “Coordination and productivity issues in free
software: The role of Brooks’ law”. In Intl. Conf. Softw. Maintenance, pp. 319–328, Sep
2009.

[2] G. Antoniol, U. Yillano, E. Merlo, and M. Di Penta, “Analyzing cloning evolution in the
Linux kernel”. Inf. & Softw. Tech.44(13), pp. 755–765, Oct 2002.

[3] K. Beck, “Embracing change with extreme programming”. Computer32(10), pp. 70–77, Oct
1999.

[4] B. Boehm, “Making a difference in the software century”. Computer41(3), pp. 32–38, Mar
2008.

[5] B. W. Boehm, “A spiral model of software development and enhancement”. Computer21(5),
pp. 61–72, May 1988.

[6] F. P. Brooks, Jr.,The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, 1975.

32

series location comments
initial Historic/linux-0.01 pre 1.0 versions not used in our study

Historic/old-versions/linux-0.* numbering is erratic
Historic/v0.99/linux-0.99.*

1.0 v1.0/linux-1.0 only one version
1.1 v1.1/v1.1.0

v1.1/linux-1.1.* many serials missing
1.2 v1.2/linux-1.2.*
1.3 v1.3/linux-1.3.* 1.3.1 is missing

v1.3/linux-pre2.0.*
2.0 v2.0/linux-2.0.*
2.1 v2.1/linux-2.1.*

v2.1/linux-2.2.0-pre*
2.2 v2.2/linux-2.2.*
2.3 v2.3/linux-2.3.*

v2.3/linux-2.3.99-pre*
v2.4/old-test-kernels/linux-2.4.0-* note location underv2.4

2.4 v2.4/linux-2.4.* 2.4.11 is marked “dontuse” but we use it
2.5 v2.5/linux-2.5.*

v2.6/pre-releases/linux-2.6.0-test* note location underv2.6
2.6 v2.6/linux-2.6.*

v2.6/testing/v2.6.*/linux-2.6.*-rc* release candidates
v2.6/longterm/v2.6.*/linux-2.6.* additional longterm versions

Table 8:Location of Linux versions atwww.kernel.org.

[7] A. Capiluppi, “Models for the evolution of OS projects”. In Intl. Conf. Softw. Maintenance,
pp. 65–74, Sep 2003.

[8] A. Capiluppi, J. Fernandez-Ramil, J. Higman, H. C. Sharp, and N. Smith, “An empirical study
of the evolution of an agile-developed software system”. In 29th Intl. Conf. Softw. Eng., pp.
511–518, May 2007.

[9] A. Capiluppi, J. M. González-Barahona, I. Herraiz, and G. Robles, “Adapting the “staged
model of software evolution” to free/libre/open source software”. In 9th Intl. Workshop Prin-
ciples of Softw. Evolution, pp. 79–82, Sep 2007.

[10] A. Capiluppi and M. Michlmayr, “From the cathedral to the bazaar: An empirical study of
the lifecycle of volunteer community projects”. In Open Source Development, Adoption, and
Innovation, pp. 31–44, Jun 2007. (IFIP vol. 234).

[11] A. Capiluppi, M. Morisio, and J. F. Ramil, “Structural evolution of an open source system: A
case study”. In 12th IEEE Intl. Workshop Program Comprehension, pp. 172–182, Jun 2004.

[12] S. Cook, R. Harrison, and P. Wernick, “A simulation model of self-organising evolvability in
software systems”. In IEEE Intl. Workshop Software Evolvability, pp. 17–22, Sep 2005.

33

[13] J. Corbet, G. Kroah-Hartman, and A. McPherson, “Linux kernel development: How fast
it is going, who is doing it, what they are doing, and who is sponsoring it”. URL
www.linuxfoundation.org/docs/lf_linux_kernel_development_2010.pdf, Dec 2010. (Down-
loaded 9 Jun 2011).

