
Characterization and Assessment of the Linux
Configuration Complexity

Ahmad Jbara and Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

Abstract—The Linux kernel is configured for specific uses by
manipulations of the source code during the compilation process.
These manipulations are performed by the C pre-processor
(CPP), based on in-line directives. Such directives, and the
interleaving of multiple versions of the code that they allow, may
cause difficulties in code comprehension. To better understand the
effects of CPP, we perform a deep analysis of the configurability
of the Linux kernel. We found significant inconsistencies between
the source code and the configuration control system. Focusing
on the thousands of config options appearing in the source code,
we found that their distribution is heavy-tailed, with some options
having more than a thousand instances in the code. Such wide
use seems to imply a massive coupling between different parts of
the system. However, we argue that employing a purely syntactic
analysis is insufficient. By involving semantic considerations, we
find that in reality the coupling induced by the very frequent
options is limited. Moreover, even at the syntactic level the
adverse effects of CPP are limited, as there is little nesting and the
expressions controlling conditional compilation are usually very
simple. But it could be even better if the configuration system
undergoes a clean up. On the other hand, we found that the code
controlled by CPP is very heterogeneous and may exhibit intimate
mingling with non-variable code. As a result the applicability of
alternative mechanisms such as aspects is hard to envision.

I. I NTRODUCTION

While much attention in the wider software engineering
community is (rightfully) directed towards other aspects of
systems development and evolution, such as specification,
design, and requirements engineering, it is the source code
that contains the only precise description of the behaviourof a
system. Thus ensuring that the source code is comprehensible
is of prime importance. An often overlooked aspect of code
comprehension is the use of pre-processors, which support
various manipulations of the source code during the compila-
tion process. The injection of pre-processor directives, and the
inclusion of multiple alternative versions of the code, maybe
expected to exacerbate the code comprehension problem. To
see if this is indeed the case, we performed a detailed analysis
of the configuration control mechanisms used in the Linux
kernel. In a nutshell, our findings indicate that at least in this
system the situation is not so bad and the code remains largely
comprehensible. Nevertheless, the configuration system could
use a massive cleanup.

CPP (the C pre-processor) is a commonly used tool for ex-
pressing software variability, whereby different executables are

An abbreviated preliminary version of this work was presented in the PhD
forum of ICPC 2012.

built from common source code. It works by using directives
for conditional compilation, so that during the build process
the compiler can decide whether or not to compile certain code
fragments, or select from among multiple versions of the same
basic functionality. The conditional compilation directives
typically use preprocessor constant definitions, which maybe
derived from configuration option values that were set at an
earlier stage.

Despite its popularity and strength, CPP has been identified
as problematic. In particular, the interleaving of flow control
and conditional compilation directives, as well as its lexical
nature, may make the code harder to understand and maintain
[16], [8], [4], [20], [15], [1]. Even the CPP reference manual
identifies many pitfalls, especially when using it for macro
definitions [17].

This situation has spurred recent interest in how CPP is
used and in possible alternatives [13], [1], [9], [10], [19].
For example, Liebig et al. have analyzed the use of CPP in
40 large open-source projects, and provide various statistics
characterizing its use [9]. While work such as this provides
a wide picture of CPP usage, it might miss on the details.
For example, not every symbolic constant that appears in a
conditional directive is relevant to variability management.
We therefore set out to complement previous work with an
in-depth analysis of one of the projects, namely the Linux
kernel. Linux makes heavy use of conditional compilations
due to the need for special customization to support different
architectures and features. The version we analyzed was Linux
kernel 2.6.32.3.

To study variability we focus on configuration options,
which are the means for expressing the select feature set
that should be included in a specific build. Importantly, we
consider the entire set of config options of all architectures.
Our first finding is that it is not so easy to identify the relevant
config options, as there are significant inconsistencies between
the source code and the configuration control system. Thus
one must be careful regarding the goal of the study: if it is
the control of configurations and variability, the data might
be different than if it is the effect of configurability on the
complexity of the source code.

After selecting the data we want to focus on, we study the
use of config options in the source code. We found a few
thousands of options. These options have a skewed distribution
such that the 20/80 rule holds. Thus some options, members
in the significant 20%, are used more than a thousand times,

seeming to imply massive coupling between diverse parts of
the kernel. However, such a conclusion is based on purely
syntactic analysis. By adding semantic considerations, we
found that the imposed coupling is in fact minor. Moreover,
recall that a large number of options, the least significant 80%,
are used only a few times, so their contribution to the code
coupling is also limited.

Despite the relatively low coupling, CPP nevertheless does
have adverse effects on the code. Our measurements showed
that the average (geometric) scattering degree of config options
is relatively high as well as the number of code variations
within a file. Another issue is therefore the possibility of
replacing CPP with other mechanisms. This is found to be
problematic due to the intimate mingling of code snippets
using CPP, and the heterogeneity of the variable code blocks,
so mechanized alternatives such as aspects are questionable.

Section II describes the CPP tool, the Linux configuration
process, and related work. Section III then lists our research
questions. The bulk of our study is reported in Section IV,
which characterizes config options, and Section V, which
presents metrics for the complexity introduced by CPP. We
discuss the results and summarize conclusions in section VI.

II. BACKGROUND

A. The C Language Preprocessor

Preprocessing by CPP is the first phase in compiling C
programs. CPP is a powerful tool for managing configuration
and portability of software, and also provides useful features
such as header inclusion and macro definition [17].

In our work the most important feature of CPP is the support
for conditional compilation. This allows a single software
base to be used to compile many variants. In each variant,
some fragments of the original source code are included and
others are excluded, based on conditional directives. The#ifdef
directive includes the controlled code in the compilation if
its argument is a defined CPP constant. The complementary
#ifndef directive includes the fragment if the constant isnot
defined. The#if directive resembles theif statement of the C
language: the controlled code is included iff the expression
evaluates to non-zero. The expression may consist of CPP
constant values, tests of whether they are defined, and logical
operations. The#else and #elif directives can be used to
provide alternatives to#if, #ifdef, and#ifndef.

