Characterization and Assessment of the Linux
Configuration Complexity

Ahmad Jbara and Dror G. Feitelson
School of Computer Science and Engineering
The Hebrew University, 91904 Jerusalem, Israel

Abstract—The Linux kernel is configured for specific uses by built from common source code. It works by using directives
manipulations of the source code during the compilation process. for conditional compilation, so that during the build prese
These manipulations are performed by the C pre-processor yha compiler can decide whether or not to compile certairecod

(CPP), based on in-line directives. Such directives, and the f ¢ lect f ltiol ; fth
interleaving of multiple versions of the code that they allow, may ragments, or seiect irom among multipie versions ot theesam

cause difficulties in code comprehension. To better understand ¢n basic functionality. The conditional compilation direes
effects of CPP, we perform a deep analysis of the configurability typically use preprocessor constant definitions, which ipay

of the Linux kernel. We found significant inconsistencies between derived from configuration option values that were set at an
the source code and the configuration control system. Focusing earlier stage.

on the thousands of config options appearing in the source code, LY . . -
we found that their distribution is heavy-tailed, with some options Despite its popularity and strength, CPP has been identified

having more than a thousand instances in the code. Such wide &S problematic. In particular, the interleaving of flow coht
use seems to imply a massive coupling between different parts ofand conditional compilation directives, as well as its daxi

the system. However, we argue that employing a purely syntactic nature, may make the code harder to understand and maintain
analysis is insufficient. By involving semantic considerations, we [16], [8], [4], [20], [15], [1]. Even the CPP reference mahua

find that in reality the coupling induced by the very frequent . o . . L
options is limited. Moreover, even at the syntactic level the identifies many pitfalls, especially when using it for macro

adverse effects of CPP are limited, as there is little nesting and the definitions [17].
expressions controlling conditional compilation are usually very ~ This situation has spurred recent interest in how CPP is

simple. But it could be even better if the configuration system ysed and in possible alternatives [13], [1], [9], [10], [19]
undergoes a clean up. On the other hand, we found that the code example, Liebig et al. have analyzed the use of CPP in

controlled by CPP is very heterogeneous and may exhibit intimate 40 | ect d id . satist
mingling with non-variable code. As a result the applicability of arge open-source projects, and provide various SIS

alternative mechanisms such as aspects is hard to envision. ~ characterizing its use [9]. While work such as this provides
a wide picture of CPP usage, it might miss on the details.

I. INTRODUCTION For example, not every symbolic constant that appears in a

While much attention in the wider software engineering\cl)nditional directive is relevant to variability manageme

community is (rightfully) directed towards other aspecfs q %ther:eforel S?t Ol;t to co]['npr)]lemen't previous VYOH?] Wllt_h an

systems development and evolution, such as specification, epl)t LgnayS|sk0 c;lne of the pl%OJeCtz,. .namley t e'l Inux

design, and requirements engineering, it is the source c NEl. Linux makes heavy use of con ftional compi _at|ons
ue to the need for special customization to support difere

that contains the only precise description of the behawidar hi df h ; vzed Li
system. Thus ensuring that the source code is comprehensa%f;ng?;tlggsz %n eatures. The version we analyzed wasLin

is of prime importance. An often overlooked aspect of co N , . :
Jo study variability we focus on configuration options,

comprehension is the use of pre-processors, which suppolj], h h ; . h | f
various manipulations of the source code during the compil ich are the means for expressing the select feature set

tion process. The injection of pre-processor directives, the that _ShOUId be |r_10Iuded In a S.pec'f'(.: build. Importa_ntly, we
inclusion of multiple alternative versions of the code, niy consider the entire set of config options of all architecture

expected to exacerbate the code comprehension problem.oILH _f|rst fl_ndlng Is thatitis not so easy to |der_1t|fy thg releva
see if this is indeed the case, we performed a detailed asal nfig options, as there are significant inconsistenciesest

of the configuration control mechanisms used in the Lin e source code and the configuration control system. Thus

kernel. In a nutshell, our findings indicate that at leasthiis t one must be Cafem' reg_ardlng the g(_)al_(_)f the study: if .'t 'S
system the situation is not so bad and the code remainsyar control of configurations and variability, the data ntigh

comprehensible. Nevertheless, the configuration systerd co € dn;fergnt ;h:;n if it is thedeffect of configurability on the
use a massive cleanup. complexity of the source code.

CPP (the C pre-processor) is a commonly used tool for oy After selecting the data we want to focus on, we study the

ressing software variability, whereby different exetlga are Y5€ of config options in the source code. We foun_o_l a few
P g ¥ y thousands of options. These options have a skewed distribut

An abbreviated preliminary version of this work was preséritethe PhD .SUCh th?.t t_h_e 20/80 rule holds. Thus some options, members
forum of ICPC 2012. in the significant 20%, are used more than a thousand times,

seeming to imply massive coupling between diverse parts gfmenu "Processor type and features”
the kemel. However, such a conclusion is based on puref Cgﬁ;%esk/f;nelltlme/Kconﬂg
syntactic analygs. By addlng sgmgntlc coq3|derat|ons, WE"bool "Symmetric multi-processing support”
found that the imposed coupling is in fact minor. Moreovery __ _help———
recall that a large number of options, the least signific@b8 ¢ This enables support for systems with more than one CRU.
are U_Sed_only a _few times, so their contribution to the CC'deListing 1. Example of the definition of the SMP config option in a
coupling is also limited. Kconfig file.

