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Abstract

Software evolution is widely recognized as an important em@mon phenomenon, whereby the
system follows an ever-extending development trajectatly imtermittent releases. Nevertheless
there have been only few lifecycle models that attempt térgpisuch evolution. We use the evo-
lution of the Linux kernel as the basis for the formulatiorsath a model, integrating the progress
in time with growth of the codebase, and differentiatingwestn development of new function-
ality and maintenance of production versions. A unique el@nof the model is the sequence of
activities involved in releasing new production versicarsi how this has changed with the growth
of Linux. In particular, the release follow-up phase befttre forking of a new development ver-
sion, which was prominent in early releases of productiasives, has been eliminated in favor
of a concurrent merge window in the release of 2.6.x versioffe also show that a piecewise
linear model with increasing slopes provides the best gasmn of the growth of Linux. The
perpetual development model is used as a framework in witoimwonly recognized benefits of
incremental and evolutionary development may be demdestrand to comment on issues such
as architecture, conservation of familiarity, and failedjpcts. We suggest that this model and
variants thereof may apply to many other projects in additmLinux.
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“Linux is evolution, not intelligent design.”
Linus Torvalds

1. Introduction

Classical software lifecycle models typically partitiore thoftware’s life into two periods: de-
velopment and maintenance. The models focus on the develdpiiurther partitioning it into
phases and articulating its iterative nature. Maintenasmtgpically not discussed in much detail,
despite the wide agreement that it is vital and consumesdenable resources. It is simply stated
that the same principles and techniques used in developroatihue to apply, and that actually
all of development is done so as to facilitate maintainghili
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The implication of such models is that the full system sizexigsected to be achieved at the end
of development. Only then is the system delivered to theotnst and installed in the field. This
applies even for very large and complex systems. The custgegpected to have participated in
the requirements engineering and in the testing, but isxpeated to have actually used the system
for real. Once the system is installed, maintenance ingobath correction of faults (corrective
maintenance) and updates and improvements (adaptive afedtpe maintenance) — but is not
expected to involve any major additional development. Astdrm “maintenance” implies, the
goal is essentially to extend the usability of the systemhimenlarge it.

Comparing this approach with those underlying other fields find a strong match with the
construction of large physical systems. For example, aarmteer, a shopping mall, a new airport,
or a cathedral are designed and built with inputs from théotner who initiated them, but they
cannot be used before completed. Once completed, they edeansl maintained for an extended
period. The construction and maintenance are clearlyngdigteriods with different characteristics.

But there are other large systems that are built in a complei@ierent manner, both in the
physical world and in cyberspace. These are not createdgooatch in one fell swoop, but rather
evolve from humble origins over a long period of time. In pardar, evolution is often seen in new
technologies, even when we like to think of the changes tipeyva as revolutionary. Consider
automobiles as an example. The first step in producing auidesowas to replace a horse with a
motor, while maintaining the overall structure. Gear boaed improved suspension came later.
So did batteries for starting the motor and accessories asiechradio receiver. Thus while each
individual car was developed and then maintained, the twdyaamics were of evolution from
one year to the next. Each step improved the usability of #ve cars, and enabled a larger fol-
lowing to emerge. This happened in parallel with the devalept of an infrastructure for gasoline
distribution and an improved and incrementally growingkegstem — neither gas stations, roads,
nor cars would be justified without the others.

A similar process may underlie the evolution of dynamic absystems — a university, a
multinational corporation, the stock exchange, or a baZaarexample. Such systems are the
product of a long process of give and take that refined theailde so their evolution is guided
by continuous interactions between the system and its@mwient. This interaction is extremely
important, as it is the impetus for further developmentsgundes the way towards developments
that will actually be useful in practice. Thus the systemasgar “designed” in the normal meaning
of the word, and its requirements are not and can not be speaifiadvance. Nevertheless, this is
the easier and safer path to follow, as having to design #veagyin advance can be a lot of work
and may lead to great risks if something is not done right.

Large software systems also often evolve in this mannesiplgsin parallel to the evolution
of the social or business systems that use them. For exathplepftware systems underlying the
operations of Amazon.com, Ebay, and Facebook are much noonelex and feature rich now
then they were when these companies were founded. But thisetatesigned in advance, and
the specific features that would emerge could not be antexpalnstead, the software evolved
and grew together with the company, an epitome of Lehman'g/flg” systems [38]. A similar
process can also happen with software that has a generalarsarunity rather than being used by
a specific company. In this paper we focus on modeling theuteol of one such system, namely
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the Linux kernel.

Evolutionary development has been recognized as an impguegadigm at least since the
seminal works of Lehman [39] and Gilb [21]. In fact, is can igueed that today most of the
software industry follows evolutionary principles at lesssome degree. This is especially marked
in software product lines, where successive software mtsdexplicitly follow and extend each
other. It is also the underlying basis of the agile softwaement. However, evolution can
in principle take many forms. For example, Lehman'’s first laiwsoftware evolution was that
evolving systems change continuously. This implies thateminew features are added, old ones
should be removed at a similar rate. His sixth law, formuatearly a decade later, was that
evolving systems continuously grow. This implies that ders actually the result of many more
additions than deletions. In retrospect this appears thdenore common approach, and indeed
this is what we observe in Linux [51, 70].

In software engineering terms the process of evolutionamelbpment can be viewed as ex-
tending the notions of iteration and incrementation, wittual production use by real users as an
integral part of the loop. The novelty of our model is thatleagcle is not viewed independently,
but rather the continuation from one cycle to the next is emspged. One of the byproducts of
this point of view is the deprecation of the terms “delivesyid “maintenance”. Instead, the soft-
ware continues to evolve and grow in a procesge@ipetual developmentvith regular releases
of new production versions replacing the singular deliv@rthe finished product. This is indeed
what we find for the Linux kernel, and also in many other (maopen source) projects. Another
byproduct is exposing the relationship between paralledigas of the project that exist at the
same time. In particular, maintenance is applied to pradaatersions that exist in parallel to the
main development version.

Our main goal in this paper is to articulate the perpetuaétbgpment model, using the Linux
kernel as a motivating example. Using the Linux data, we detnate the central role of the
growth of the system over time, the continuous nature of ldpweent and release activities, and
how they differ from maintenance activities. By providing etailed analysis of Linux develop-
ment, we attempt to uncover development patterns that daemipally widely used, but have not
been articulated and studied in the literature. We therilpspeculate on the implications of these
development patterns.

The choice of Linux is not accidental. Linux is perhaps thsti&own and most success-
ful open-source project in the world, to the point of becognthe poster-child of the whole
open source movement. The source code of its full develophistory is freely available from
www.kernel.org and numerous mirrors worldwide — at present totaling 1328igas (Table 1
and Table 8). Importantly, Linux’s development defies commmanagement theory [60]. At the
same time, it does not fit into any common software lifecyctael. This motivates us to suggest
the perpetual development model. This model is descripatieer than prescriptive. Its goal is
to create a framework for discussing what is actually beimgedin the field and why, rather than
attempting to dictate ideals. In particular, we note thauixi development is a dynamic process
in constant flux, and adapts to overcome problems that osctiveasystem grows. Thus different
variants of the model apply to different parts of Linux’s kx@mn.

The rest of this paper is organized as follows. In the nextieaeve review related work on
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designation number versions

production 159 1.0,1.2,2.0,2.2,2.4

development 397 1.1,1.3,2.1,23,25

pre-release 56 pre2.0,2.2.0-pre, 2.3.99-pre, 2.4.0250-test
2.6 production 463 2.6.*

2.6 release candidates 247 2.6.*-rc

total 1322

Table 1: Linux versions and their designations. Only full versiome aounted, ignoring patches that were used
especially in the early years.

modeling the development of long-lived evolving projecthe perpetual development model is
then presented in Section 3. Section 4 elaborates on releabkeh are of central importance in
the model. This is followed by a detailed discussion of Liswgrowth in Section 5. Finally, we
present some possible implications of the model in Sectiandconclude in Section 7.

2. Lifecycle Modelsfor Long-Lived Software Projects

Classical software lifecycle models typically cover theelepment from a concept to a deliv-
ered software product. A recurring feature in early modethsas the waterfall model and the V
model was the quest for stability. First, one needs to gdhalrequirements right. This is then
used to formalize comprehensive specifications. Given pleeiBcations, we can create a design
that satisfies them, and so on. But this scenario is often giim@levant in real life, because
the clients can't articulate all their requirements in athg so specifications are never complete,
leading to designs that will have to change when more reopgres are discovered [49].