When a CPP constant controls a configurable feature of the
system we call it aconfig option. In the Linux system the
config options, by convention, have aCONFIG prefix. When
we talk about specific occurrences in the code we call them
config instances.

CPP constants are defined internally by an explicit use of
the #define directive within the source code, or externally by
flags to the compiler. For example, thegcc compiler uses the
-D option to define a new CPP constant and the-U option to
undefine it.

The Emacs tool [6] enables programmers to navigate the
conditional directives, allowing them to view the code withits

1 menu ”Processor type and features”
2 source ”kernel/time/Kconfig”
3 config SMP
4 bool ”Symmetric multi−processing support”
5 −−−help−−−
6 This enables support for systems with more than one CPU.

Listing 1. Example of the definition of the SMP config option in a
Kconfig file.

1 obj−$(CONFIG GENERIC ISA DMA)+=dma.o
2 obj−$(CONFIG USE GENERIC SMP HELPERS)+=smp.o
3 ifneq ($(CONFIG SMP),y)
4 obj−y += up.o
5 endif
6 obj−$(CONFIG SMP) += spinlock.o

Listing 2. Examples of using config options in a makefile to control
the set of files to compile.

macros expanded, and to emulate the different configurations
which are controlled by preprocessor variables.

B. The Linux Configuration Process

The Linux kernel may be configured to run on many
different platforms and provide diverse sets of features by
using config options [19]. We present the config options from
two different points of view: developers, who define config
options and integrate them into the code, and users, who use
the config options to customize the kernel for their needs.

Developer View of Config Options. Initially, each config
option is defined in theKconfig system. TheKconfig system
is a set of text files placed in kernel source directories where
variability is needed. These files’ names start withKconfig.
Their contents are definitions of config options. An example
is shown in Listing 1.

After defining the config options, developers integrate them
in the Kbuild system or in the source code files. TheKbuild
system is a collection of makefiles which are responsible
for building the system [3]. In makefiles, config options are
used to control the compiling process; an example is shown
in Listing 2. In source code the config options are used as
constants in conditional compilation directives to control the
inclusion or exclusion of code fragments. Examples are shown
below in Listings 3 and 4.

As time passes and new versions of the system come into
being some of the configuration options become redundant and
should be removed from the system files. As we show below
this is not always done.

User View of Config Options. In order to build the Linux
kernel one must first specify the desired configuration. Thisis
done by invoking themake tool with one of three variations:
make config, make menuconfig, or make xconfig. Initially, the
config tool reads theKconfigsystem files to extract the menus,
config options, and dependencies between the different config
options. The extracted config options are presented to the
user who is asked to select the desired options according to
his needs. The difference between the three config tools is
the user interface. Themake config is a forward-only version

that enables configuration from scratch.menuconfig displays a
menu and enables the user to selectively set the configuration,
so there is no need to pass all the options one by one. The
third version is GUI-based.

Once done, the config tool generates the.config file which
is placed in the top directory of the kernel source. This file
contains all the configuration options that were set by the user.
It is a text file with a line for each option. Each line is a key-
value pair with the formatCONFIG key=value. Thekey is the
name of the option, andvalueis y to indicate that a component
will be built into the kernel, orm to indicate that it will be
built as a loadable module [2]. Options that were not set are
commented-out with# or deleted from the file.

The next stage is building the Kernel with themake
command. At the very beginning of the build process the
autoconf.h file is created. This file contains CPP definitions
for the config options that were included in the.config file.
To make these definitions available during compilation of the
source code files the compiler uses its-include option. A few
source code files explicitly use the inclusion mechanism of the
preprocessor.

To shorten the configuration process and make it efficient
the kernel source is provided with a preset configuration for
each of the architectures that the kernel supports. These default
configurations are kept in thearch/* subdirectories, and are
calleddefconfigX, whereX typically indicates the architecture
and the developer who created the file. To utilize these defaults
one should rename the default configuration file to be.config
prior to the configuration process and place the new.config
file in the top level directory, or pass the name of the default
configuration file as an argument to themake tool.

C. Related Work

The use of CPP has attracted significant interest in recent
years, Mostly related to configurability and the creation of
product lines. We are specifically concerned with the resulting
complexity and cognitive load on developers.

Early work also considered the ill-effects of using CPP.
Spencer and Collyer [16] claim that careless use of #ifdefs
is usually considered a mistake. They presented alternatives
to conditional compilations, applied to their C News Package,
and reduce the use of CPP by using clean interfaces and
information hiding. Krone and Snelting [8] also claim that
the use of conditional directives makes the code hard to
understand even for experienced programmers. They suggested
a visual tool which infers the configuration structure of source
code, and makes it easy to discover violations of software
engineering principles such as high cohesion and low coupling.

Favre [4] stated that heavy use of CPP directives can lead
to unreadable programs, and makes maintenance and tool
building hard. Vid́acs and Besźedes [20] also believe that
heavy use of preprocessor directives causes problems of code
comprehension due to the gap between what the programmer
sees and what the compiler gets. They suggested using a
tool, CANPP, for producing preprocessor schemas that can

be used for information extraction such as original source,
preprocessed files, and intermediate states.

The impaired readability and reduced reusability of condi-
tional directives were also the motivation for developing C-
CLR [15]. They identified the macro conditional redefinition
and composition of multiple configuration options as prob-
lematic. The C-CLR tool improves readability by enabling
users to perform configuration-specific navigation and enables
reusability by automated identification of equivalent blocks.

Sutton and Maletic [18] presented a common configuration
architecture for managing portability among three packages
which were examined in their study. They also introduce
configuration management patterns which they observed, in-
cluding naming conventions, replaceable and parameterized
inclusion, and compiler abstractions.