Despite the relatively low coupling, CPP nevertheless does
have adverse effects on the code. Our measurements showeihj—$(CONFIG GENERIC ISA_DMA)+=dma.o
that the average (geometric) scattering degree of configrapt 2 0bj—$(CONFIG USE_GENERIC SMP_HELPERS)+=smp.o
is relatively high as well as the number of code variation$ 'fg.eq (B(CONFIG SMP).y)
within a file. Another issue is therefore the possibility of: ObJ Y += up.0

endif
replacing CPP with other mechanisms. This is found to bg opj—$(CONFIG SMP) += spinlock.o

problematic due to the intimate mingling of code snippets—— , , — ,
. . . Listing 2. Examples of using config options in a makefile to omintr
using CPP, and the heterogeneity of the variable code blockSe set of files to compile.
so mechanized alternatives such as aspects are questionabl
Section Il describes the CPP tool, the Linux configuration
process, and related work. Section Ill then lists our redearmacros expanded, and to emulate the different configusation
questions. The bulk of our study is reported in Section INMyhich are controlled by preprocessor variables.
which characterizes config options, and Section V, which . . .
presents metrics for the complexity introduced by CPP. W The Linux Configuration Process
discuss the results and summarize conclusions in section VI The Linux kernel may be configured to run on many
different platforms and provide diverse sets of features by
Il. BACKGROUND using config options [19]. We present the config options from
two different points of view: developers, who define config
options and integrate them into the code, and users, who use
Preprocessing by CPP is the first phase in compiling tge config options to customize the kernel for their needs.
programs. CPP is a powerful tool for managing configuration Developer View of Config Options Initially, each config
and portability of software, and also provides useful fezgu option is defined in thé&config system. TheKconfig system
such as header inclusion and macro definition [17]. is a set of text files placed in kernel source directories @her
In our work the most important feature of CPP is the suppovariability is needed. These files' names start Wittonfig.
for conditional compilation This allows a single software Their contents are definitions of config options. An example
base to be used to compile many variants. In each variagtshown in Listing 1.
some fragments of the original source code are included andifter defining the config options, developers integrate them
others are excluded, based on conditional directives#fftlef in the Kbuild system or in the source code files. TKbuild
directive includes the controlled code in the compilatibn ksystem is a collection of makefiles which are responsible
its argument is a defined CPP constant. The complementgsy building the system [3]. In makefiles, config options are
#ifndef directive includes the fragment if the constantnist used to control the compiling process; an example is shown
defined. Thetif directive resembles thié statement of the C in Listing 2. In source code the config options are used as
language: the controlled code is included iff the expressi@onstants in conditional compilation directives to cohttwe
evaluates to non-zero. The expression may consist of CRRlusion or exclusion of code fragments. Examples are show
constant values, tests of whether they are defined, andalogigelow in Listings 3 and 4.
operations. The#else and #elif directives can be used to As time passes and new versions of the system come into
provide alternatives teif, #ifdef, and#ifndef. being some of the configuration options become redundant and
When a CPP constant controls a configurable feature of tsigould be removed from the system files. As we show below
system we call it aconfig option In the Linux system the this is not always done.
config options, by convention, haveGDNFIG_ prefix. When User View of Config Options In order to build the Linux
we talk about specific occurrences in the code we call thesrnel one must first specify the desired configuration. Tis
config instancs. done by invoking themake tool with one of three variations:
CPP constants are defined internally by an explicit use wfke config, make menuconfig, or make xconfig. Initially, the
the #define directive within the source code, or externally byonfig tool reads th&configsystem files to extract the menus,
flags to the compiler. For example, thec compiler uses the config options, and dependencies between the differentgconfi
-D option to define a new CPP constant and 4beoption to options. The extracted config options are presented to the
undefine it. user who is asked to select the desired options according to
The Emacs tool [6] enables programmers to navigate thes needs. The difference between the three config tools is
conditional directives, allowing them to view the code witth the user interface. Thmake config is a forward-only version

A. The C Language Preprocessor

that enables configuration from scrataekenuconfig displays a be used for information extraction such as original source,
menu and enables the user to selectively set the configayatipreprocessed files, and intermediate states.
so there is no need to pass all the options one by one. Th&he impaired readability and reduced reusability of condi-
third version is GUI-based. tional directives were also the motivation for developing C
Once done, the config tool generates twnfig file which CLR [15]. They identified the macro conditional redefinition
is placed in the top directory of the kernel source. This filend composition of multiple configuration options as prob-
contains all the configuration options that were set by ttee. uslematic. The C-CLR tool improves readability by enabling
It is a text file with a line for each option. Each line is a keyusers to perform configuration-specific navigation and ksab
value pair with the formaCONFIG_key=value Thekeyis the reusability by automated identification of equivalent lxsc
name of the option, andalueis y to indicate that a component Sutton and Maletic [18] presented a common configuration
will be built into the kernel, om to indicate that it will be architecture for managing portability among three package
built as a loadable module [2]. Options that were not set anhich were examined in their study. They also introduce
commented-out with or deleted from the file. configuration management patterns which they observed, in-
The next stage is building the Kernel with theake cluding naming conventions, replaceable and parameterize
command. At the very beginning of the build process thgclusion, and compiler abstractions.
autocont.h file is created. This file contains CPP definitions Based on [16] the authors of ASTEC [12] claim that macros
for the config options that were included in th®nfig file. —are difficult to analyze and are error-prone. They present an
To make these definitions available during compilation ef tralternative language which eliminates many of the poténtia
source code files the compiler uses-itglude option. A few errors. This is a syntactic language, as opposed to CPP which
source code files explicitly use the inclusion mechanisnief tis purely lexical. It preserves the configurations of thegoam
preprocessor. for analysis tools, while CPP produces a one-configuration
To shorten the configuration process and make it efficiePtogram. Also, it enables tools to check errors before neacro
the kernel source is provided with a preset configuration féfe expanded.
each of the architectures that the kernel supports. Thdaalte Liebig et al. [9], [10] studied the configurability of 40
configurations are kept in tharch/* subdirectories, and areOpen-source projects, including Linux. They found that 23%
calleddefconfigX, whereX typically indicates the architectureof the code is variable, there is no correlation between a
and the developer who created the file. To utilize these ttsfapystem’s size and the complexity of variable code, variable
one should rename the default configuration file todoafig code is mostly heterogeneous which makes the use of AOP
prior to the configuration process and place the newnfig inapplicable, and the #ifdefs are mostly used in a high level
file in the top level directory, or pass the name of the defa@fanularity, enclosing entire entities such as functions a