The alternative is to consider development as a learninggss) where requirements and speci-
fications grow together as more experience is gained anslaigkunderstood. This is incorporated
into models by employing an iterative and incremental pged86]. In principle, this can con-
tinue beyond the initial delivery of a working system to itsets. Indeed, Boehm mentions the
applicability of the spiral model — complete with risk ass@ent at each stage — to proposed
enhancements that may be applied to systems already intigpedause [5]. Likewise, Kruchten
suggests the application of additional “generations” efuhified process to handle system evolu-
tion [35]. But their main focus remains the basic initial deyenent.

As a result of focusing on the initial development, up to prciddelivery, common lifecycle
models do not apply to the full life-span of long-lived saoding products. In particular, they do
not describe the relationship between successive reledsbe product. This has prompted the
development of specialized lifecycle models to fill this gap

One such model is the evolution-tree model of Tomer and 3ck@]. The levels of this
tree represent stages of development: requirements, sssatiesign, and implementation. The
evolution of a software product is then described as suseebsanches of the tree, where each
new version backtracks and then branches out from someitetred previous branch. Thus if only
the implementation is modified relative to the previous irsthe new branch will start at the third



level, but if there are new requirements the new branch Wit slirectly from the root. At the same
time, development artifacts such as design documents meguised across corresponding levels
in successive branches.

Another model is the staged model of Rajlich and Bennett [58]s Thodel creates a frame-
work for describing the evolution of a software product,hwiach version passing through the
stages of evolution, servicing, phaseout, and finally dosa. Notably, the “versioned” vari-
ant of the model allows for multiple serviced versions btang off from the main sequence of
evolved versions. A system that cannot continue to evolweiststill serviced, turns into a legacy
system. This model provides two important features thatlasking in the Tomer and Schach
model. First, it places a much stronger emphasis on theraatytiof the whole process, as new
versions always start from a previous one without backiregkSecond, it allows for the parallel
existence of multiple versions, and in particular, for nevelopment that is done in parallel with
the maintenance of an existing production version. Thusabdples evolution from maintenance,
and avoids the rat-hole of arguments whether these ternmsyaomymous [22]. A related model
is the split and re-integrate model of Nakakoiji et al. [53hisSTmay be viewed as a refinement of
the Rajlich and Bennett model, where developments done in @meh are propagated to another
branch that is developed in parallel. Capiluppi et al. haweeoled that in open-source projects a
legacy system may be picked up and revived by a new set of @, thus returning it to the
evolution phase [9].

Our model is also a refinement of this approach, which addshanaimension: how the
product grows during its evolution. In addition, we emphaghe implications of continued devel-
opment and parallel branches, as opposed to the managp&dta as emphasized by Rajlich and
Bennett. Thus we do not deal with issues like staffing, chofdarmuage, change of technology,
etc. The model can also be viewed in relation to Raymond’s svorkopen-source development
(also inspired by Linux) [60], where we try to formulate alifycle model to his technical obser-
vations and description of social processes.

Indeed, Linux evolution has been studied by several auth8eseral authors have studied
Linux growth, especially in connection with Lehman’s Lavisoftware evolution [24, 61, 28, 31,
30]. This is also related to the potential increase in coripgleand the ensuing consequences re-
garding maintainability [64, 63, 65, 30]. Others considechmanisms of evolution, and especially
the use of cloning [23, 51, 2, 54, 46]. Perhaps the closeaitovork is the paper by Godfrey and
Tu [24]. In particular, our rendition of Linux growth and jgdlel versions in Fig. 2 extends graphs
drawn by them, as does the discussion of individual subsysie Section 5.3. But all these works
typically do not formulate an explicit lifecycle model.

3. The Perpetual Development Model

Conventionally, lifecycle models describe the sequencetidies that need to be taken and the
transitions between them. The perpetual development medebre about continuous activities,
and in particular, activities that happen in parallel. Heere it also includes singular decision
points where activities change or branch off from each other
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Figure 1:Basic version of the perpetual development model.

3.1. Modeling Growth and Parallel Activities

Practically all lifecycle models use 2D pictures for illiegton. The waterfall is typically drawn
as a diagonal sequence of blocks, possibly with some otberezits, where the direction from top-
left to bottom-right correlates with some notion of prograad time. The spiral model, as its name
suggests, is drawn as a spiral, where the angle reflectsdbersee of activities within each cycle,
and the radius reflects the cycle number. In the models of T@né Schach and Rajlich and
Bennett both dimensions correlate with time, one depictiogess within a version and the other
progress from one version to the next. However, neither dgioa explicitly reflects time with a
linear scale.

The perpetual development model explicitly uses the twoedisions to portray time (on the
X axis) and size (on th& axis). “Size” can be interpreted literally, or alternativé can be
interpreted as the feature set provided by the software. uasitifying features may be harder to
define, we limit the discussion to physical size.

Given these axes, the model consists of a continually gpwevelopment backbon&om
which stableproduction versiondranch out at intermittentlease pointgFig. 1). Thus several
versions of the product may exist simultaneously. In tragfework, the following activities occur:

1. Users of production versions provide feedback and newirements to developers, and bug
alerts to maintainers.

2. Maintainers maintain the current production versiortss ay also involve interactions with
developers working on the next version.

3. Developers, at the same time, continue to develop thersydn doing so they use the input
from the users and maintainers of the current versions.

4. The development activity is punctuated by releases of vemsions. Developers therefore
alternate between two types of activity: implementing neatt@ires and performing a release.
We expand on this issue in Section 4.
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Figure 2: Perpetual development of Linux from 1994 to 2011. Up to 20@8sions with odd major number (1.3, 2.1,
etc.) were development versions, and those with even nugifbe, 2.0) were stable production versions. In version
2.6 only production versions are released, while new deveémt work is reflected only in release candidates.

5. When new production versions are released, users maydegrghe new version. This may
be a slow process, and not all users necessarily upgrade.

It is important to be precise regarding the meaning of the teelease”. In the model we use
this term exclusively to mean the release of a new productgzaion of the system — an event
sometimes referred to as a “major” release. We distingtishftom the “minor” releases that oc-
cur when a new instance of an existing version is made avail&tproduction versions such new
instances typically reflect some maintenance work that bas ldone, e.g. the correction of a bug
or the application of a security patch; in development wersj they may reflect additional progress
in the development. To avoid ambiguity, we shall refer tohsongnor releases as “updates”. And
when we refer to a Linux kernel version, such as 2.4, we argallgtreferring to a series of such
minor versions, of the form 2.4.

The model and the list of parallel activities are based orntation of the development of the
Linux kernel from its initial release in 1994 to mid 2011, &pitted in Fig. 2 [30]. For size we use
lines of code; this and other possible size metrics are degmibelow in Section 5.1. The growth of
the backbone need not necessarily be strictly linear agyinlk-iand indeed the Linux data exhibits
some fluctuations and a generally increasing growth ratg [2His is discussed in Section 5.2.
The production offshoots remain relatively stable as magxpected (the initial growth of 2.2 and
2.4 is discussed below).

An important feature of the model is to demote the status oflpct delivery (as was also
done in the long-term lifecycle models cited above in Secfp Delivery is no longer a focal
point of the process, dividing the product lifetime into dpment and maintenance. Rather, it
becomes one of many similar points along the continuousegsof development, where new



production versions are released. When such new releasesades users start to upgrade to the
new production version at their own pace, but some may chootse upgrade at all. Production
versions therefore generally need to be maintained welbheyhe release of the next version.
For example, Linux kernel version 2.4, which was first reéebim January 2001, was still being
maintained in late 2010. More recently, versions 2.6.16.2Z, and 2.6.32 were each maintained
for several years. In fact such behavior is not unique to xirfunotable example is the release of
Windows Vista, where many users elected not to upgrade therr&o keep using Windows XP.