Based on [16] the authors of ASTEC [12] claim that macros
are difficult to analyze and are error-prone. They present an
alternative language which eliminates many of the potential
errors. This is a syntactic language, as opposed to CPP which
is purely lexical. It preserves the configurations of the program
for analysis tools, while CPP produces a one-configuration
program. Also, it enables tools to check errors before macros
are expanded.

Liebig et al. [9], [10] studied the configurability of 40
open-source projects, including Linux. They found that 23%
of the code is variable, there is no correlation between a
system’s size and the complexity of variable code, variable
code is mostly heterogeneous which makes the use of AOP
inapplicable, and the #ifdefs are mostly used in a high level
granularity, enclosing entire entities such as functions and
control statements.

Linux is the third-largest software system analyzed by
Liebig et al. [9], both in terms of lines of code and in terms
of the number of CPP constants (the two bigger ones are also
operating systems: OpenSolaris and FreeBSD). Reynolds et al.
[13] also studied Linux, focusing on the config options of one
architecture (i386). In contrast, we consider the entire set of
config options of all architectures. Tartler et al. [19] studied
the consistency of using configuration options in Linux using
an automated tool, and found 147 confirmed bugs.

Czarnecki et al. also studied the configuration system of
Linux and transformed it to a feature model for benchmarking
purposes [14]. They examined only the Kconfig files of
one specific architecture (x86). Diettrich et al. suggested an
approach for extracting implementation variability from the
Linux build system, as it contains more than 65% of all config
options [3]. In contrast, we examineall configuration contexts
(source code, default configuration, makefiles, and Kconfig)
of the whole system (all architectures and subsystems), with
the goal of evaluating the impact of CPP on comprehensi-
bility. Our study thus includes many observations not made
previously by others.

III. R ESEARCHQUESTIONS

Our ultimate goal is to gain some insights about the in-
creased complexity of the code that results from configuration

variability management with CPP. Considering two of the
studies cited above raises some important methodological
questions. The work of Liebig et al. [9], [10] consists of a
wide survey of 40 large-scale open-source projects, comprising
30 million lines of code. By necessity, such a study is based
on automated tools and a high-level view of average metric
values. Tartler et al. [19] focus on only one system, namely
Linux, and show that this system suffers from bugs resulting
from inconsistent use of configuration options. This leads us
to the following specific questions:

1) Can therelevantconfiguration options indeed be iden-
tified by straightforward lexical means?

2) Are all config options equally important, and are average
values generally representative?

3) Can the effect of config options be evaluated by syntactic
analysis alone?

4) Do config options affect the whole codebase in a uniform
manner?

5) Does conditional compilation based on config options
introduce significant complexity to the code?

Thus we wish to take the reservations of Tartler et al. into ac-
count, and perform a more detailed study than that performed
by Liebig et al. This is enabled by focusing on a single system,
and considering complete distributions rather than averages.

IV. CHARACTERIZATION OF THE L INUX KERNEL

CONFIGURATION

We are specifically interested in variability that is part ofthe
system’s design, namely explicit support for different config-
urations. Studying such variability in a system like Linux has
two possible points of departure: either collect information on
all the CPP constants used to control conditional compilation,
or else start with all the known configuration options. As we
show below, neither is completely satisfactory: there are many
CPP constants that do not reflect real variability, and there
are many config options that do not appear in the code. We
therefore actually want the intersection of the two. But even
this is not enough, as the code may include definitions of
derived CPP constants that depend on other config options.

A. Source Configurability

As noted above, configurability is implemented in the source
code using conditional compilation. To study its effect on the
code we must first identify the CPP constants that are part of
the configuration control mechanism. We therefore started by
extracting all the CPP constants from all the#ifdef expressions1

in the Linux source.
We found 10,988 different constants that appear in#ifdefs,

of which 4731 start withCONFIG and may therefore rep-
resent config options (but some are false positives, as we
show below). In this we use Linux-specific knowledge, and
depart from Liebig et al. who considered all CPP constants.
We claim this is important for reliable results concerning code
variability, and thus that variability cannot be studied using

1Here and in the sequel we use#ifdef to also mean#ifndef, #if, and#elif.

Source Code
(5515)

Only in source
(1023)

Also appears
elsewhere

(4492)

Appear in #ifdefs
(740)

Not in #ifdefs
(283)

Appear in #ifdefs
(3991)

Not in #ifdefs
(501)

_MODULE suffix
(418)

not defined
(251)

Defined
(71)

Defined
(154)

not defined
(129)

Fig. 1. Distribution of CONFIG options in the source code.

only syntactic means. For example, 4330 of the non-config
constants are defined by#define directives in the code itself,
which means that they typically do not contribute to variability
and always provide the same path.

However, we found that some of these defined constants
actually depend on configuration options in one of two ways:
they are either defined as an alias of a config option, or else
their very definition occurs within a code fragment that is
only compiled conditioned on a config option. This means that
their definition isderived from the config options. We found
23 thousand such derived definitions, but only 1009 of them
are relevant because they are subsequently used in#ifdefs.
This means that in total there are actually 5740 constants that
may reflect configurability, and not 4731 as a merely syntactic
analysis suggests.

Another large group of constants is due to the CPP inclusion
mechanism: it is customary to avoid double-inclusion of
header files by protecting such files with an#ifdef based on a
constant defined in the same file. We ignore these constants
and#ifdefs as they are idiomatic and do not reflect variability.
The rest of the constants are not of real interest. Many of
them deal with debug issues, while others are not defined at
all (even not in makefiles).

B. Inconsistent Use of Config Options

As we mentioned above Linux configuration options may
appear in four different contexts. The config options are
initially born in theKconfigfiles, the settings in thedefconfig
files are derived from the Kconfig files, and the options in
source codefiles or makefilesare a subset of the total config
options. In an ideal world all these sources of the config
options would be synchronized. In practice, they are not.