configuration file as an argument to theke tool. control statements.
Linux is the third-largest software system analyzed by
C. Related Work Liebig et al. [9], both in terms of lines of code and in terms

of the number of CPP constants (the two bigger ones are also
The use of CPP has attracted significant interest in recejferating systems: OpenSolaris and FreeBSD). Reynolds et a
years, Mostly related to configurability and the creation qfi3] also studied Linux, focusing on the config options of one
product lines. We are specifically concerned with the reyilt architecture i86). In contrast, we consider the entire set of
complexity and cognitive load on developers. config options of all architectures. Tartler et al. [19] sead
Early work also considered the ill-effects of using CPRhe consistency of using configuration options in Linux gsin
Spencer and Collyer [16] claim that careless use of #ifdef# automated tool, and found 147 confirmed bugs.
is usually considered a mistake. They presented altessativ Czarnecki et al. also studied the configuration system of
to conditional compilations, applied to their C News PagkagLinux and transformed it to a feature model for benchmarking
and reduce the use of CPP by using clean interfaces giffposes [14]. They examined only the Kconfig files of
information hiding. Krone and Snelting [8] also claim thabne specific architecturex§6). Diettrich et al. suggested an
the use of conditional directives makes the code hard &pproach for extracting implementation variability frommet
understand even for experienced programmers. They s@ggesinux build system, as it contains more than 65% of all config
a visual tool which infers the configuration structure of®&u options [3]. In contrast, we examiral configuration contexts
code, and makes it easy to discover violations of softwaisource code, default configuration, makefiles, and Kconfig)
engineering principles such as high cohesion and low cogpli of the whole system (all architectures and subsystemsh, wit
Favre [4] stated that heavy use of CPP directives can lethg goal of evaluating the impact of CPP on comprehensi-
to unreadable programs, and makes maintenance and tifity. Our study thus includes many observations not made
building hard. Vidics and Beses [20] also believe thatpreviously by others.
heavy use of preprocessor directives causes problems ef cod
comprehension due to the gap between what the programmer lll. RESEARCHQUESTIONS
sees and what the compiler gets. They suggested using &ur ultimate goal is to gain some insights about the in-
tool, CANPP, for producing preprocessor schemas that camased complexity of the code that results from configomati

variability management with CPP. Considering two of the Source Code

studies cited above raises some important methodological (5515)

guestions. The work of Liebig et al. [9], [10] consists of a - AL;, appears

wide survey of 40 large-scale open-source projects, ccaimgri O”'{l'gzsg)“rce elsewhere

30 million lines of code. By necessity, such a study is based _ . (4f92) “

on automated tools and a high-level view of average metric Appear in #ifdefs Not in #ifdefs Appear in #ifdefs Not in #ifdefs
values. Tartler et al. [19] focus on only one system, namely (740) (283) (3991) (501)
Linux, and show that this system suffers from bugs resulting - N N

from inconsistent use of configuration options. This leasls UMODULE suffix not defined Defined Defined not defined

to the following specific questions: “18) @D (s (129)

1) Can therelevantconfiguration options indeed be iden-
tified by straightforward lexical means?
2) Are all config options equally important, and are average

Fig. 1. Distribution of CONFIG options in the source code.

values generally representative? only syntactic means. For example, 4330 of the non-config
3) Can the effect of config options be evaluated by syntactignstants are defined bigefine directives in the code itself,
analysis alone? which means that they typically do not contribute to vadigbi
4) Do config options affect the whole codebase in a uniforghd always provide the same path.
manner? However, we found that some of these defined constants
5) Does conditional compilation based on config optiongctually depend on configuration options in one of two ways:
introduce significant complexity to the code? they are either defined as an alias of a config option, or else

Thus we wish to take the reservations of Tartler et al. into atheir very definition occurs within a code fragment that is
count, and perform a more detailed study than that performedly compiled conditioned on a config option. This means that
by Liebig et al. This is enabled by focusing on a single systetteir definition isderivedfrom the config options. We found
and considering complete distributions rather than awesrag 23 thousand such derived definitions, but only 1009 of them
are relevant because they are subsequently usetifdefs.
This means that in total there are actually 5740 constaats th
may reflect configurability, and not 4731 as a merely syntacti
We are specifically interested in variability that is partld analysis suggests.
system'’s design, namely explicit support for differentfign Another large group of constants is due to the CPP inclusion
urations. Studying such variability in a system like Linuxsh mechanism: it is customary to avoid double-inclusion of
two possible points of departure: either collect inforroaton header files by protecting such files with #ifdef based on a
all the CPP constants used to control conditional compitati constant defined in the same file. We ignore these constants
or else start with all the known configuration options. As wand#ifdefs as they are idiomatic and do not reflect variability.
show below, neither is completely satisfactory: there asmyn The rest of the constants are not of real interest. Many of
CPP constants that do not reflect real variability, and thetleem deal with debug issues, while others are not defined at
are many config options that do not appear in the code. \&# (even not in makefiles).
therefore actually want the intersection of the two. ButreveB
this is not enough, as the code may include definitions of

derived CPP constants that depend on other config options, AS We mentioned above Linux configuration options may
appear in four different contexts. The config options are

A. Source Configurability initially born in the Kconfigfiles, the settings in thdefconfig

As noted above, configurability is implemented in the sourd#es are derived from the Kconfig files, and the options in
code using conditional compilation. To study its effect ba t Source coddiles or makefilesare a subset of the total config
code we must first identify the CPP constants that are part@tions. In an ideal world all these sources of the config
the configuration control mechanism. We therefore started BPtions would be synchronized. In practice, they are not.
extracting all the CPP constants from all #ielef expressions ~ We identified potential config options as follows. In the
in the Linux source. Kconfig files, they are introduced by thenfig keyword (see

We found 10,988 different constants that appeatiidefs, Listing _1). In the other files they are string constants that
of which 4731 start withCONFIG_ and may therefore rep- Start with CONFIG_. When we checked all the header and
resent config options (but some are false positives, as WaPlementation files (C and assembly) of the source code we
show below). In this we use Linux-specific knowledge, antpund 5,515 such string constants (Figure 1). In the Kconfig
depart from Liebig et al. who considered all CPP constanf®/Stem files we found 9,342 options, and in the defconfig files
We claim this is important for reliable results concerningle e found 8,696 options. Finally, we got 6,325 config options

variability, and thus that variability cannot be studiedngs in makefiles. Altogether we have 11,303 unique config options
from all these sources. These results and the logical cekti

IHere and in the sequel we ugidef to also meantifndef, #if, and#elif. ~between them are presented in Figure 2.