Another important feature of the model is to delimit the scopmaintenance activities. Main-
tenance implies an effort to preserve and sustain the uyabilthe system, possibly with pe-
ripheral modifications, but it does not involve continuirglduild the core of the system. This
distinction between maintenance and continued developnadmnch is central to our model, is
missing from many discussions of maintenance, which intpliassume there is only one ver-
sion of the product (e.g. [32]). It also relieves the forcedusion of continued development in
“perfective maintenance” [45], which is necessary if ongsts on using the “maintenance” label
for everything that happens beyond the first delivery. Tinsle maintenance does in fact apply
to versions of the product that are in production use, it isthe main activity but rather done in
parallel to continued development of the backbone. And feot@rminology aspect, maintenance
is not a synonym for evolution.

An interesting question that arises from the distinctiobmaen continued development and
maintenance is who performs these activities. In the comeapen-source projects, maintainers
and developers may be the same people, as developers magwWrameship or at least a feeling of
responsibility for their code, and will therefore maintéim parallel to performing other develop-
ment activities. Thus one may expect maintenance acsui®e strongly correlated with a subset
of development activities that happen at roughly the same.tiFor example, bugs found during
continued development may point to similar bugs in pargiteduction versions, and vice versa.
Moreover, users may also be the same people, as the commtikégnel hackers largely develops
and maintains Linux for their own use. One may also extergitthihe “real” end users, which are
mainly Linux distribution companies like Red Hat, Debiandawovell/[SUSE, who nevertheless
contribute significantly back to the commurtity

The graphical representation of perpetual developmeat@tsvides a framework for demon-
strating the known benefits of iterative and incrementaktgyment with evolutionary delivery,
such as [21]

e The lead time to the first working software is short. Themai working version always
exists for the benefit of users. Thus there is little dangén@iproject coming to nothing.

e Real users doing real work are effectively brought into theettgoment loop. Their work
acts as a test of system functionality, and helps in uncoggtoblems [60].

e Having actual users work with the system also uncovers newirements that were not

1Canonical, the company behind Ubuntu, seems to focus modeskiop software than on the operating system
kernel.



anticipated in advance, and allows for prioritization dfetient requirements that have not
been implemented yet. The user requirements and the syltdmsdlves them co-evolve
together [38, 48].

e The relatively short time between releases implies focus lamited scope. This is the
evolutionary alternative to progress in the “cone of uraiaty” [4]: rather than starting with
wide uncertainty and working to reduce it, maintain a muchl#nscope (and hence smaller
uncertainty) throughout.

e The relatively short time between releases also impliesgharitization and bounding be-
comes crucial: at each step, one needs to decide what to defaatshot to do, based on
user input or on the effect on the bottom line [16].

In addition, it highlights issues that are often not noticetth as

e The danger of releasing an unstable version is reducedubeassers upgrade to the new
version only gradually, and they have the previous verssoa fallback.

e The continued growth of the system implies that new code megeed all the time. This
calls into question the notion that eventually incremeciange and refactoring will become
the dominant activities rather than “clean” developmeotrfiscratch [58].

e The long time scale and recurrent nature of the project ispihat new technology may
be incorporated in the development process as it becoméaldgaas opposed to freezing
everything at the outset.

The novelty of the perpetual development model is mainlyrticalating the continuous and
parallel aspects of software development that are oftanredlicit or beyond the scope of the
lifecycle model. The difference from common models basedtenation and incrementation is
that the process is not expected to end with a “final” reledpe it just goes on and on as long as
it is useful. Of course it will most probably end eventualiyt the mindset is one of perpetuation.
We allege that this mindset is not unique to Linux, and isrofteesent in open-source projects [60]
and in agile development [3].

3.2. Relationship with Agile Development

The perpetual development model may seem to be redundant digesimilarity with evolu-
tionary development in general [21], or agile developmangarticular [3]. However, these terms
actually denote different things.

As described in the introduction, we first make the distotthetween projects which undergo
evolutionary development and projects which are devel@retithen maintained (Fig. 3). This
distinction relates to the nature of the project. Evolugigndevelopment is suitable in situations
where the rate of change is high, and the project requiresrearinot be defined in advance. A
develop-maintain style is suitable for those situationgmhone must define the full project in
advance. In such cases, the learning process inherentendhdionary approach must be replaced
by careful planning and modeling. Indeed, this was the ingpédr the development of tools like
statecharts [26]. These were developed as part of an effordit down the requirements for the
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Figure 3: Relationship between evolutionary software developnmsrpetual development, and agile development.

software controlling a new fighter plane, a good example afumson where essentially all the
software is needed for an operational system, the systesridehange much after initial delivery
(except for new versions for new models of the plane, simda product line), and it is practically
impossible to carve out a small initial chunk that would befukin itself.

Perpetual development is one approach to accomplish @wojutamely evolution by contin-
uing to develop the product. This implies continued groveth reflected by Lehman’s 6th law.
Note, however, that growth is not necessarily implied by téren “evolution” by itself. In the
animal kingdom, for example, there are some cases wheret@mlnvolved growth in size (think
dinosaurs, giraffes, and whales), but many where it did edj. (bacteria and other single-cell
organisms). For software it is also possible to envisioriwgian by changing and adapting the
codebase, rather than by adding to it. However, it seemsrthptictice perpetual development is
a common approach to software evolution, and perhaps thendatrone.

The dictionary definition of “agile” is something that isfigand quick. In software develop-
ment, this term has come to mean an iterative process withifiany long-term planning Still,
many agile projects are terminal projects, where the agifgaach is followed for the duration,
but it is expected to end either when all the desired feataresione or when the allotted time
(and possibly budget) is exhausted. At the same time, teeae emphasis (made explicit as one
of the core practices of Extreme Programming, for examplenaintaining a “sustainable pace”
of development that can continue indefinitely. Perpetuaéligpment focuses on this aspect, and
highlights the continuous nature of the work as an enablallahe other features. This is in
contrast to most interpretations of agile developmentctl@mphasize the contrast with “death
march” projects and overtime, and the importance of techimiements such as the lack of formal
detailed planning and the use of pair programming.

Furthermore, a major difference is that perpetual devetyns a lifecycle model, whereas
agile development is a methodology. Thus instantiationsgile development, such as Extreme
Programming or SCRUM, each promote specific procedures aactiggs. Examples include

2See The Agile Manifesto, available lattp://www.agilemanifesto.org/, for guiding principles.
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maintaining a backlog of features, conducting daily stantheetings, and adhering to a strict
release schedule. Our case study of Linux is a good examgésafistinction: Linux is definitely
an instance of perpetual development, but it does not siblesttr any specific agile methodology.
Thus, while it currently adheres to a regular release sdbetith a cycle of 2—3 months, this was
not always the case, and it is not part of the definition of tloeleh

3.3. Variants in the Linux Case Study

The Linux data shown in Fig. 2 is similar to the model introelden Fig. 1, but not identical to
it. Indeed, the model attempts to gloss over differences paasent the most salient concepts in a
clean manner. Reality is often more complex.

It is easy to identify three phases in the Linux kernel’s digpment (as reflected in Fig. 2),
which can be viewed as variations on the more abstract arefglenodel. The first is the version
1 kernels, from 1994 to 1996. During this period most of thévag was in development, and
only few maintenance updates were made to production vexsithe second phase, from 1996 to
2004, is characterized by the release of three long-livedymtion versions (2.0, 2.2, and 2.4) that
were maintained in parallel. Significant developments wedormed between these versions.
This led to big differences between them and long intervalsvben their release dates which
were extended even further by the protracted release wase#f. Such long intervals contradict
the desired rapid release cycle of open source software [B@ed, in the third phase (kernel
version 2.6 since 2004) production kernels are releasedargevery 2—3 months. To reduce the
maintenance effort most of these are not maintained muabrisEiyne release of the next production
version.

An especially troubling aspect of the Linux data is the digant growth observed in the initial
periods of the 2.2 and 2.4 production versions. This comdtsithe assumed role of these versions,
where production versions are only maintained and not edgnvith new developments. The
explanation is that new developments were indeed origingkcted into the development versions
(specifically 2.3 and 2.5). However, due to the long delayeeigd until the release of the next
production version, many new developments were then paipdgnto the existing production
versions [24]. The switch to the more rapid release cycle.®i2perhaps a reaction to this state
of affairs, and an attempt to institutionalize a more orgerbcess for the quick dissemination of
new developments.

In summary, the Linux data exposes two main variants of thipgteal development model.
In one the production releases are far between, and contamgamus development and production
versions are coupled together. In the other productiorasele are frequent, and production ver-
sions are largely decoupled from development. This digtings related to the distinction between
releases based on features and releases based on schedbknéxt section, we show that the
mechanics of the releases themselves are also different.