We identified potential config options as follows. In the
Kconfig files, they are introduced by theconfig keyword (see
Listing 1). In the other files they are string constants that
start with CONFIG . When we checked all the header and
implementation files (C and assembly) of the source code we
found 5,515 such string constants (Figure 1). In the Kconfig
system files we found 9,342 options, and in the defconfig files
we found 8,696 options. Finally, we got 6,325 config options
in makefiles. Altogether we have 11,303 unique config options
from all these sources. These results and the logical relations
between them are presented in Figure 2.

1.9

16.5

16.3

31.7

7.4

4.2

4.8

1.9

5.5

9

source

make

defconfigKconfig

Fig. 2. The overlap relations between the different sourcesof the config
options clearly indicate they are inconsistent. Values arepercent of the total
number; values less than 1% not shown.

Obviously, just less than half of the options we have found
are used in the source code. This is not unreasonable because
an additional 37.5% are used in makefiles to control which
source files are included in the build process. Strangely, 6.1%
of the options in the Kconfig system do not appear at all in the
source or the makefiles. These options are therefore effectively
no-ops, with no effect on the configuration. Stranger yet, 7.4%
appear only in defconfig files. This contradicts the assumption
that the defconfig files are derived from the Kconfig files, and
may reflect legacy options in architectures that are not well-
supported any more.

In the context of our interest in code quality, the biggest
anomaly in Figure 2 is that around 9% of the total config
options occur only in the source code and not in any of
the configuration files as expected. Further examination of
the source code helped to explain this and revealed several
different sub-categories of options (left branch of Figure1).

First, we found that more than 40% of these options have a
MODULE suffix. These are derived from options that were

defined in the Kconfig files without this suffix. The suffix
is appended during the build process, when creating the
autoconf.h file, if the user configured an option to be compiled
as a module. So, for a given optionX in the Kconfig system,
we may see bothCONFIG X andCONFIG X MODULE in the
source code.

Second, we found that 22% of these options are defined
by the #define directive in the source code, but not in the
configuration process. In other words, these CPP constants are
false positives that do not reflect true configurability (unless
they are derived from true config options).

Next, around 25% of these options seem not to be defined at
all, although they are in fact used by conditional compilation
directives. We believe that most such options are leftovers
from previous versions that should have been removed. A
small number may be bugs, where a config option name was
misspelled [19].

 0

 500

 1000

 1500

 2000

 2500

1 5 8 more

nu
m

be
r

of
 o

pt
io

ns

number of files per option
(a)

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

su
rv

iv
al

 p
ro

ba
bi

lit
y

number of files per option
(b)

Fig. 3. a) Distribution of config option number of files. b) LLCDplot
showing the distribution has a heavy tail.

Finally, most of the remaining CONFIGstrings were
defined and used at the C language level with no relation to
the preprocessor at all. For example, elements of anenum data
type might have names that start withCONFIG . These have
nothing to do with our research and we ignore them.

The conclusion from all the above is that the configuration
process settings are not expressed cleanly in kernel code which
is loaded with redundant options as well as misleading naming
and usages. Such behavior soils the code and as a result
makes the work of developers harder. On the basis of this
conclusion we gain a significant insight:A blind syntactic
analysis of a large software system may miss its goal. Some of
the previous analyses of Linux may have had this problem. Our
results corroborate and extend those of Tartler et al. [19] who
specifically study the inconsistency of using config options.

Our goal is to eventually study the effect of conditional
compilation directives based on config options on code com-
prehension. We will therefore focus on the real options that
have a real influence on configurability. These options are
those that occur in the source code#ifdefs as well as in the
Kconfig files. To this set we will add the derived constants
which were presented earlier. There are 4,440 options that are
shared by Kconfig and the source code, out of which 3,941
are used in ifdefs. When adding to the 1,009 derived constants
that also appear in#ifdefs we get 4,950 config options in total.

Note that config options with theMODULE suffix are not
included because each time they are used in the code their
counterpart options, those withoutMODULE, are also used
in the same expression. Thus they do not add any independent
configurability. Config options that are used only in makefiles
are also not included, because they do not affect the difficulty
of comprehending the code. From now on whenever we refer
to config options we mean the set of real configuration options
as it was defined here.

C. Heavy-Tailed Distribution of Config Options

Figure 3(a) shows how the configuration options distribute
over the files of the source code. More than 2,700 options are
used in one file only; these are the more specific options. On
the other hand 285 options are used in more than 10 files; these
are the cross-cutting options. This latter category of options
may cause difficulties in maintenance because the developer
must potentially think about many files when processing a
single configuration option. In the most extreme case, we

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

1 5 8 more

nu
m

be
r

of
 o

pt
io

ns

number of instances per option
(a)

 0.0001

 0.001

 0.01

 0.1

 1

 1 10
 100

 1000
 10000

su
rv

iv
al

 p
ro

ba
bi

lit
y

number of instances per option
(b)

Fig. 4. a) Distribution of config option number of instances. b) LLCD plot
showing the distribution has a heavy tail.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800

in
st

an
ce

s
pe

r
op

tio
n

files per option
(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45 50

in
st

an
ce

s
pe

r
op

tio
n

files per option
(b)

Fig. 5. a) Correlation between config options instances and the number of
files they occur in. b) zoom in on the cluttered area.

found that the most frequent option is used in 753 different
files.

The histogram in Figure 3(a) indicates that the distribution
of config options across files is highly skewed. We therefore
checked whether this is a heavy-tailed distribution. To do so
we use an LLCD plot, as shown in Figure 3(b). This shows
that the survival function of the distribution is approximately
linear in log-log axes, which means that it decays accordingto
a power law and is indeed heavy-tailed. The tail index, which
is given by the slope of this line, is approximately 1.3. In
heavy-tailed distributions the tail index ranges between 0and
2, and smaller tail indexes indicate a heavier tail.

Next we considered the number of instances of each config
option (note that a config option can have several instances in
the same file). The results are illustrated in Figure 4(a). Asmay
be expected this also shows that we have many config options
with a small number of instances and few config options with
a large number of instances. And again, the distribution of the
config options in terms of instances is found to be heavy-tailed
as illustrated in Figure 4(b) using an LLCD plot.