IV. CHARACTERIZATION OF THE LINUX KERNEL
CONFIGURATION

Inconsistent Use of Config Options

Kconfig defconfig 2500 — T T 1 - T T

2000 (N 4

‘_(.
1500
001 ¢ |
1000 TS
N &
a 500 0.001 | LA
3 .
0 0.0001 L L
1 5 8 more 1 10 100 1000
\ number of files per option number of files per option
\ (@) (b)

|
7'4 Fig. 3. a) Distribution of config option number of files. b) LLCplot
‘ showing the distribution has a heavy tail.

source

number of options
survival probability

make Finally, most of the remaining CONFIG strings were
defined and used at the C language level with no relation to
the preprocessor at all. For example, elements efram data
Fa 2 Th | lations between the different soursth " type might have names that start wiloNFIG_. These have
olpﬂi.on.s clea(relyoi\;ledrica;terethael;?gfe i?\coerllzri‘ster?t. \llai::;]p;gént ofethceo?oltgl nothing to do with our research and we ignore them.
number; values less than 1% not shown. The conclusion from all the above is that the configuration
process settings are not expressed cleanly in kernel coidé wh
is loaded with redundant options as well as misleading ngmin
Obviously, just less than half of the options we have fourahd usages. Such behavior soils the code and as a result
are used in the source code. This is not unreasonable becduskes the work of developers harder. On the basis of this
an additional 37.5% are used in makefiles to control whigtonclusion we gain a significant insigh& blind syntactic
source files are included in the build process. Strangely6. analysis of a large software system may miss its g8aime of
of the options in the Kconfig system do not appear at all in tilee previous analyses of Linux may have had this problem. Our
source or the makefiles. These options are therefore eféfcti results corroborate and extend those of Tartler et al. [18) w
no-ops, with no effect on the configuration. Stranger yet%w. specifically study the inconsistency of using config options
appear only in defconfig files. This contradicts the assumnpti Our goal is to eventually study the effect of conditional
that the defconfig files are derived from the Kconfig files, anebmpilation directives based on config options on code com-
may reflect legacy options in architectures that are not-wefirehension. We will therefore focus on the real options that
supported any more. have a real influence on configurability. These options are
In the context of our interest in code quality, the bigge$hose that occur in the source co#iédefs as well as in the
anomaly in Figure 2 is that around 9% of the total confificonfig files. To this set we will add the derived constants
options occur only in the source code and not in any #fhich were presented earlier. There are 4,440 options teat a
the configuration files as expected. Further examination $fiared by Kconfig and the source code, out of which 3,941
the source code helped to explain this and revealed seve used in ifdefs. When adding to the 1,009 derived constants
different sub-categories of options (left branch of Figlije that also appear itiifdefs we get 4,950 config options in total.
First, we found that more than 40% of these options have aNote that config options with theMODULE suffix are not
_MODULE suffix. These are derived from options that werdcluded because each time they are used in the code their
defined in the Kconfig files without this suffix. The suffixcounterpart options, those withouMODULE, are also used
is appended during the build process, when creating tiethe same expression. Thus they do not add any independent
autoconf.h file, if the user configured an option to be compilegonfigurability. Config options that are used only in maksfile
as a module. So, for a given optiohin the Kconfig system, are also not included, because they do not affect the difficul
we may see botltONFIG_X andCONFIG_X_MODULE in the of comprehending the code. From now on whenever we refer
source code. to config options we mean the set of real configuration options
Second, we found that 22% of these options are defingg It was defined here.
by the #define directive in the source code, but not in the) o])
configuration process. In other words, these CPP constemtsG Heavy-Tailed Distribution of Config Options
false positives that do not reflect true configurability @88 Figure 3(a) shows how the configuration options distribute
they are derived from true config options). over the files of the source code. More than 2,700 options are
Next, around 25% of these options seem not to be defineduaed in one file only; these are the more specific options. On
all, although they are in fact used by conditional compilati the other hand 285 options are used in more than 10 files; these
directives. We believe that most such options are leftovesse the cross-cutting options. This latter category of aysti
from previous versions that should have been removed. mday cause difficulties in maintenance because the developer
small number may be bugs, where a config option name wasist potentially think about many files when processing a
misspelled [19]. single configuration option. In the most extreme case, we

2200 — : : 1 . : : Option Files Option Instances
. a0 ER PM 753 DEBUG 1498
§ 1w g oy \ 1 SMP 591 PM 1246
g 120 2 oo} 1 DEBUG 591 SMP 1221
3 o g T PROCFS 322 PROCFS 525
g g 0.001 ¢ K 3
5 o a : PCI 250 PCI 488
200 00001 = = " = ", COMPAT 213 64BIT 490
S 5 8 ore ° 2 % %, 64BIT 206 COMPAT 424
number of instances per option number of instances per option MM U 201 MMU 413
@ ® X86_64 137 X86_64 362
. o . . . X86_32 129 X86_32 324
Fig. 4. a) Distribution of config option number of instancesLbCD plot BITS PER LONG 129 PPC64 274
showing the distribution has a heavy tail. NET POLL CONT. 105 BITS PER LONG 200
SYSCTL 102 NET_POLL_CONT. 214

1600

160

TABLE |

TABLE Il

CONFIG OPTIONS THAT HAD THE
MOST INSTANCES

CONFIG OPTIONS THAT APPEARED
IN THE MOST FILES.

1400 71 140

1200 + A 120 |

. 100 T 100

+ 1 90 90

1000 100

80
70
60
50
40
30
20 20 -
10 10 b

0 . I 0 . . .