4. Releases and Decision Points

As noted above, the focal points of the perpetual developmmeel are the major release
points where new production versions are released. Thdseedie structure of the system’s
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Figure 4:Releases of Linux kernel versions 1.2, 2.0, 2.2, and 2.4.

development and the relationship between its branches therefore of interest to investigate
the process of performing such a release in some detail. Hax.ithis refers to the releases of
the major production versions (1.2, 2.0, 2.2, and 2.4), antie “third digit” releases of the 2.6
versions starting with 2.6.11. As we show, these two setslefises are rather different from each
other.

Note that we do not refer to updates (or “minor releases”xdtg versions — the third-digit
releases before version 2.6.11, and the fourth-digit seleaf 2.6.11 and later. In Linux, such
updates are made when “enough” content accumulates or Wkenis a new security patch that
needs to be disseminated quickly. This is a subjective mecmade by whoever is responsible for
the version in question.

4.1. |dealized Release Model

Based on the Linux case study we can take a more detailed Idbk aictivities surrounding
releases of new production versions. We initially focustanfour major production versions: 1.2,
2.0, 2.2, and 2.4. A zoom into the update activity surrougdiach of these releases is shown in
Fig. 4. This indicates that a release is not a point, but a @bketjuence of activities in itself.

While not identical, these four releases exhibit the samemgéstructure. Using the release of
kernel version 2.0 as an example, the last update of versg&mhich was 1.3.100, took place on
10 May 1996. On 12 May 1996 version pre2.0.1 was releasedtatiag the beginning of work
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Figure 5:ldealized model of the anatomy of a release.

towards the release of the 2.0 version. There were a total aptlates in the pre2.0 series, ending
with pre2.0.14 on 6 June 1996. Three days later, on 9 June 188&6on 2.0 was released. The
fork of a new development version took place on 30 Septem®@6,lwith the release of kernel
version 2.1.0. By that time, 21 updates of version 2.0 hadtakace.

The differences between the four releases are also insguyeind seem to indicate that the
release process was refined with time. Thus release 1.2 tlitbwe a separate pre-release series
of updates leading up to the release itself. At the otheeexty; release 2.4 had two separate series:
one of preparing the new version, and another of testing ffa@sLimably correcting) it.

Based on the above, we can generalize an idealized releassspithat includes the following
set of decision points and activities between them (Fig. 5):

1. Decide to release. The decision at this point in time igdp sleveloping new functionality,
and prepare to release what has accumulated so far. Excemrion 1.2, this is reflected
by a new pre-release series of kernel updates. The folloagtigity is one of stabilizing and
improving the code, based on internal testing by the deestopAdditional development is
done mainly to fill holes in existing functionality, not tocdew functionality, so the rate of
growth is expected to be reduced.

2. Perform the release. This is the actual point of the relé@aslf, where the new production
kernel is released and the series of its updates is starteglinitial updates reflect a period
of support and followup, in which developers continue tdsitze and improve the code, but
now this is based on feedback and bug-reports from actuas.ugeain, this may include
some additional development.

3. Fork a new development version. This decision signifias tie released version is consid-
ered stable and usable. It is reflected in the data by therfgidd a new development version,

which will be pursued in parallel to the maintenance of thedpiction version that has just
been released.
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series updates duration result

pre2.0 14 28 2.0
2.2.0-pre 9 28 2.2.0
2.3.99-pre 9 71 testl
2.4.0-test 13} 22 225} 296 2.4.0

Table 2: Stabilization work leading up to the release of productiersions in Linux. Duration is in days.

version forked from delay relationship

1.3.0 1.2.10 97 modified
2.1.0 2.0.21 113 modified
2.3.0 2.2.8 106 identical

250 2.4.15 322 identical

Table 3:Forking of development versions from production versionkinux. Delay denotes the time from the release
of the production version in days.

In addition, there is a final decision point related to prdgucversions:

4. Discontinue maintenance. The decision to stop supmgpeiproduction version is usually
taken only after the subsequent production version is vetdildished. It does not mean that
this version will immediately cease to be used — only thatiit mot be further maintained,
so no additional updates will be made. In Linux the decismmrdéase maintenance is not
necessarily the final word, as distributors (such as Red Haebran) may continue to main-
tain a version that is important to them even when it is no éorigfficially” maintained. For
example, Red Hat guarantees support for its Enterprise liatsions for 10 years from their
release date.

In a business setting, there may be additional phases dusatacfal or legal considerations [59].
This seems to be largely irrelevant for open-source sysgeitis as Linux.

This model of a release is different from the common softwalease life cycle [71]. In the
common model, the pre-alpha phase denotes developmentharadpha phase is testing. This
distinction is irrelevant for Linux, as testing, to the degthat it is done, is a continuous activity
(similar to the testing workflow in the Unified Process). Thikec€ide to release” point above is
essentially equivalent to the decision to perform a betzasa in the more conventional software
release life cycle. Indeed, Linux also uses the terminotfgyelease candidate” for such versions.
The main differences come with the release itself. The seledecision point is semantically
equivalent to the common “release to manufacturing” (RTiM@aning that the software is passed
from the development unit to the manufacturing unit andadpced; this subsequently leads to
“general availability”. In Linux and other open-sourcetsedre distributed on the Internet there
is no manufacturing step, and released software is imnmedgiavailable. But more importantly,
support by the development team continues after releass. fGllowup phase, which continues
until the decision to fork a new development version, is mg$érom the common model.

Data regarding all four major releases is provided in Tablasd 3. All show the basic structure
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Figure 6: Update rate around the release of Linux kernel version 2.0.

described above, albeit with some occasionally major tiaria. Table 2 shows that the stabiliza-
tion phase is typically relatively short. Preparing forsiens 2.0 and 2.2 took less than a month.
In the case of the version 1.2 release there was even no iexgolicch to work on stabilization.
On the other hand, the work towards version 2.4 was much lpagel took nearly 10 months.
This was divided into a bit more than 2 months of preparafigigwed by more than 7 months of
testing.

Table 3 shows that in all four releases the followup phaserather long: more than 3 months
for versions 1.2, 2.0, and 2.2, and nearly 11 months for 2x.first new development version was
either essentially identical to the previous productiodatp, or else it already reflected some new
developments. As shown in Fig. 4, in both 2.2 and 2.4 therensesgrowth in the stabilization
and followup phases, and continued growth of the product@sion even after forking the new
development version. This indicates that in these vergimmslistinction between production and
development may not be as crisp.

Beyond the structure of these releases, one should notirzgtbé&acted nature. The process
of preparing a release, testing it, and performing the regquiollowup always took more than 4
months; for 2.4 it took no less than 20 months. Similar protdéhave been observed in other
systems as well [52]. In Linux the solution was to switch taghtly regulated schedule-based
release process, as described below.

Returning to the structure of the release, it is also instreid¢b observe the rate of work in the
different phases, as reflected in their update rate. Thisaws in Fig. 6 for the 2.0 release (the
other three releases exhibit qualitatively similar bebgviThe last months of version 1.3, and the
month of version pre2.0, were characterized by a typicalodt new update every 2—3 days. The
first four months of 2.0, and the continued development of &<hibit a more moderate average
rate of releasing a new update approximately every 5 dayh,igolated instances of 20 days or
more. But once 2.1 was forked, the intervals between upd&2® @o up first to around 10-13
days, and then to durations that are better measured in siaattier than days. Thus we can see
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that the initial followup part of a new production releasendeed more similar to development
work than to the subsequent maintenance work.

Related to the above is the growth rates exhibited in therdiftessegments. The model in Fig.
5 implies a reduced growth rate in the preparation and fallpphases, relative to the development
versions. This is indeed the case as shown in Fig. 7 (whergtignate is expressed in lines per
day, averaged over the full duration of each phase). For mapbr release, we see some reduction
from the preceding development growth rate, and an incrieake following development growth
rate. Thus the sustained work rate (as reflected in updat@xjleed at least partially diverted to
activity other than development of new functionality. Extka initial (growing) phases in 2.2 and
2.4 adhere to this pattern. However, except for 1.2 and testegree 2.0, the growth rate merely
drops and does not become very small, and it is higher for l&tesions.