To relate these two distributions, we found that the number
of files and the number of instances of a config option are
correlated with a correlation coefficient of 0.97. It is easyto
see this in Figure 5. In addition, the same config options appear
at the top in both cases, and almost in the same order. These
highly-used config options are listed in Tables I and II. They
can be classified into three main groups:

• Related to cross cutting operating system features, such
as power management (PM) or SMP support.

• Related to a specific operating system feature, such as

Option Files
PM 753
SMP 591
DEBUG 591
PROC FS 322
PCI 250
COMPAT 213
64BIT 206
MMU 201
X86 64 137
X86 32 129
BITS PER LONG 129
NET POLL CONT. 105
SYSCTL 102

TABLE I
CONFIG OPTIONS THAT APPEARED

IN THE MOST FILES.

Option Instances
DEBUG 1498
PM 1246
SMP 1221
PROC FS 525
PCI 488
64BIT 490
COMPAT 424
MMU 413
X86 64 362
X86 32 324
PPC64 274
BITS PER LONG 200
NET POLL CONT. 214

TABLE II
CONFIG OPTIONS THAT HAD THE

MOST INSTANCES.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000

cu
m

m
ul

at
iv

e
pe

rc
en

t

number of files per option
(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000 10000

cu
m

m
ul

at
iv

e
pe

rc
en

t

number of instances per option
(b)

Fig. 6. The ”count” (upper) and ”mass” (lower) distributionsof option
occurrence. a) Mass-count disparity plot of number of options per file. b)
Mass-count disparity plot of number of instances per option.

the /proc file system.
• Related to a specific architecture or device, such as Intel

X86, IBM PPC, or the PCI bus.

Skewed distributions may also be characterized by their
mass-count disparity [5]. In our context this means that a small
number of configuration options represent the majority of the
files and instances, while at the same time most of the config
options together account for only a small fraction of the files
and instances. Such a phenomenon, when it exists, helps to
focus on those items that have the most impact.

In Figure 6 we show the disparity between the mass (files
or instances) and count distributions. In both cases the joint
ratio is close to the 20/80 rule, which means that around 20%
of the configuration options are responsible (present in) for
80% of the different files and instances, while the other 80%
of the options lead to only 20% of the files and instances.

The same results and insights were obtained when we
investigated the concentration of config options in different
files. We counted the number of different configuration options
that appear in each file as well as the number of instances. The
results show that 4,169 files contain only one option while 237
files contain at least 10 different options. When examining the
instances of the options we get that 2,496 files contain only
one instance, and 858 files contain at least 10 instances. In
both cases we found that the distributions are heavy-tailed,
with tail indices of 1.4 and 1.7 respectively. The files in the
tail are hot-spots of configurability.

D. Syntactic vs. Semantic Analysis

Our work so far, and previous work as well (e.g. [9],
[13]), was performed at the syntactic level. However, we

1 static netdev tx t eexp xmit(struct sk buff ∗buf, struct
net device∗dev)

2 {
3 short length = buf−>len;
4 #ifdef CONFIG SMP
5 struct net local ∗lp = netdev priv(dev);
6 unsigned longflags;
7 #endif
8 #if NET DEBUG > 6
9 printk(KERN DEBUG ”%s: eexpxmit()\n”, dev−>name);

10 #endif
11 if (buf−>len < ETH ZLEN) {
12 if (skb padto(buf, ETHZLEN))
13 return NETDEV TX OK;
14 length = ETH ZLEN;
15 }
16 disable irq(dev−>irq);
17 #ifdef CONFIG SMP
18 spin lock irqsave(&lp−>lock, flags);
19 #endif
20 {
21 unsigned short∗data = (unsigned short∗)buf−>data;
22 dev−>stats.txbytes += length;
23 eexp hw tx pio(dev,data,length);
24 }
25 dev kfree skb(buf);
26 #ifdef CONFIG SMP
27 spin unlock irqrestore(&lp−>lock, flags);
28 #endif
29 enable irq(dev−>irq);
30 return NETDEV TX OK;
31 }

Listing 3. The blocks of the CONFIGSMP option are orthogonal
to the rest of the code in the function (drivers/net/eexpress.c).

claim that syntactic measures are not sufficient. By look-
ing more closely at the conditional blocks, one may reveal
semantic relationships between blocks that are governed by
configuration options and other free blocks. Such interactions,
may have a significant impact on the feasibility of applying
aspects technology to reduce tangled code when handling
cross-cutting concerns [7]. Indeed, Adams et al. [1] have
shown that conditional compilation can be partially refactored
into aspects.

To be more concrete we present code snippets to show that
semantic involvement is required when analyzing code in the
context of config options. We focus on a few config options
and investigate them in different semantic contexts.

Orthogonality versus Coupling. We start with two basic
cases: optional blocks that are orthogonal to the surrounding
functionality and optional blocks that have a tight connection
with the rest of the code, namely coupled code. The key point
here is that the two behaviors occur for the same config option.
This means that a single config option, which is considered a
concern in AOP terminology, behaves differently regardingits
connectivity to other concerns where it appears.