1 10 100 1000 1 10 100 1000

number of files per option number of instances per option
(@) (b)

80
70
60
50
40
30

80 4+

instances per option
@
<}
1S}
instances per option

+
cummulative percent

T T R R R R
cummulative percent

I Y R N

10000

0
0 5 10 15 20 25 30 35 40 45 50
files per option
(b)

0
0 200 400 600 800
files per option
(@)

Fig. 6. The "count” (upper) and "mass” (lower) distribution$ option
occurrence. a) Mass-count disparity plot of number of ogtiper file. b)

Fig. 5. lati fi i in m f : . ; :
ig. 5. a) Correlation between config options instances Aachumber o Mass-count disparity plot of number of instances per option.

files they occur in. b) zoom in on the cluttered area.

the /proc file system.

found that the most frequent option is used in 753 different + Related to a specific architecture or device, such as Intel
files. X86, IBM PPC, or the PCI bus.

The histogram in Figure 3(a) indicates that the distributio Skewed distributions may also be characterized by their
of config options across files is highly skewed. We thereforaass-count disparity [5]. In our context this means that allsm
checked whether this is a heavy-tailed distribution. To do siumber of configuration options represent the majority ef th
we use an LLCD plot, as shown in Figure 3(b). This showles and instances, while at the same time most of the config
that the survival function of the distribution is approxitel options together account for only a small fraction of thesfile
linear in log-log axes, which means that it decays accortbngand instances. Such a phenomenon, when it exists, helps to
a power law and is indeed heavy-tailed. The tail index, whidbcus on those items that have the most impact.
is given by the slope of this line, is approximately 1.3. In In Figure 6 we show the disparity between the mass (files
heavy-tailed distributions the tail index ranges betweem@ or instances) and count distributions. In both cases th# joi
2, and smaller tail indexes indicate a heavier tail. ratio is close to the 20/80 rule, which means that around 20%

Next we considered the number of instances of each condifjithe configuration options are responsible (present in) fo
option (note that a config option can have several instancess0% of the different files and instances, while the other 80%
the same file). The results are illustrated in Figure 4(aymag of the options lead to only 20% of the files and instances.
be expected this also shows that we have many config optionghe same results and insights were obtained when we
with a small number of instances and few config options withvestigated the concentration of config options in differe
a large number of instances. And again, the distributiornef tfiles. We counted the number of different configuration apio
config options in terms of instances is found to be heavdail that appear in each file as well as the number of instances. The
as illustrated in Figure 4(b) using an LLCD plot. results show that 4,169 files contain only one option whilé 23

To relate these two distributions, we found that the numbfifes contain at least 10 different options. When examinirg th
of files and the number of instances of a config option afgstances of the options we get that 2,496 files contain only
correlated with a correlation coefficient of 0.97. It is e&sy one instance, and 858 files contain at least 10 instances. In
see this in Figure 5. In addition, the same config options app&oth cases we found that the distributions are heavy-tailed
at the top in both cases, and almost in the same order. Th@sg tail indices of 1.4 and 1.7 respectively. The files in the
highly-used config options are listed in Tables I and II. Thepil are hot-spots of configurability.
can be classified into three main groups:

« Related to cross cutting operating system features, stken

as power management (PM) or SMP support. Our work so far, and previous work as well (e.g. [9],

« Related to a specific operating system feature, such [48]), was performed at the syntactic level. However, we

Syntactic vs. Semantic Analysis

1| static netdev tx_t eexp xmit(struct sk_buff xbuf, struct 1| static int show statétruct kmem cachexs, char xbuf,

net device xdev) enum stat item si)
2 2
3 short length = buf->len; 3 unsigned longsum = O;
4| #ifdef CONFIG_SMP 4 int cpu;
5| struct net local xlp = netdev priv(dev); s int len;
¢ unsigned longflags; ¢ int xdata=kmalloc(nrcpu idsksizeofint), GFP_KERNEL);
7| #endif 7 if (\data)
of #if NET_DEBUG > 6 g return —ENOMEM,;
o printk(KERN_DEBUG "%s: eexpxmit()\n”, dev—>name); o for_eachonline_cpu(cpu){
10 #endif 19 unsignedx = get cpu_slab(s, cpu}->stat[si];
1 if (buf—>len < ETH_ZLEN) { ul datafcpu] = X;
12 if (skb_padto(buf, ETHZLEN)) 12 sum += x;
13 return NETDEV_TX_OK; 3}
14 length = ETH ZLEN; 14 len = sprintf(buf, "%Ilu”, sum);
o} 1| #ifdef CONFIG_SMP
1 disableirq(dev—>irq); 1 for_eachonline_cpu(cpu){
17| #ifdef CONFIG_SMP 17 if (data[cpu]&&lenc PAGE_SIZE—20)
18 spin_lock_irgsave(&lp—>lock, flags); 19 len += sprintf(buf + len, ” C%d=%u", cpu, data[cpu]);
19 #endif 19}
20 { 20 #endif
21 unsigned shortxdata = (insigned short «)buf—>data; 2 kfree(data);
22l dev—>stats.txbytes += length; 22 return len + sprintf(buf + len, Xn”);
23 eexphw_tx_pio(dev,data,length); 23 }
4 } Listing 4. The blocks of the CONFIGMP option are coupled with

25 dev kfree_skb(buf);
¢ #ifdef CONFIG_SMP
271 spin_unlock irgrestore(&lp->lock, flags);

the rest code of the function (mm/slub.c).