The alternations between development and release aawfity early models of large system
development. In these models, it was suggested that siceesieases emphasize either “progres-
sive” or “anti-regressive” work [37, 72]. Progressive wavks the development of new features,
while anti-regressive work included work to improve theustural design of the software and up-
dating documentation. Interestingly, it was shown (based digh-level assumed mathematical
model) that the best progress would be achieved by altegh#tese activities, rather than trying
to carry them out concurrently [72]. Such alternations asour in the simulations of Cook et
al. [12], due to the assumption that activities such as tefexg absorb developer resources that
would otherwise be devoted to producing new features. Innoowel, this alternation appears
around each release of a new production version, ratherahsaimccessive releases. In principle,
it can also occur multiple times within a release cycle. Baneple, evidence from Microsoft
mentions code stabilization efforts that are performedyefev months [15].

4.2. Compressed Release Model

The idealized release model discussed above hinges updedtisgon to release. In the major
Linux production versions these decisions were relateddaevelopment of a major feature, such
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Figure 8:Model of the anatomy of a compressed release.

as multi-platform support and SMP support. However, sualeld@ments took an order of two
years to complete, causing major delays in the release ef t#hser features. With version 2.6 it
was therefore decided to switch to a periodic scheme wittwaralease around every 2—3 months.
This also reduced the pressure on developers, becauserigélease is missed the next one is not

far off.

A faster release cycle was problematic with the idealizézhise model, as an underlying notion
in that model is that the same people alternate betweenafaweint and release activities. With
the growth of Linux this became increasingly untrue. Coreettgsers became more involved with
administrating the kernel versions, while other develsprore commonly contributed complete
subsystems that had been developed externally. At the samaed “stable team” was formed to
take care of updates to previous production versions. Tabled a three-way parallelization of

activities:
e Development of new functionality. This is done indepentjelny many developers in their

own environment (importantly, this is explicitly suppaitby thegit model of distributed
version control, where each developer has his own privapy b the codebase). Such

development may take a long time, and is not reflected in any iwahe Linux kernel
releases and updates until it is merged during a conveniergetwindow.

¢ Stabilization and testing. This is orchestrated by the dexelopers, notably Linus Torvalds,
in cooperation with the developers who made contributiariisé most recent merge window.

It is reflected as updates to the current rc version.
e Maintenance and updates of the previously released versédlected in updates to that

version.
This parallelization allows the release cycle to be conggésind completed within about 10
weeks. The compressed release cycle is shown in Fig. 8. Tehefla new version starts with a
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Figure 9:Compressed releases in the Linux 2.6 series.

merge windowThis is a relatively short period (around two weeks) whexeatbpers are invited to
submit their new developmeritswhen the merge window ends, a stabilization period (of asloun
two months) takes place. The updates of this not-yet-retbagw version are called “release
candidates” and designated by an “rc” suffix. When the newimens considered stable, it is
released. In parallel, a new merge window is opened for theversion. The released version
is handed over to the stable team, which performs maintenapdates (bug fixes and security
patches) as needed.

Data from several recent Linux 2.6 releases is shown in FigN&e that there is no “devel-
opment version”, and there are no updates during the menggowi All development work is
done externally by the developers in their own environmienparallel to the release of previous
versions. In few cases the first rc update serves to extendéinge window, but in most cases the
rc updates do not contain any significant growth.

Given that the main changes in the compressed release nesdét from merging new func-
tionality during a merge window, one may expect that the ohgrowth will increase and that no
code will ever be removed. This is not the case. Data colieayeGreg Kroah-Hartman from the
git repositories of versions 2.6.11 through 2.6.3Gows that thousands of lines are removed in
each new version. However, additions outnumber deletigrentaverage factor of 2.12.

Importantly, the 2.6 releases are time-driven rather tleangocontent-driven. Merge windows
are relatively short, and the time to stabilize is also leditIf stabilization is not achieved, merged
functionality may be removed and delayed to the next versidns leads to rapid dissemination

3These new features are expected to have been reviewed aed sifj by subsystem maintainers, and incorporated
in the Linux “next” version, but this is not reflected in anyiofl releases.
4pvailable atwww.kernel.org/pub/linux/kernel/people/gregkh/kernel_history/kernel_stats.ods
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of innovations and developments, but also means that stelbdons have a very short lifetime.
As a result, some versions are singled out for “longterm”nteaance, and updated in parallel to
subsequent releases.

5. The Growth of Linux

The Linux data indicates that the kernel distribution gremelfactor of 78.6 over 1i7years
— an average annual compounded growth rate of 28.8% (as neeldsy LoC). Portrayal of how
a software system grows is a central component of the parp@dvelopment model. “Continued
growth” is also Lehman’s 6th law of software evolution [43}Yhile not one of the original three
laws proposed in 1974, it nevertheless figures prominentihé research literature. This may
perhaps be attributed to the fact that it is the easiest tsunealirectly. For all these reasons, it is
of interest to study the growth of Linux in some detalil.

5.1. Measuring Growth

In Fig. 2 we used lines of code as a metric for the size of thentikernel. This is probably
the most commonly used size metric in software engineedand, has also been used before to
portray the growth of Linux [24, 64, 18]. However, there atlees options. We therefore start the
discussion with a comparison of different metrics. Thisvehthat they are highly correlated, and
therefore which metric is used is not very important.

The metrics we checked are the following:

e Lines of actual code. This excludes blank lines used for &ttimg and comment lines most
commonly used in block comments. However it does includeslithat contain both code
and a comment.

e Total lines. This is a variant that includes all the linesdeoblank, and comments.

e The number of files. This is often used as a proxy for the nurabarodules. The number
of modules was used by Lehman (e.g. [38]) and others to dydhé size of closed-source
software, but the precise meaning of “modules” was selddineie.

e The size of the compressed (wdhip) tar archive containing all the kernel sources, as down-
loaded fromwww.kernel.org. This metric was also used by Godfrey and Tu [24].

The first three metrics were calculated usohgr (available fromcloc.sourceforge.net). This was
used with all default settings, including the check for degte files and avoiding double-counting
when this happens (surprisingly, it does). Notablgc counts the lines of all programming lan-
guages it can identify. In Linux this is most{y (.c and.h files), assembly, anchake but there are
also a few files in other languages. To give a notion of theitigion, the output o€loc on kernel
version 2.6.39.1 is shown in Table 4. While one may claim thigii>and HTML are not really
programming languages and should therefore be excludedoteehat such languages contribute
less than 1% of the total. We therefore believe that usingléfault settings does not lead to any
significant errors.

19



Language files blank comment code
C 16087 1501193 1531754 7742940
C/C++ Header 13589 314821 536253 1632046
Assembly 1217 39850 49723 247005
XML 139 3119 948 40974
make 1390 6015 6374 22643
Perl 41 2973 2462 13900
Bourne Shell 61 638 1475 3644
yacc 5 453 322 2987
Python 18 542 267 2535
C++ 1 209 57 1521
lex 5 203 237 1317
awk 8 90 79 714
Bourne Again Shell 28 74 55 446
HTML 2 58 0 378
NAnNt scripts 1 87 0 356
Lisp 1 63 0 218
ASP 1 33 0 137
XSLT 6 13 27 70
sed 1 0 3 30
vim script 1 3 12 27
SUM: 32602 1870437 2130048 9713888

Table 4:Results of counting lines of kernel version 2.6.39.1 usitag.

tot. lines files tar size

code lines
total lines
files

0.99998 0.99833 0.99940
0.99828 0.99951
0.99823

Table 5:Correlation coefficients between the different size metsiecown in Fig. 10.

We noted the compresse archive size and appliedoc to all 1322 available versions of the
Linux kernel from version 1.0 to version 2.6.39.1 (incluglia.6 release candidates). As shown in
Fig. 10, the different metrics are obviously very closellated. Similar-looking graphs are also
obtained for other size metrics, such as the Halstead Voluritege number of functions [30]. The
correspondence between the metrics is demonstrated ety by calculating their correlation
coefficients. The results, shown in Table 5, are all extrgrakgse to 1. Growth as measured by
files and LoC was also compared by Herraiz et al. with simisults to ours [28]. In the sequel
we therefore use LoC.
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Figure 10:Growth of Linux as reflected by different size metrics.