Listing 3 shows a function that has three blocks that
are controlled by theCONFIG SMP option. In line 20 the
function acquires the lock and disables interrupts on the local
processor while saving the state of the interrupts inflags. The

1 static int show stat(struct kmem cache∗s, char ∗buf,
enum stat item si)

2 {
3 unsigned longsum = 0;
4 int cpu;
5 int len;
6 int ∗data=kmalloc(nrcpu ids∗sizeof(int),GFP KERNEL);
7 if (!data)
8 return −ENOMEM;
9 for each online cpu(cpu){

10 unsignedx = get cpu slab(s, cpu)−>stat[si];
11 data[cpu] = x;
12 sum += x;
13 }
14 len = sprintf(buf, ”%lu”, sum);
15 #ifdef CONFIG SMP
16 for each online cpu(cpu){
17 if (data[cpu]&&len<PAGE SIZE−20)
18 len += sprintf(buf + len, ” C%d=%u”, cpu, data[cpu]);
19 }
20 #endif
21 kfree(data);
22 return len + sprintf(buf + len, ”\n”);
23 }

Listing 4. The blocks of the CONFIGSMP option are coupled with
the rest code of the function (mm/slub.c).

corresponding unlock is called in line 30. Lines 5 and 6 define
two variables which are needed only for the sake of these
locking/unlocking operations. This is a classical case where
aspects would be feasible especially with the knowledge that
this function’s aim is to transmit a packet and this concern is
orthogonal to theCONFIG SMP one. To gain such an insight
one should delve into the code.

However, when examining Listing 4 the local variablelen is
defined and initialized outside theCONFIG SMP block. Then,
it is used twice and changed once within theCONFIG SMP
and finally used again outside this block. Moreover, the pointer
buf is changed three times: before, within, and after the
CONFIG SMP block. One more point to mention is thatbuf is
a parameter which is passed by address, so any change in its
value will be returned back to the caller function. These tight
dependencies between the function body, the config option
block, and the caller function imply a semantic connection
and logical dependency to the other parts of the function.
Thus it is hard to extract out the block of theCONFIG SMP
automatically.

This function is even a bit more complex than was de-
scribed. Line 12 calls a function with a body which is
controlled byCONFIG SMP. Also, lines 11 and 21 call the
same macro where in line 11 the macro is free while in line
21 it is controlled by the#ifdef. This macro, in the file where
it is defined, is controlled byCONFIG SMP. This means that
in fact lines 11–16 are controlled by theCONFIG SMP option
but this is not visible.

Do Many Instances Imply Coupling? The CONFIG SMP
option appears in 591 different files with 1,221 instances
within those files. Seemingly, it is a hard case of a cross-
cutting concern due to its wide scattering and the potential

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

CONFIG_PM CONFIG_SMP CONFIG_PROC_FS

F
re

qu
en

cy
 in

 s
ub

sy
st

em
s

Config Options

net
mm

arch
kernel

fs
drivers
sound

include
others

Fig. 7. Distribution of top config options over different subsystems.

coupling that this may imply. We argue that it is not as bad
as it sounds.

The Linux Kernel is composed of subsystems residing in
distinct subdirectories. These subsystems include, amongoth-
ers, the initialization code (init), memory management (mm),
file systems (fs), and support for diverse architectures and
devices (arch and drivers). Each subsystem (directory) is,
to a large extent, an independent module. This means that
despite the fact that the same config option may appear in
multiple subsystems, there is not much coupling between the
subsystems and one can treat each subsystem separately.

Other config options are logically related to specific sub-
systems, so they are largely localized in those subsystems.
Thus even if they appear in other subsystems, they create only
slight coupling with them. To demonstrate this, we looked at
3 of the most frequent options:CONFIG PM, CONFIG SMP,
and CONFIG PROC FS. Figure 7 shows how these options
distribute over the different subsystems of the Linux Kernel.
CONFIG PM occurs significantly in thedrivers and sound
modules while in the other modules it does not. Similarly,
almost all the instances ofCONFIG SMP occur in thearch
directory. When looking at theCONFIG PROC FS, about
60% of its instances occur in thenet anddrivers subsystems.

Actually, these results are not surprising. The designation
of the SMP option is to enablesymmetric multi-processing
support. So, one expects a heavy use of this option in the
directory where all the architectures are defined. In the case
of CONFIG PM most instances reside in thedrivers directory
due to the fact that power management is accomplished
on the system components and peripherals. These examples
again demonstrate the fact that syntactic analysis should be
complemented by its semantic counterpart.

Moreover, Figure 8(a) shows howCONFIG SMP distributes
over the different architectures, and Figure 8(b) shows how
CONFIG PM distributes over the different drivers. Ultimately,
one of these orthogonal architectures as well as a combination
of the appropriate orthogonal drivers are built for each variant
of the system. This means that the real number of instances
of a specific config option that a developer needs to tackle at

 40

 60

 80

 100

 120

 140

 160

 180

 200

arm

alpha

m
ips

ia64

x86

sparc

pow
erpc

others

S
M

P
 in

st
an

ce
s

architecture
(a)

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

staging

input

m
edia

video

ata

usb

net

others

P
M

 in
st

an
ce

s

driver
(b)

Fig. 8. a) Distribution of the CONFIGSMP over architectures. b) Distribu-
tion of the CONFIGPM over drivers.

the same time is not the total number, but only those related
to the specific architecture or driver he works on.

Due to the modularity of the Linux system and these insights
we argue that the coupling between the different entities inthe
context of each config option is minimal.

V. CODE METRICS

To get insights about the complexity resulting from CPP and
examine the feasibility of alternative techniques we studied
various code metrics. Here we focus on the dominant subset of
the configuration options. These are the most frequent config
options, which constitute approximately 20% of the different
config options and account for approximately 80% of the
instances.

Metric measurements with a normal distribution are well de-
scribed by the arithmetic mean and the standard deviation. But
when metrics have a skewed distribution, commonly with a
low mean and a large variance, it is more appropriate to use the
geometric mean and the multiplicative standard deviation [11].
The geometric mean, denoted bȳX∗, is defined as thenth root
of the product ofn positive numbers:X̄∗ = e(

1

n

∑

n

i=1
logXi).

The formula is presented this way to allow computation and
avoid overflows when the product is large. In contrast to the
arithmetic mean, which is dominated by the large values, the
geometric mean responds equally to changes in large and
small values. The multiplicative standard deviation, denoted
by S(X)∗, is essentially the average of the quotients of the

samples and the mean:S(X)∗ = e

√

1

n−1

∑

n

i=1
(log

Xi

X̄∗
)2

. On
the basis of these two descriptive values, the distribution
is characterized by the rangēX∗ ×/ S(X)∗ (that is, from
X̄∗/S(X)∗ to X̄∗

× S(X)∗).
In using full distributions and noting their skewed nature

we again depart from previous practices. Looking at the
data of [9] we see that in practically all cases the standard
deviation is (much) larger than the mean. This indicates that
the distributions are skewed, and that the arithmetic mean and
standard deviation do not provide a good summary of the data.