N

28 #endif

2 enableirq(dev—>irq); corresponding unlock is called in line 30. Lines 5 and 6 define

s return NETDEV_TX_OK; two variables which are needed only for the sake of these

a } locking/unlocking operations. This is a classical case r@he
Listing 3. The blocks of the CONFIGSMP option are orthogonal ~ aspects would be feasible especially with the knowledge tha
to the rest of the code in the function (driversinet/eexpys this function’s aim is to transmit a packet and this concern i

orthogonal to theCONFIG_SMP one. To gain such an insight
one should delve into the code.
claim that syntactic measures are not sufficient. By look- However, when examining Listing 4 the local varialde is
ing more closely at the conditional blocks, one may revegkfined and initialized outside tH@ONFIG_SMP block. Then,
semantic relationships between blocks that are governed ipys used twice and changed once within thONFIG_SMP
configuration options and other free blocks. Such intevasti and finally used again outside this block. Moreover, the teoin
may have a significant impact on the feasibility of applyinguf is changed three times: before, within, and after the
aspects technology to reduce tangled code when handltd@NFIG_SMP block. One more point to mention is thif is
cross-cutting concerns [7]. Indeed, Adams et al. [1] haveparameter which is passed by address, so any change in its
shown that conditional compilation can be partially refaet value will be returned back to the caller function. Thesitig
Into aspects. dependencies between the function body, the config option

To be more concrete we present code snippets to show thrick, and the caller function imply a semantic connection
semantic involvement is required when analyzing code in th@d logical dependency to the other parts of the function.
context of config options. We focus on a few config optionshus it is hard to extract out the block of H@EONFIG_SMP
and investigate them in different semantic contexts. automatically.

Orthogonality versus Coupling. We start with two basic This function is even a bit more complex than was de-
cases: optional blocks that are orthogonal to the surragndiscribed. Line 12 calls a function with a body which is
functionality and optional blocks that have a tight coniwtt controlled by CONFIG_SMP. Also, lines 11 and 21 call the
with the rest of the code, namely coupled code. The key posdme macro where in line 11 the macro is free while in line
here is that the two behaviors occur for the same config optidl it is controlled by thetifdef. This macro, in the file where
This means that a single config option, which is consideredtds defined, is controlled b ONFIG_SMP. This means that
concern in AOP terminology, behaves differently regardiag in fact lines 11-16 are controlled by ti®NFIG_SMP option
connectivity to other concerns where it appears. but this is not visible.

Listing 3 shows a function that has three blocks that Do Many Instances Imply Coupling? The CONFIG_SMP
are controlled by theCONFIG_SMP option. In line 20 the option appears in 591 different files with 1,221 instances
function acquires the lock and disables interrupts on tlallo within those files. Seemingly, it is a hard case of a cross-
processor while saving the state of the interrupt8ags. The cutting concern due to its wide scattering and the potential

240
220
200
180
160
140
120
100
80
60
40
20

drivers
sound
include
others

SMP instances
PM instances

600 -

500 -

wie
eyde
sdiw
el
98X
oJeds
indur
0apIA
er
qsn
18U
s1aylo

elpsw

400 |-

23
&
Q,
S
@

Frequency in subsystems

odiamod
SEMD)

300
architecture driver
(@ (b)

Fig. 8. a) Distribution of the CONFIGSMP over architectures. b) Distribu-
tion of the CONFIGPM over drivers.

CONFIG_SMP CONFIG_PROC_FS
Config Options

o
Vi
SRR/

\ g
CONFIG_PM

the same time is not the total number, but only those related
to the specific architecture or driver he works on.

Due to the modularity of the Linux system and these insights
coupling that this may imply. We argue that it is not as bad€ argue that the coupling between the different entitiekén
as it sounds. context of each config option is minimal.

The Linux Kernel is composed of subsystems residing in
distinct subdirectories. These subsystems include, arotng
ers, the initialization codeir(it), memory managementnfn), To get insights about the complexity resulting from CPP and
file systems f§), and support for diverse architectures an@xamine the feasibility of alternative techniques we stddi
devices érch and drivers). Each subsystem (directory) is,various code metrics. Here we focus on the dominant subset of
to a large extent, an independent module. This means tHag configuration options. These are the most frequent config
despite the fact that the same config option may appeardptions, which constitute approximately 20% of the diffdre
multiple subsystems, there is not much coupling between thenfig options and account for approximately 80% of the
subsystems and one can treat each subsystem separately.instances.

Other config options are logically related to specific sub- Metric measurements with a normal distribution are well de-
systems, so they are largely localized in those subsystemsgribed by the arithmetic mean and the standard deviation. B
Thus even if they appear in other subsystems, they creaye owhen metrics have a skewed distribution, commonly with a
slight coupling with them. To demonstrate this, we looked &w mean and a large variance, it is more appropriate to wse th
3 of the most frequent option€ONFIG_PM, CONFIG_SMP, geometric mean and the multiplicative standard deviatidr}. [
and CONFIG_PROC_FS. Figure 7 shows how these optionsThe geometric mean, denoted &y, is defined as theth root
distribute over the different subsystems of the Linux Kérneof the product ofn positive numbersX* — e(# 22i—, 109X
CONFIG_PM occurs significantly in thedrivers and sound The formula is presented this way to allow computation and
modules while in the other modules it does not. Similarlavoid overflows when the product is large. In contrast to the
almost all the instances @ONFIG_SMP occur in thearch arithmetic mean, which is dominated by the large values, the
directory. When looking at the€ONFIG_PROC_FS, about geometric mean responds equally to changes in large and
60% of its instances occur in theet anddrivers subsystems. small values. The multiplicative standard deviation, dedo

Actually, these results are not surprising. The designatipy S(X)*, is essentially the average of the quotients of the
of the SMP option is to enablesymmetric multi-processing LY (log 222
support So, one expects a heavy use of this option in treamples and the mea®i(X)* = eV "' <=1 """ On
directory where all the architectures are defined. In the cdfe basis of these two descriptive values, the distribution
of CONFIG_PM most instances reside in tiieivers directory is characterized by the rang&* >/ S(X)* (that is, from
due to the fact that power management is accomplishé&d'/S(X)* to X* x S(X)*).
on the system components and peripherals. These examplds using full distributions and noting their skewed nature
again demonstrate the fact that syntactic analysis shoeldWwe again depart from previous practices. Looking at the
complemented by its semantic counterpart. data of [9] we see that in practically all cases the standard

Moreover, Figure 8(a) shows ho®ONFIG_SMP distributes deviation is (much) larger than the mean. This indicates tha
over the different architectures, and Figure 8(b) shows hdhe distributions are skewed, and that the arithmetic mean a
CONFIG_PM distributes over the different drivers. Ultimately,standard deviation do not provide a good summary of the data.
one of these orthogonal architectures as well as a combmati The metrics we checked are the following.
of the appropriate orthogonal drivers are built for eachiardr ~ Scattering Degree of Config Options.The scattering de-
of the system. This means that the real number of instanggee metric, denoted by SD, was defined by [9] as the number
of a specific config option that a developer needs to tackledtinstances of CPP constants in different expressionss Thi

Fig. 7. Distribution of top config options over different sylstems.