5.2. Modeling Growth

The subject of the rate of growth of large-scale projectsanassed some interest in the litera-
ture. Depending on the system studied and the methodolagl; tssearchers have concluded that
growth may be sub-linear, linear, or super-linear.

Lehman and Turski, in their analysis of closed-source ptsjehypothesize that the rate of
growth should decrease as a result of the increasing complaixthe project [37, 44, 19]. In
particular, Turski argues that the if the size of versias s;, and the size of version+ 1 is s; 1,
then the expected relationship is [68]

Si+1 = Si +

| =

where E is the average effort invested in each release (Lehmanighfdaw states that the rate
at which effort is expended is constant, so with regularlsicggl releases the effort per release
should be constant as well). The inverse square incremeatgistified by the notion that the
number of possible interactions betweemmodules iss?, and the effort is spent considering all
these interactions. This model leads to sublinear growith specifically to [61]

SZ'O(%
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Indeed, some of Lehman’s data seems to fit such a sub-linedelrbetter than a linear model
[68, 41, 40, 44]. However, other data fits a linear model qud [42], and a linear model was
also proposed by Capiluppi for several open-source projéctsl]. This leads to the conclusion
that both models may be appropriate in certain conditiorssfuither complicate the issue, one
of Lehman’s data sets exhibited two phases of declining trpbut a significant jump in size
between them.

An important consideration when studying growth rates esittdependent variable. Lehman
consistently used the serial numbers of successive ralga@gardless of the calendarial time that
passed between them [44]. This may be problematic when mateases of different versions
are interleaved, e.g. because a minor release of an oldbwugishy release 2E) is made after the
initial release of the next version (say version 3). In ddditthe release rate may be highly vari-
able, again leading to inconsistencies when using seriabeus [66]. Most researchers nowadays
therefore prefer to use calendar time [24, 56].

When using calendar time the observed growth rates also.df&ilson et al. claim that linear
growth provides a good model [56], but this could be partly thsult of using relatively short
observation intervals of up to about a year and a half. lrarad Bieman also claim a linear
growth rate for both FreeBSD and Linux [31].

Interestingly, several researchers have also observest-Bopar growth rates — especially in
the context of open-source projects, and specifically, XinRerhaps the first were Godfrey and
Tu, who suggested a quadratic model as providing the best tiifiux development versions [24].
Robles et al. confirm this five years later, but contend thatesali model is sufficient for BSD and
18 other projects [61]. Mens et al. studied several differeatrics for the size of Eclipse, and
found that four of them grew linearly, and another two quada#ly [50]. Herraiz et al. compared
the use of LoC with number of files, and showed that they lefitdgame conclusions — including
superlinear growth for many projects (but linear or evenlsdnar for others) [28]. Koch extended
the scope by studying thousands of projects hosted on Séange, and concludes that a quadratic
model tends to provide better fits for most projects, esfigdarge ones [33]. Thus we can say
that the quadratic model seems to provide a good descripfigmowth in some cases, despite
having no theory regarding why growth should be quadratic.

Given that several years have passed since these previnlisssivere conducted, we now have
much more data at our disposal. Our data in Fig. 2 clearly stibat Linux’s growth rate now is
even higher than what it was before. While this growth has sioregularities, it is interesting to
check whether the quadratic model still provides the best fit

However, one needs to be careful about using all the dataarticplar, we suggest that the
most representative results will be obtained by using delyehosen subset. The problem is that
curve-fitting techniques take all the data points into cdesition, and typically try to minimize
the (squared) deviation between the points and the modelarfy points are concentrated at some
location (in our case, due to an abnormally high rate of ggjathis tends to force the model to
pass through that location. But we are more interested inghergl trend over time. We therefore
chose to sample the data at monthly granularity. Thus wehesrst development update in each
month, or, in those cases where a development version doesisg the first production update.
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Figure 11:Models of the Linux growth rate.

model total error average error
linear 81,116,099 395,688
quadratic 42,017,782 204,965
cubic 64,497,025 314,619
exponential 75,262,951 367,136
guadratic-exponential 27,265,871 133,004
piecewise linear 17,271,571 84,252

Table 6: Errors of models of Linux growth, in lines of code. Note tHag scale is 10 million, so an average error of
100,000 is only 1%. Also, the growth in 2.6 has a step shapdjrig to unavoidable error by any smooth model.

In the 2.6 series we use the first release of each new versidrtha first rc update in intervening
months. This leads to using a total of 205 data points.

The results of fitting various models to this data are showhig 11. In the linear models
we imposed a lower-bound of 0 in cases where the model sweghastegative size. Obviously
the linear model is not a very good fit, because the Linux gnawate is increasing with time. We
nevertheless note that the correlation coefficient of tedl model with the data is pretty high, at
0.978. The quadratic model is better, and provides a reasofiaup to about 2005. However, it is
less satisfying after that. We also checked a cubic modebarekponential model, but they were
inferior to the quadratic model.

When looking at the data, it is appealing to consider it asgpeomposed of two phases: from
the beginning to the two large jumps in version 2.5 towarésaihd of 2002, and from 2003 to the
end. Trying to fit each of these phases independently leadgytmd fit with a quadratic model
for the first phase (thereby reconfirming the previous resfitGodfrey and Tu and others), and
a reasonable fit for an exponential model for the second phHsis two-phase model achieves
much lower error than the previous models (Table 6).

An even better fit is obtained by a simple three-segment pisedinear model. This model
dissects the timeline of Linux development into three pea$®m the initial release to the 2.2
version in May 1999, from the beginning of 2.3 to 2.6.26 inyJR008, and since 2.6.27rc in
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Linux developers and code change
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Figure 12: Correlation between number of developers and change in siade Data by Greg Kroah-Hartman for
kernels 2.6.11 through 2.6.35.

August 2008 to the end in mid 2011. In these segments therlfitieamply average growth rates
of 660 lines per day, 1385 lines per day, and 3541 lines per&syectively. The three segments
exhibit correlation coefficients of 0.987, 0.996, and 0,9838d the combined model achieves a
significantly lower error than any of the other models chécfthis could possibly be improved
further by using a fourth initial segment, as version 1. dheshowed any growth). In any case, the
three-phase linear model provides the best descriptidmeagtowth of Linux so far, and reconciles
the linear growth models with the increasing growth rateweheer, it does not make predictions
about how long phases will be and in general what may happ#meifuture.

Regardless of the exact growth rate model, it is obvious thatdis now growing faster than
ever. An interesting question is how such an increasing tiroate is sustained. Capiluppi at
al. found that a reduced growth rate of an agile project wasetaded with a restructuring of the
company and a big reduction in the size of the programming {8 In the case of Linux it is not
unreasonable to assume that the opposite is happening:rasiew@lopers join the ranks [13], the
total rate of growth increases. Fig. 12 shows supportivdexnge. This is data collected by Greg
Kroah-Hartman from the Linux git repository, and specificalersions 2.6.11 through 2.6.35
The data collected includes the number of developers th&bpe commits on each version, as
well as the number of lines added, deleted, and modified. Wehis to calculate the net gain of
lines in each version (by subtracting the deleted line ctromt the added line count) and the total
lines handled in each version (the sum of the three counts)}hé figure shows, there is a good
correlation between the number of active developers andgbgain, and an even better correlation
with the number of handled lines. Similar results (with aerehigher correlation) were found by
Koch and Schneider for the GNOME project [34].

SAvailable atwww.kernel.org/pub/linux/kernel/people/gregkh/kernel_history/kernel_stats.ods
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Figure 13: Growth of Linux subsystems (top-level directories). Thenanked small ones are (in order of final size)
crypto, security, lib, block, ipc, virt, init, firmware, angr.

Based on the above observation, we may speculate that theagext growth rate of Linux
and other open-source software projects is a manifestatiapositive feedback effect. This is the
combination of two mutually-reinforcing processes. Thstig that a successful and useful project
attracts more highly-motivated and capable developers [ie second is that the aggregation of
such developers propels the project to ever greater heighis is expected to be possible in open-
source projects but not in closed-source projects, beaafube much more flexible and budget-
free staffing of open-source projects. We contend that the#tipe feedback generates super-linear
growth, and that this dominates the possible detrimentettst of increased complexity.