The metrics we checked are the following.
Scattering Degree of Config Options.The scattering de-

gree metric, denoted by SD, was defined by [9] as the number
of instances of CPP constants in different expressions. This

metric measures the spread of configuration options, and high
values are expected to reflect difficulty in comprehending the
code and managing the configurations. In practice they actually
used the average number of instances per config option. We
have shown the distribution in Figure 4. Focusing on the
dominant options, we found that the geometric mean of the
scattering degree is 15.2, with multiplicative standard deviation
of 3. This means that the bulk of the scattering degrees of the
dominant config options are covered by the interval 5 to 45.6.

Tangling Degree of Config Options.The tangling degree
metric, denoted by TD, was defined by [9] as the number
of different CPP constants that occur in an expression. This
metric measures the mixing of different configuration options
within the expressions of#ifdefs. To evaluate this metric we
measure the occurrences of the dominant configuration options
in the CPP expressions. We found that the geometric mean is
1.035 with deviation of 1.185. This means that usually we have
only one config option and the expressions are quite simple.

Conditional Blocks. The code blocks which are controlled
by #ifdefs are classified in the literature as homogeneous or
heterogeneous. This is important because alternatives such
as aspects are only applicable to homogeneous blocks. To
compare the blocks in different#ifdefs we squeeze whitespaces
and concatenate the lines to one string and then make the
comparison. We found that 92% of the conditional blocks of
the config options of the dominant subset are heterogeneous.In
particular, the optionsCONFIG PM and CONFIG SMP each
have more than one thousand heterogeneous blocks.

As such comparisons are very stringent we also made some
manual checks. We manually looked at one hundred blocks of
the CONFIG PM option and got the same results. Moreover,
we expected that the automatic comparison will have problems
with long code blocks. Our manual work revealed that in fact
the automatic comparisons identified identical blocks of 10
lines. This probably indicates that a copy-paste mechanism
was used by the developers wherever the same functionality
was needed. But we cannot infer that this is the general case
and more work should be done here.

Complexity of Expressions. We found 68,524 lines of
conditional statements in CPP directives. More than 36%
of them reference at least one configuration option of the
dominant set. We examined these expressions and counted the
number of logical operators in each of them. The results are
presented in Figure 9(b). We found that about 79.2% use#ifdef
or #ifndef, and therefore do not really have any expression.
About 18.3% use the#if construct, and the#elif construct
captures the remaining 2.3%.

In the #if and#elif expressions, we found that about 53.3%
were compound with an average of 1.2 logical operators. The
or operator dominates with more than 72% of the operator
instances, theand operators captures about 25%, and thenot
operator is almost non-existent. However, it should be noted
that about half of theor occurrences have operands with a

MODULE suffix. This observation shows that the use ofor
partially follows a simple predefined pattern that is supposed
to reduce its complexity.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 4 8 16 more

nu
m

be
r

of
 fi

le
s

number of code variations in file
(a)

 0

 5000

 10000

 15000

 20000

 25000

0 1 2 3 4 more

nu
m

be
r

of
 e

xp
re

ss
io

ns

number of operators in expression
(b)

22460

2467

224 55 14 36

Fig. 9. a) Distribution of code variation in source files. b) Complexity of
the expressions in#ifs.

Code Variations. When looking at the code base, the
developer must consider all the different combinations in
which the code may be built in the future. These combinations
are concatenations of code segments that are created on the
basis of the evaluations of the preprocessor conditionals.It
is obvious that the number of the potential variations has a
significant impact on the code understanding. To get insights
about the code understanding complexity we counted the
number of code variations for each of the source code files.
As a first step we only took into account basic conditionals
(#ifdef, #ifndef) that contain one configuration option. We have
noted earlier that#ifdef and#ifndef constitute more than 79%
of the conditionals of interest, so they may be expected to
reflect the full picture. The results are shown in Figure 9(a).
While obviously most files have few variations, some have an
extremely large number of variations, with a maximal value
of 316,659,348,799,488.

Nesting. One more aspect to look at is the nesting of
conditionals. Initially we checked the nesting of general con-
ditionals that are not related only to configuration options.
Figure 10(a) describes the results. The average depth of
conditional statements is 1.08. Afterward, we measured the
depth of nesting for conditionals which contain at least one
configuration option. The results are presented in Figure 10(b).
The average depth of conditional statement in the configuration
context increased slightly to 1.10, which is still low.

The metrics presented here provide evidence for the exis-
tence of many config options scattered around the code. These
are bad news due to potential coupling that such characteristics
may impose on the code. The good news are that these
scattered config options are used in a simple manner. This
stems from the low value of the tangling metric and the simple
structure (low number of logical operators) of the expressions
of the conditional constructs. Moreover, the intensive useof
the simple form of the conditional construct as opposed to its
composite form is additional evidence for simplicity.

VI. D ISCUSSION ANDCONCLUSIONS

The CPP has been identified over the years as a potentially
harmful tool, in particular when it is used to implement
variability in a large scale system like Linux. In this study
we performed a detailed characterization of the Linux kernel

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

1 2 3 4 5 6

nu
m

be
r

of
 c

on
di

tio
na

ls

depth of nesting
(a)

 0

 5000

 10000

 15000

 20000

 25000

1 2 3 4 5

nu
m

be
r

of
 c

on
di

tio
na

ls

depth of nesting
(b)

Fig. 10. Depth of the nesting of conditional constructs. a) General Condi-
tionals. b) Conditionals with at least one config option. .

configuration as done using CPP, and presented different
metrics in order to better understand CPP’s usage and effect.