V. CoDE METRICS

25000

metric measures the spread of configuration options, artd hig 20000

cpe . . 18000
values are expected to reflect difficulty in comprehendireg th |~

code and managing the configurations. In practice they lgtua g 14000
used the average number of instances per config option. Weg 12000
have shown the distribution in Figure 4. Focusing on thef '2°

8000
dominant options, we found that the geometric mean of the2 g0

—T
22460

20000

15000

10000

number of expressions

scattering degree is 15.2, with multiplicative standandaten 4000 5000

of 3. This means that the bulk of the scattering degrees of the ~ **® .

dominant config options are covered by the interval 5 to 45.6. 12 4 8 l6more 0 1 2 3 4moe
Tangling Degl’ee Of Conflg OptiOhS.The tangling degree numberofcod?a\)/anatlonmnflle numherofopera({L(;rs in expression

metric, denoted by TD, was defined by [9] as the numbefy o 4 pistribution of code variation in source files. byraplexity of
of different CPP constants that occur in an expression. Thi® expressions i#ifs.

metric measures the mixing of different configuration opsio
within the expressions ofifdefs. To evaluate this metric we Code Variations. When |00king at the code base, the

measure the occurrences of the dominant configurationrpti¢jeveloper must consider all the different combinations in
in the CPP expressions. We found that the geometric mearisich the code may be built in the future. These combinations
1.035 with deviation of 1.185. This means that usually weshagre concatenations of code segments that are created on the
only one config option and the expressions are quite simplgasis of the evaluations of the preprocessor conditiorials.
Conditional Blocks. The code blocks which are COﬂtrO”edis obvious that the number of the potentia| variations has a
by #ifdefs are classified in the literature as homogeneous ggnificant impact on the code understanding. To get insight
heterogeneous. This is important because alternativels SHBout the code understanding complexity we counted the
as aspects are only applicable to homogeneous blocks. nifmber of code variations for each of the source code files.
compare the blocks in differeitfdefs we squeeze whitespaces\s a first step we only took into account basic conditionals
and concatenate the lines to one string and then make thgqef, #ifndef) that contain one configuration option. We have
comparison. We found that 92% of the conditional blocks @foted earlier thatifdef and #ifndef constitute more than 79%
the config options of the dominant subset are heterogenBousef the conditionals of interest, so they may be expected to
particular, the optionsCONFIG_PM and CONFIG_SMP each reflect the full picture. The results are shown in Figure 9(a)
have more than one thousand heterogeneous blocks. While obviously most files have few variations, some have an

As such comparisons are very stringent we also made sogremely large number of variations, with a maximal value
manual checks. We manually looked at one hundred blocks#¥f316,659,348,799,488.

the CONFIG_PM option and got the same results. Moreover, Nesting. One more aspect to look at is the nesting of

we expected that the automatic comparison will have probleryngitionals. Initially we checked the nesting of generah<c
with long code blocks. Our manual work revealed that in fagfitionals that are not related only to configuration options
the automatic comparisons identified identical blocks of 1ﬂgure 10(a) describes the results. The average depth of
lines. This probably indicates that a copy-paste mechanignditional statements is 1.08. Afterward, we measured the
was used by the developers wherever the same functionaligpth of nesting for conditionals which contain at least one
was needed. But we cannot infer that this is the general ca¥hfiguration option. The results are presented in Figu(b)10
and more work should be done here. The average depth of conditional statement in the configurat

Complexity of Expressions.We found 68,524 lines of context increased slightly to 1.10, which is still low.
conditional statements in CPP directives. More than 36%The metrics presented here provide evidence for the exis-
of them reference at least one configuration option of thgnce of many config options scattered around the code. These
dominant set. We examined these expressions and countedhenad news due to potential coupling that such charatiteris
number of logical operators in each of them. The results &,y impose on the code. The good news are that these
presented in Figure 9(b). We found that about 79.29%f8ef ~ scattered config options are used in a simple manner. This
or #ifndef, and therefore do not really have any expressiogtems from the low value of the tangling metric and the simple
About 18.3% use theiif construct, and therelif construct gyrycture (low number of logical operators) of the expr@ssi
captures the remaining 2.3%. of the conditional constructs. Moreover, the intensive ake

In the #if and#elif expressions, we found that about 53.3%he simple form of the conditional construct as opposedsto it

were compound with an average of 1.2 logical operators. TESmposite form is additional evidence for simplicity.
or operator dominates with more than 72% of the operator

instances, thand operators captures about 25%, and toe VI
operator is almost non-existent. However, it should be dhote

that about half of theor occurrences have operands with a The CPP has been identified over the years as a potentially
_MODULE suffix. This observation shows that the useoof harmful tool, in particular when it is used to implement
partially follows a simple predefined pattern that is sugos variability in a large scale system like Linux. In this study
to reduce its complexity. we performed a detailed characterization of the Linux kerne

. DiscussioON ANDCONCLUSIONS

45000
40000
35000
30000
25000
20000
15000
10000

5000

25000 T T T T T

T

20000

T

T

15000

T

T

10000

T

number of conditionals
number of conditionals

T

5000

T

1 2 3 4 5 6 1 2 3 4 5
depth of nesting depth of nesting
(@) (b)

Fig. 10. Depth of the nesting of conditional constructs. an&al Condi-
tionals. b) Conditionals with at least one config option. .

configuration as done using CPP, and presented different

clean up process is vital.