An interesting related observation is that the superligeawth and concurrent growth in num-
ber of developers seem to contradict Brooks’s Law [6]: ingtemaking progress slower, the
added developers actually make it faster. The implicatahat the required communications be-
tween developers do not grow as much as was suggested by Biidokphenomenon, which has
been observed before [1], may be attributed to the modutactsire of the system and to efficient
mechanisms for disseminating and recording design infoomauch as the Linux kernel mailing
list.

5.3. Growth of Subsystems

The Linux kernel is actually composed of many largely indefsnt subsystems. For example,
even within the core of the kernel, features like file systemesmory management, and commu-
nications are implemented as distinct subsystems. Thee #Hre the multitude of drivers, and
interfaces to many different architectures. It is therefimteresting to check how each such sub-
system grows, and whether they all contribute equally tathegall growth of Linux.

Results of measuring the subsystems (as reflected by tobelegetories) are shown in Fig.
13. In general most subsystems grow similarly to the whostesy, implying that they all grow at
roughly the same rate relative to their respective sizegumtify this, we calculate the correlation
coefficients of the subsystem sizes with the total system &iar each subsystem, this is done over
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CC with lin. reg. of %

subsystem total slope  R?
drivers 0.99564 8.85E-6 1.7E-6
arch 0.99669 0.00328 0.262
fs 0.99021 -0.00282 0.259
sound 0.95417 -0.00343 0.866
net 0.99148 -0.00234 0.717
include 0.71278 -0.00329 0.489
kernel 0.94324 -0.00026 0.054
mm 0.98060 -0.00047 0.438

crypto 0.96780 0.00037 0.814
security 0.94663 0.00037 0.579

lib 0.98402 4.41E-5 0.094
block 0.96162 -3.38E-5 0.274
ipc 0.94322 -0.00035 0.539
virt 0.97420 5.14E-5 0.687
init 0.90513 -0.00011 0.652
firmware 0.68636 -3.21E-5 0.847
usr 0.75877 1.40E-6 0.032

Table 7:Correlations of subsystem sizes with the full system sizg)(@nd linear regression of the percentage of each
subsystem from the total system size.

the range of versions where this subsystem exists, usinygdavkelopment (and rc) versions. The
results are shown in Table 7, and indicate a very strong lediva in most cases.

To augment this data, we also calculate the percent of tlad tatux code that belongs to
each subsystem. Using this metric, proportional growthiafudbsystems should lead to perfectly
horizontal lines [24]. The actual results are shown in Fig. ibdicating some fluctuations and
discrete jumps. Calculating the linear regression of thesegmtages leads to very small slopes
(Table 7, given in percentage points change per year). HentheR? values indicate that linear
models are in some cases inappropriate for this data.

The largest subsystem by far, and thus also the one thatusrgy@t the fastest rate, iivers.
The second largest &ch (architecture support). These have been recognized aartfest many
times in the past, and together represent about 70% of thmeekg4, 30]. Due to their domi-
nance, it is not surprising that these two subsystems hava&ithest correlations with the total
system size. The two smallest and most recent subsystemsare andusr, exhibit relatively
low correlations, but due to their small size this is not veganingful.

According to Fig. 14 thelrivers subsystem is actually growing relative to all others. Hosvev
it suffered a large drop in relative size in version 2.5.5 6nF2b 2002. This was the result of
moving the subdirectoryrivers/sound/ to the top level and creating tls@und subsystem. This
move affected over 230,000 lines of code.

The arch subsystem, in contradistinction, exhibits a moderate aeoin of relative size with
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time. However, it exhibits several discrete upwards juniyad tounteract this downwards trend.
The most significant of these occur in version 1.1.78 on 9a3nlR95 and in version 1.3.94 on 22
April 1996. The firstis largely due to adding math emulatiaport in the Intel i386 architecture.
The second is largely due to added support for the Motordl@@&rchitecture. A similar gradual
reduction of relative size with occasional upwards jumpal$® observed for subsysterfssand
net.

Another subsystem that exhibits an interesting pattentisde, which had a huge drop in size
in mid 2008 (as may be expected, this abnormal behavior keealselatively low correlation with
the total system size). This actually took place over a aw@blmonths, in successive updates
of version 2.6.27-rc. The changes are apparently movingrakgubdirectories of assembler-
related.h files (e.ginclude/asm-alpha/) to thearch subsystem (e.darch/alpha/include/asm/). And
indeed, a corresponding increaseaibh can be seen in Figs. 13 and 14.

The conclusion from the above observations is that evalusaot always a smooth process.
In many cases it is punctuated by relatively large changesshort period of time (as has been
observed previously by Godfrey and Tu [24] and by Cook et &])[1These can be the addition
of a large body of code, possibly developed externally, araaganization where code is moved
from one place to another. However, when the complete syisteomposed of many subsystems,
the overall effect may appear smoother and more consistantthe dynamics of each individual
subsystem.

6. Possible Implications of the M odel

The continuous nature of perpetual development has marlicattipns regarding how software
is developed. Here we speculate about some of them, and phieadplity beyond the Linux case
study. Note that most of this discussion is not yet suppobgedata, and should therefore be
regarded as proposing promising avenues for further relsear

27



The Question of ArchitecturéA major vulnerability of many software development proesss
the definition of the system’s architecture at a relativelglyestage. This is a crucial and singular
point — the analysis and design are geared towards the dafirot the architecture, and the
architecture is the basis for the whole implementation. piablem becomes much more acute
under perpetual development, as it is explicitly acknogéstithat the initial design will need to
accommodate unforeseen additions for many years to come.

A possible way to alleviate the problem is to use an architecthat is inherently open and
flexible [21]. In particular, architectures that suppomtiouing change include the following:

e A “kernel-based” two-tier system, with a stable core and aagyic set of libraries where
things can change quickly and relatively independentlyargples include emacs with its
basic core and many user-developed Lisp modules, and mitlalits extensive functional
libraries [60].

e A multi-tier service-oriented architecture, e.g. the aggeration of Internet services used in
large e-commerce sites such as amazon.com. This is edlyeartiapen system architecture
based on independent components, with small well-definexifaces [14]. At any given
time new components can be introduced, or existing comgemeay be redone or extended,
with little effect on the others.

e An explicit component-based architecture, where the dddunctionality is obtained by
agglomerating multiple independent components. An exangpthe Eclipse integrated de-
velopment environment with its many plugins [70].

In Linux such compartmentalization is used to a certain elegrFor example, file systems are
largely independent of memory management, and driverscfwbonstitute a large fraction of
the code) are all essentially independent of each others Tbmponents can each be modified
independently with little if any effect on other components

The parallel development that is inherent in the perpetealdpment model may also help to
cope with radical changes to the architecture. A project brayich off an exploratory architecture
development branch, that is developed in parallel and iexégntly from the main development
backbone. If the new architecture succeeds it will evehti adopted, and other modules will be
ported to adhere to it. This is analogous to redundancy ilogical systems, which allows many
mutations with no deleterious effects on the organism, atsime time immediately benefiting
from advantageous mutations.

The Problem of Conservation of Familiaritne of Lehman’s laws of software evolution is the
conservation of familiarity — that the rate of evolution ignstrained by what users and devel-
opers can absorb [39]. Perpetual development thus requioés and approaches that facilitate
conservation of familiarity.

A new developer that enters an existing project suffers hargnt disadvantage: he or she sees
the product of a potentially long evolutionary processt th@es not reflect a clean and coherent
design because there never was one. There is no distinatarebn original basic functions and
later add-ons to fix or support emerging issues. Thus uratetstg an existing project all at once
is much harder than following its progression as it is beioged
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A possible solution for getting up to speed with existing €asl a code browser which de-
picts the edit history. For example, “history flows” enableedo see when each part of the code
originated, and who added it [69]. Such a view could be symulzed with a code viewer, that
uses a version control system to reconstruct the code asiatselect earlier times. This enables
the exclusion of all subsequent additions and modificatiand allows a new developer to easily
recreate and follow the process that led to the code as it Rstse Synchronizing across multiple
files (e.g. code and header files) will enable to highlighttel code that was committed within a
specified time period, and thus represents the addition eftaio set of features.