[14] F. Cuadrado, B. García, J. C. Dueñas, and H. A. Parada, “A case study on software evolution
towards service-oriented architecture”. In 22nd Intl. Conf. Advanced Inf. Netw. & App. –
Workshops, pp. 1399–1404, Mar 2008.

[15] M. A. Cusumano and R. W. Selby, “How Microsoft builds software”. Comm. ACM40(6), pp.
53–61, Jun 1997.

[16] M. Denne and J. Cleland-Huang, “The incremental funding method: Data-driven software
development”. IEEE Softw.21(3), pp. 39–47, May/Jun 2004.

[17] P. J. Denning, C. Gunderson, and R. Hayes-Roth, “Evolutionary system development”.
Comm. ACM51(12), pp. 29–31, Dec 2008.

[18] A. Deshpande and D. Riehle, “The total growth of open source”. In 4th Conf. Open Source
systems, Sep 2008.

[19] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, “Does code decay?
assessing the evidence from change management data”. IEEE Trans. Softw. Eng.27(1), pp.
1–12, Jan 2001.

[20] L. Gasser, W. Scacchi, G. Ripoche, and B. Penne, “Understanding continuous design in
F/OSS projects”. In 16th Intl. Conf. Softw. & Syst. Eng. & Apps., Dec 2003.

[21] T. Gilb, Principles of Software Engineering Management. Addison-Wesley, 1988.
[22] M. W. Godfrey and D. M. German, “The past, present, and future of software evolution”. In

24th Intl. Conf. Softw. Maintenance, pp. 129–138, Sep 2008. (Special track on Frontiers of
Software Maintenance).

[23] M. W. Godfrey, D. Svetinovic, and Q. Tu, “Evolution, growth, and cloning in Linux: A
case study”. In CASCON workshop on Detecting Duplicated and Near Duplicated Struc-
tures in Large Software Systems: Methods and Applications, 2000. (Presentation available at
plg.uwaterloo.ca/˜migod/papers/2000/cascon00-linuxcloning.pdf).

[24] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case study”. In 16th Intl.
Conf. Softw. Maintenance, pp. 131–142, Oct 2000.

[25] H. Goldstein, “Who killed the virtual case file?” IEEE Spectrum42(9INT), pp. 18–29, Sep
2005.

[26] D. Harel, “Statecharts in the making: A personal account”. Comm. ACM52(3), pp. 67–75,
Mar 2009.

[27] F. Hayes, “Chaos is back”. Computerworld Nov 2004. URL
http://www.computerworld.com/s/article/97283/Chaos_Is_Back.

[28] I. Herraiz, G. Robles, J. M. González-Barahona, A. Capiluppi, and J. F. Ramil, “Comparison
between SLOCs and number of files as size metrics for software evolution analysis”. In 10th
Conf. Softw. Maintenance & Reengineering, pp. 206–213, Mar 2006.

[29] C. A. R. Hoare, “The emperor’s old clothes”. Comm. ACM24(2), pp. 75–83, Feb 1981.

34

[30] A. Israeli and D. G. Feitelson, “The Linux kernel as a case study in software evolution”. J.
Syst. & Softw.83(3), pp. 485–501, Mar 2010.

[31] C. Izurieta and J. Bieman, “The evolution of FreeBSD and Linux”. In 5th Intl. Symp. Empir-
ical Softw. Eng., pp. 204–211, Sep 2006.

[32] B. A. Kitchenham, G. H. Travassos, A. von Mayrhauser, F. Niessink, N. F. Schneidewind,
J. Singer, S. Takada, R. Vehvilainen, and H. Yang, “Towards an ontology of software main-
tenance”. J. Softw. Maintenance: Res. & Pract.11(6), pp. 365–389, Nov/Dec 1999.

[33] S. Koch, “Software evolution in open source projects—a large-scale investigation”. J. Softw.
Maintenance & Evolution: Res. & Pract.19(6), pp. 361–382, Nov/Dec 2007.