Our work suffers from several threats to validity. The
complexity imposed by CPP usage can be measured using
additional metrics, such as McCabe’s cyclomatic compjexit
Another issue is whether to focus on the most prominent config
options, or to always consider all of them. Finally, we do
not know whether these characterizations are true for other
systems except Linux. Nevertheless, we think that this case
study is important in its own right even if specific findings do
not generalize. We think that it is valuable to charactenioee
systems in the domain of operating systems and then move to
other domains. It is also interesting to study the evolutibn
CPP usage across the many versions of the Linux kernel.itself

REFERENCES

metrics in order to better understand CPP’s usage and effe¢t] B. Adams, H. Tromp, W. D. Meuter, and A. E. HassarCah we refactor

The approach taken in most previous work was breadth-

conditional compilation into aspectsth 8th Intl. Conf. Aspect-Oriented
Softw. Dev. pp. 243-254, 2009.

first, and provided a SurVEY_Of CPP usage in many Systemy j.-M. de Goyeneche and E. A. F. de Soudagddable kernel modulés
Such an approach necessarily comes at the expense of deepelnEEE Softw.16(1), pp. 6571, Jan/Feb 1999.

ana'ysis of each System. We therefore Comp|emented this tb’i} C. Dietrich, R. Tartler, W. Sclider-Preikschat, and D. LohmannA ¢

robust approach for variability extraction from the Linuilbl systeni.

using. a depth-first approach on one particular system, nam_el In 16th Proc. Intl. Software Product Line Conf2012.
the Linux kernel. This allowed us to employ domain-specifiqs] J.-m. Favre, ‘The CPP paraddx In 9th European Workshop on Softw.
knowledge and semantic analysis, and led to various irsight Maintenance 1995.

that would not be possible in a more general study.

In order to study the variability built into the system, we g} «7pe GNU

[5] D. G. Feitelson, Metrics for mass-count disparityln 14th Modeling,
Anal. & Simulation of Comput. & Telecomm. Sypp. 61-68, Sep 2006.
project emacs homepédge

focus on Linux’s configuration options. Our first finding is ~ www.gnu.org/software/emacs/emacs.html.

that it is not trivial to identify the effect of config optioren

the code, and that their usage is inconsistent. For example,

[7] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopks
M. Loingtier, and J. Irwin, Aspect-oriented programmihgin 11th
European Conf. Object-Oriented Progp. 220-242, 1997.

we found more than one thousand options that appear onfyj m. krone and G. Snelting, ©n the inference of configuration structures
in the source code, and more than a thousand CPP constantsfrom source code In 16th Intl. Conf. Softw. Eng.pp. 49-57, 1994,

that are derived from config options even though they are ndil J. Liebig, S. Apel, C. Lengauer, C.&stner, and M. Schulze,Ah

themselves direct config options.

analysis of the variability in forty processor-based saftv product
lines’. In 32nd Intl. Conf. Softw. Eng.pp. 105-114, 2010.

We found that the distribution of the config options i$10] J. Liebig, C. Kastner, and S. Apel Analyzing the discipline of prepro-
skewed (even heavy-tailed), and manifests the mass-count cessor annotations in 30 million lines of C coden Intl. Conf. Aspect-

disparity phenomenon. These realizations are useful IsecaH1]

they indicate the existence of a relatively small but pramin

Oriented Softw. Deypp. 191-202, Mar 2011.
E. Limpert, W. A. Stahel, and M. Abbt‘og-normal distributions across
the sciences: Keys and clie8ioSciencé1(5), pp. 341-352, May 2001.

group of cross-cutting options. This helped us to focus @re] B. McCloskey and E. Brewer,ASTEC: A new approach to refactoring
this subset when assessing their impact on the code. The C" SIGSOFT Software Engineering Not280S.

skewness of the distribution also indicates that one shbeld (13

] A. Reynolds, M. E. Fiuczynski, and R. GrimmQh the feasibility of an
AOSD approach to Linux kernel e xtensiénin Proc AOSD Workshop

careful to use the right descriptive metrics: geometric mea on Aspects, Components, and Patterns for InfrastructufenS@008.

and multiplicative standard deviation.

Overall we found nearly 5000 real config options. This is

[14] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. CzakietThe
variability model of the Linux kernél In 4th Workshop on Variability
Modeling of Software-Intensive Syster2810.

worrying be_Cause it suggests extensive use of the CPP aCI®SS N. singh, C. Gibbs, and Y. Coady,C*CLR: A tool for navigating
the code, with adverse consequences for code comprehension highly configurable system softwéreln 6th Workshop on Aspects,

However, a large portion of these options have only a few Components, and Patterns for Infrastructure Sof2@08.

instances, so their effect is actually very localized. Thels

[16] H. Spencer and G. Collyer#ifdef considered harmful, or portability
experience with C newsIn Proc. USENIX Technical Confl1992.

fraction of the options that have many instances appear 19 rR. M. Stallman and Z. Weinberg,The C preprocessarGNU project,
create only slight coupling, due to the modularity of the Free software foundation, 2010.

system. The logical expressions used to control conditiorid8] A- Sutton and J. Maletic.,Ffow we manage portability and configuration

compilation are typically very simple, and there is veryldit
nesting. All these findings indicate that variability maeagent

with the C preprocessarin Intl. Conf. Softw. Maintenan¢ep. 275—
284, 2007.
[19] R. Tartler, D. Lohmann, J. Sincero, and W. Sidher-Preikschat,Feature

with CPP does not cause excessive code degradation. However consistency in compile-time—configurable system softwaeeirfy the

the blocks that are controlled by these options were classifi

Linux 10,000 feature problemin 6th EuroSys pp. 47-60, Apr 2011.
[20] L. Vidacs and A. Begres, ‘Opening up the C/C++ preprocessor black

as heterogeneous which is bad due to the difficulty of using" pox'. in 8th Symp. prog. lang. & softw. togl€003.
alternative techniques. Moreover, the code is soiled with
garbage and misleading config options so an initiation of a