A similar problem happens for users: early adopters havala@rént advantage, as they ini-
tially learn to use the very basic features that are implaetefirst, and then get to learn the more
advanced and involved features at a slow pace as they arermepted. New users, on the other
hand, have to assimilate the whole caboodle in one big lumpogsible way to help them out is
to pre-define several views with increasing sophisticationparticular, it is important to have a
novice version with limited features to get started andidaruse the system, that stays consistent
across new releases. In Linux, the importance of conservati familiarity is witnessed by the
fact that users may refrain from adopting newer versionfi@fsystem, thereby necessitating the
continued maintenance of older versions. But support fokWwaod compatibility may be a better
alternative, as users will be able to benefit from improvedrimal implementations, and it may
reduce the burden of maintaining previous versions seggrat

Maintaining Institutional KnowledgeRelated to the above two points is the issue of maintaining
knowledge. Classical software development processes,asualwaterfall model, are document-
heavy [62]. Documents serve as milestones, and as evidaata phase has been completed
successfully and the next phase should start. Parnas hgssted that even in evolutionary sce-
narios, where documentation cannot be completed in adyatniseworthwhile to “fake it” and
maintain documentation that is in sync with the softward.[%r example, this records important
design decisions and enables new developers to betterstadérthe project.

However, in projects like Linux it seems that detailed doeuntation is not maintained, which
raises the question of how they manage to continue to growlamdsh. This question is particu-
larly poignant when one takes into account the growth of kiaod the constant addition of new
developers — a situation that might lead to problems of iegrand communication as suggested
by Brooks’s Law [6]. The answer seems to be that alternativeha@isms have been created to
store collective knowledge about the project [20]. Thegenaainly bug repositories and mailing
lists — in the case of Linux, the Linux kernel mailing list, efe practically all technical discus-
sions occur in real time. In addition, large amounts of kremlgle may actually be stored only in
the heads of lead developers. This may be less risky thaemseas lead open-source developers
typically maintain close long-term relationships with itherojects, irrespective of their current
employment status.

The Curse of Successful Maintenandée field of software engineering grew from the perception
that the practice of software development is in crisis. T@nynprojects are late, over budget, or
do not provide the expected functionality. This is espéc@loblematic with large-scale systems,
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where hundreds of millions of dollars may be wasted on fadffdrts. Many such failures may
be rooted in a failure to recognize and use perpetual denetopas described above [21, 73, 17].
Basically, projects that attempt to do too much at once wilstrfimrobably fail in one way or
another [29]. An ironic outcome of this is that the burst oé thi-tech bubble in 2001 led to
animprovemenin project success rates, because the reduced budgetssiedler, more focused
projects [27]. This underscores the importance of the mergal approach to project development:
using increments reduces the scope being considered asegchvhich makes it realizable.

An important class of oversized projects is those that aireptace a previous system that has
become outdated. Famous examples of this type are the FA¥atic control system automation
project of 1984-1994 [57], and the more recent FBI virtuakdde [25]. The problem in these
cases is that the old system was used successfully for ailoegPlacing the focus on maintaining
it rather than on continued development — and, ironicakyng successful in such maintenance
— led to an ever-growing gap between the system capabifinesvhat was really needed. Then,
when an upgrade was attempted, it was too late: the gap wdargmoto bridge, and trying to do
so in one fell swoop failed.

Some projects are naturally perpetual, e.g. operatingsystThe question of stopping doesn’t
come up at all — it is clear that development of new version$ eantinue ceaselessly. The
problem is that projects like the FAA air traffic control stst and the FBI virtual case file look
like one-shot affairs, that should be designed, implentrdaad installed in a single phase. But
this is not necessarily so. Applying the principles of pénpédevelopment, and seeking constant
improvements to the system in terms of both the implementatnd the hardware base, may save
them from subsequent failure [17].

Towards Programming as a ServicEinally, the notion of perpetual development has an impor-
tant impact on how software development is funded and ccieria In particular, an important
consideration for organizations contracting softwardgesys is the need to include evolution and
longevity in the contract framework [47]. Support for evodin means the contractor will continue
to develop and adapt the software as needed. This may bevedhig dissecting the project into
small increments, and extending the contract incremgntalfollow the progress. Support for
longevity means that if the contractor is unable or unwgjlio continue work on the project, he
will allow others to do so, e.g. by providing access to sowmge. Much of the problems with
maintenance of legacy systems stem from lack of such fasil{although lack of documentation,
rigid architectures, and so on should not be underestinagall).

Conventional software contracting includes an inceptioasghwhere the feasibility of the
project is verified, and an elaboration phase where thelgeia fleshed out, leading to the signing
of a contract. Such a contractual framework becomes inicrglgidess relevant as the length of
the project is extended and the features that were idenéfidte outset become a smaller fraction
of the whole effort. In fact, additional development — and maintenance — is the service that
should be contracted throughout the lifetime of the projactinteresting future research question
is how to define and quantify the effort and outcomes of a sofvdevelopment effort, in a way
that can be used in lieu of a contract that specifies the patedl developed product.
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7. Conclusions and Future Work

The notion of perpetual development is not new. It has beed wnaturally and successfully
by many large-scale projects, especially but not exclisivethe open-source community. How-
ever, it seems to be badly underrepresented in the profedditerature and especially in software
engineering textbooks, which focus on isolated instanée®welopment rather than on the con-
tinuation between many successive developments. It isralsprominent in the literature about
open-source and agile development, which tends to focusamagerial and process issues (rapid
releases, incremental setting of targets, pair programeic.).

The perpetual development model helps elucidate sevepactsof large-scale evolutionary
system development. To summarize, the main contributibttisomodel are the following.

¢ |dentifying growth (as in Lehman’s 6th law) as the centraheént in software evolution, at
least for software systems like Linux that correspond te thodel. The continued growth is
possibly enabled by positive feedback between the systeina gnowing developer base.

e Stipulating that multiple versions co-exist at the sameetifas was also specified in the
model of Rajlich and Bennett [59]). This separates evolutwnich happens in the main
development branch, from maintenance, which happens guptmn branches.

e Recognizing release points as the points where new branchésked, and formulating the
release process with its stabilization and followup phasespossible variants.

At the same time, the model points out directions that woelddfit from additional research.
These include

e Linux is a single system. An important goal for additionalriwas therefore to check the
degree to which the model developed here applies to othge Brstems. Initial supportive
evidence can be collected from software distribution siteésr example, the Eclipse site
indicates that each new version is preceded by a series téstone” releases (equivalent
to our development updates), followed by a series of releasdidates, and that all this
happens in parallel to the (typically very few) maintenanpedates of the previous version.
A figure similar to our Fig. 2 portraying the evolution of BIN& DNS server project) is
given by Xie et al. [74]. Indeed, even some of Lehman’s eaatacdhows overlap between
development and maintenance versions, where growth is\@asenainly in new releases
(the FW dataset in [44]).

e Evolution by perpetual development leads to continuedtewtdof functionality rather than
change of functionality. An interesting future researclegjion is to contrast these two
aspects of evolution. In particular, is there evolutiort thanifests itself as change without
growth (e.g. in the context of software product lines)? Altgively, does the growth actually
reflect a shift in focus, where part of the codebase falls buse but is not removed?

¢ In perpetual development evolution and maintenance bqgtpéraafter delivery, but in dif-
ferent contexts. We also saw that they may be interdependentin the initial years of
Linux versions 2.2 and 2.4. An interesting future reseansdstjon is the characterization
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and analysis of such interactions, including the degreaha developments are propagated
into current production versions, and how does maintenahegisting versions influence
the development of subsequent versions.

The Linux case study shows that considerable work is exgendepreparing code for re-
lease, as reflected by a sequence of release candidateshi3desve measurable effects on
properties of the code? And what are the inputs that leadetdeiision that the new release
is indeed stable enough for release?

Finally, perpetuity in software development defies inariti It seems incredible that a system
can grow and grow without bounds. But Linux has been growiregsatperlinear rate for 17
years, and does not show signs of slowing down despite ds leurrent size. While a large
part of this is due to drivers and architecture support, thalers are still very impressive
even if these are excluded. An important challenge is tbeegb understand whether this is
due to misconceptions about the detrimental effects of trpar to active work (and if so,
what precisely) to counter such effects.
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Appendix: Linux Versions

The location of the main Linux versions is self evidentwanw.kernel.org. However, this is
not always the case for versions that are part of the relaasess, including pre-release versions,
testing versions, and release candidates. Table 8 listsewthese can be found. Note that all
kernel versions are stored undgub/linux/kernel/, so a location of ¥1.0/linux-1.0” actually means
the URLwww.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.gz.
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