The approach taken in most previous work was breadth-
first, and provided a survey of CPP usage in many systems.
Such an approach necessarily comes at the expense of deeper
analysis of each system. We therefore complemented this by
using a depth-first approach on one particular system, namely
the Linux kernel. This allowed us to employ domain-specific
knowledge and semantic analysis, and led to various insights
that would not be possible in a more general study.

In order to study the variability built into the system, we
focus on Linux’s configuration options. Our first finding is
that it is not trivial to identify the effect of config optionson
the code, and that their usage is inconsistent. For example,
we found more than one thousand options that appear only
in the source code, and more than a thousand CPP constants
that are derived from config options even though they are not
themselves direct config options.

We found that the distribution of the config options is
skewed (even heavy-tailed), and manifests the mass-count
disparity phenomenon. These realizations are useful because
they indicate the existence of a relatively small but prominent
group of cross-cutting options. This helped us to focus on
this subset when assessing their impact on the code. The
skewness of the distribution also indicates that one shouldbe
careful to use the right descriptive metrics: geometric mean
and multiplicative standard deviation.

Overall we found nearly 5000 real config options. This is
worrying because it suggests extensive use of the CPP across
the code, with adverse consequences for code comprehension.
However, a large portion of these options have only a few
instances, so their effect is actually very localized. The small
fraction of the options that have many instances appear to
create only slight coupling, due to the modularity of the
system. The logical expressions used to control conditional
compilation are typically very simple, and there is very little
nesting. All these findings indicate that variability management
with CPP does not cause excessive code degradation. However,
the blocks that are controlled by these options were classified
as heterogeneous which is bad due to the difficulty of using
alternative techniques. Moreover, the code is soiled with
garbage and misleading config options so an initiation of a

clean up process is vital.
Our work suffers from several threats to validity. The

complexity imposed by CPP usage can be measured using
additional metrics, such as McCabe’s cyclomatic complexity.
Another issue is whether to focus on the most prominent config
options, or to always consider all of them. Finally, we do
not know whether these characterizations are true for other
systems except Linux. Nevertheless, we think that this case
study is important in its own right even if specific findings do
not generalize. We think that it is valuable to characterizemore
systems in the domain of operating systems and then move to
other domains. It is also interesting to study the evolutionof
CPP usage across the many versions of the Linux kernel itself.

REFERENCES

[1] B. Adams, H. Tromp, W. D. Meuter, and A. E. Hassan., “Can we refactor
conditional compilation into aspects?” In 8th Intl. Conf. Aspect-Oriented
Softw. Dev., pp. 243–254, 2009.

[2] J.-M. de Goyeneche and E. A. F. de Sousa, “Loadable kernel modules”.
IEEE Softw.16(1), pp. 65–71, Jan/Feb 1999.

[3] C. Dietrich, R. Tartler, W. Schr̈oder-Preikschat, and D. Lohmann, “A
robust approach for variability extraction from the Linux build system”.
In 16th Proc. Intl. Software Product Line Conf., 2012.

[4] J.-M. Favre, “The CPP paradox”. In 9th European Workshop on Softw.
Maintenance, 1995.

[5] D. G. Feitelson, “Metrics for mass-count disparity”. In 14th Modeling,
Anal. & Simulation of Comput. & Telecomm. Syst., pp. 61–68, Sep 2006.

[6] “ The GNU project emacs homepage”.
www.gnu.org/software/emacs/emacs.html.

[7] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-
M. Loingtier, and J. Irwin, “Aspect-oriented programming”. In 11th
European Conf. Object-Oriented Prog., pp. 220–242, 1997.

[8] M. Krone and G. Snelting, “On the inference of configuration structures
from source code”. In 16th Intl. Conf. Softw. Eng., pp. 49–57, 1994.

[9] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An
analysis of the variability in forty processor-based software product
lines”. In 32nd Intl. Conf. Softw. Eng., pp. 105–114, 2010.

[10] J. Liebig, C. K̈astner, and S. Apel, “Analyzing the discipline of prepro-
cessor annotations in 30 million lines of C code”. In Intl. Conf. Aspect-
Oriented Softw. Dev., pp. 191–202, Mar 2011.

[11] E. Limpert, W. A. Stahel, and M. Abbt, “Log-normal distributions across
the sciences: Keys and clues”. BioScience51(5), pp. 341–352, May 2001.

[12] B. McCloskey and E. Brewer, “ASTEC: A new approach to refactoring
C”. SIGSOFT Software Engineering Notes2005.

[13] A. Reynolds, M. E. Fiuczynski, and R. Grimm, “On the feasibility of an
AOSD approach to Linux kernel e xtensions”. In Proc AOSD Workshop
on Aspects, Components, and Patterns for Infrastructure Softw., 2008.

[14] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “The
variability model of the Linux kernel”. In 4th Workshop on Variability
Modeling of Software-Intensive Systems, 2010.

[15] N. Singh, C. Gibbs, and Y. Coady, “C-CLR: A tool for navigating
highly configurable system software”. In 6th Workshop on Aspects,
Components, and Patterns for Infrastructure Softw., 2008.

[16] H. Spencer and G. Collyer, “#ifdef considered harmful, or portability
experience with C news”. In Proc. USENIX Technical Conf., 1992.

[17] R. M. Stallman and Z. Weinberg, “The C preprocessor”. GNU project,
Free software foundation, 2010.

[18] A. Sutton and J. Maletic., “How we manage portability and configuration
with the C preprocessor”. In Intl. Conf. Softw. Maintenance, pp. 275–
284, 2007.

[19] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat, “Feature
consistency in compile-time–configurable system software: Facing the
Linux 10,000 feature problem”. In 6th EuroSys, pp. 47–60, Apr 2011.

[20] L. Vidács and A. Besźedes, “Opening up the C/C++ preprocessor black
box”. In 8th Symp. prog. lang. & softw. tools, 2003.