[34] S. Koch and G. Schneider, “Results from software engineering research into open source
development projects using public data”. In Diskussionspapiere zum Tätigkeitsfeld Infor-
mationsverarbeitung und Informationswirtschaft, H. R. Hansen and W. H. Janko (eds.),
Wirtschaftsuniversität Wien, 2000.

[35] P. Kruchten, “A rational development process”. Crosstalk9(7), pp. 11–16, Jul 1996.
[36] C. Larman and V. R. Basili, “Iterative and incremental development: A brief history”. Com-

puter36(6), pp. 47–56, Jun 2003.
[37] M. M. Lehman, “Programs, cities, students – limits to growth”. In Programming Methodol-

ogy, D. Gries (ed.), Springer Verlag, 1978.
[38] M. M. Lehman, “Programs, life cycles, and laws of software evolution”. Proc. IEEE68(9),

pp. 1060–1076, Sep 1980.
[39] M. M. Lehman, “On understanding laws, evolution, and conservation in the large-program

life cycle”. J. Syst. & Softw.1, pp. 213–221, 1980.
[40] M. M. Lehman, “Laws of software evolution revisited”. In 5th European Workshop on Soft-

ware Process Technology, pp. 108–124, Springer Verlag, Oct 1996. Lect. Notes Comput.Sci.
vol. 1149.

[41] M. M. Lehman and F. N. Parr, “Program evolution and its impact on software engineering”.
In 2ndIntl. Conf. Softw. Eng., pp. 350–357, Oct 1976.

[42] M. M. Lehman, D. E. Perry, and J. F. Ramil, “Implications of evolution metrics on software
maintenance”. In 14th Intl. Conf. Softw. Maintenance, pp. 208–217, Nov 1998.

[43] M. M. Lehman and J. F. Ramil, “The impact of feedback in the global software process”. J.
Syst. & Softw.46(2-3), pp. 123–134, Apr 1999.

[44] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perrry, and W. M. Turski, “Metrics and laws
of software evolution – the nineties view”. In 4th Intl. Software Metrics Symp., pp. 20–32,
Nov 1997.

[45] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics of application software
maintenance”. Comm. ACM21(6), pp. 466–471, Jun 1978.

[46] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue, “Analysis of the Linux kernel evolution
using code clone coverage”. In 4th Intl. Workshop Mining Softw. Repositories, May 2007.

[47] C. M. Lott, “Breathing new life into the waterfall model”. IEEE Softw.14(5), pp. 103–105,
Sep/Oct 1997.

35

[48] M. L. Maher and J. Poon, “Modelling design exploration as co-evolution”. Microcomputers
in Civil Engineering11(3), pp. 195–209, 1996.

[49] D. D. McCracken and M. A. Jackson, “Life cycle concept considered harmful”. Softw. Eng.
Notes7(2), pp. 29–32, Apr 1982.

[50] T. Mens, J. Fernández-Ramil, and S. Degrandsart, “The evolution of Eclipse”. In Intl. Conf.
Softw. Maintenance, pp. 386–395, Sep 2008.

[51] E. Merlo, M. Dagenais, P. Bachand, J. S. Sormani, S. Gradara, and G. Antoniol, “Investi-
gating large software system evolution: The Linux kernel”. In 26th Comput. Softw. & Apps.
Conf., pp. 421–426, Aug 2002.

[52] M. Michlmayr, F. Hunt, and D. Probert, “Release management in free software projects:
Practices and problems”. In Open Source Development, Adoption, and Innovation, pp. 295–
300, Jun 2007. (IFIP vol. 234).

[53] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, andY. Ye, “Evolution patterns of
open-source software systems and communities”. In 5th Intl. Workshop Principles of Softw.
Evolution, pp. 76–85, May 2002.

[54] Y. Padioleau, J. L. Lawall, and G. Muller, “Understanding collateral evolution in Linux device
drivers”. In EuroSys, pp. 59–71, Apr 2006.

[55] D. L. Parnas and P. C. Clements, “A rational design process: How and why to fake it”. IEEE
Trans. Softw. Eng.SE-12(2), pp. 251–257, Feb 1986.

[56] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of open-source and closed-
source software products”. IEEE Trans. Softw. Eng.30(4), pp. 246–256, Apr 2004.

[57] T. S. Perry, “In search of the future of air traffic control”. IEEE Spectrum34(8), pp. 18–35,
Aug 1997.

[58] V. Rajlich, “Changing the paradigm of software engineering”. Comm. ACM49(8), pp. 67–70,
Aug 2006.

[59] V. T. Rajlich and K. H. Bennett, “A staged model for the software life cycle”. Computer
33(7), pp. 66–71, Jul 2000.

[60] E. S. Raymond, “The cathedral and the bazaar”. URL www.catb.org/˜esr/writings/cathedral-
bazaar/cathedral-bazaar, 2000.

[61] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution and growth in
large libre software projects”. In 8th Intl. Workshop Principles of Softw. Evolution, pp. 165–
174, Sep 2005.

[62] W. W. Royce, “Managing the development of large software systems”. In Proc. IEEE
WESCON, pp. 1–9, Aug 1970. (Reprinted in 9thIntl. Conf. Softw. Eng., pp. 328–338, 1987.).

[63] S. R. Schach, T. O. S. Adeshiyan, D. Balasubramanian, G. Madl, E. P. Osses, S. Singh,
K. Suwanmongkol, M. Xie, and D. G. Feitelson, “Common coupling and pointer variables,
with application to a Linux case study”. Software Quality J.15(1), pp. 99–113, March 2007.

[64] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. Offutt, “Maintainability of the
Linux kernel”. IEE Proc.-Softw.149(2), pp. 18–23, 2002.

[65] L. G. Thomas, S. R. Schach, G. Z. Heller, and J. Offutt, “Impact of release intervals on

36

empirical research into software evolution, with applications to the maintainability of Linux”.
IET Softw.3(1), pp. 58–66, Feb 2008.

[66] L. G. Thomas, S. R. Schach, Z. G. Heller, and J. Offutt, “Impact of release intervals on
empirical research into software evolution, with application to the maintainability of Linux”.
IET Softw.3(1), pp. 58–66, Feb 2009.

[67] A. Tomer and S. R. Schach, “The evolution tree: A maintenance-oriented software devel-
opment model”. In 4th European Conf. Softw. Maintenance & Reengineering, pp. 209–214,
Mar 2000.

[68] W. M. Turski, “Reference model for smooth growth of software systems”. IEEE Trans. Softw.
Eng.22(8), pp. 599–600, Aug 1996.

[69] F. B. Viégas, M. Wattenberg, and K. Dave, “Studying cooperation and conflict between au-
thors with history flow visualizations”. In Conf. Human Factors in Comput. Syst., pp. 575–
582, Apr 2004.

[70] M. Wermelinger and Y. Yu, “Analyzing the evolution of Eclipse plugins”. In 5th Intl. Work-
shop Mining Softw. Repositories, pp. 133–136, May 2008.

[71] Wikipedia, “Software release life cycle”. URL en.wikipedia.org/wiki/Software_release_life_cycle.
(Visited 25 Dec 2010).

[72] C. M. Woodside, “A mathematical model for the evolution of software”. J. Syst. & Softw.
1(4), pp. 337–345, 1980.

[73] S. Woodward, “Evolutionary project management”. Computer32(10), pp. 49–57, Oct 1999.
[74] G. Xie, J. chen, and I. Neamtiu, “Towards a better understanding of software evolution: An

empirical study on open source software”. In Intl. Conf. Softw. Maintenance, pp. 51–60, Sep
2009.

37

