Backfilling with Lookahead to Optimize the Packing
of Parallel Jobs'

Edi Shmueli Dror G. Feitelson
Department of Computer Science School of Computer Science & Engineering
Haifa University, Haifa, Israel Hebrew University, Jerusalem, Israel
and IBM Haifa Research Lab feit@cs.huji.ac.il

edi@il.ibm.com

Abstract

The utilization of parallel computers depends on how jolesparcked together: if the jobs
are not packed tightly, resources are lost due to fragnientathe problem is that the goal of
high utilization may conflict with goals of fairness or evaogress for all jobs. The common
solution is to use backfilling, which combines a reservafmmthe first job in the interest of
progress with packing of later jobs to fill in holes and inseatilization. However, backfilling
considers the queued jobs one at a time, and thus might nitiss packing opportunities. We
propose the use of dynamic programming to find the best pggkiigsible given the current
composition of the queue, thus maximizing the utilizationevery scheduling step. Simula-
tions of this algorithm, called LOS (Lookahead Optimizinch8duler), using trace files from
several IBM SP parallel systems, show that LOS indeed imgmranilization, and thereby re-
duces the mean response time and mean slowdown of all jobh®oMer, it is actually possible
to limit the lookahead depth to about 50 jobs and still achiessentially the same results. Fi-
nally, we experimented with selecting among alternatiis s jobs that achieve the same
utilization. Surprising results indicate that choosing #et at the head of the queue does not
necessarily guarantee best performance. Instead, repeatdecting the set with the maxi-
mal overall expected slowdown boosts performance when aosdpto all other alternatives
checked.

1 Introduction

A parallel jobis composed of a number of concurrently executing procesdash collectively
perform a certain computation. #gid parallel job has a fixed number of processes (referred to as
the job’ssizg which does not change during execution [7]. To execute aymdrallel job, the job’s
processes are mapped to a set of processors using a one-toagping. In a non-preemptive

*A preliminary version of this work has appeared in the 9th k8bop on Job Scheduling Strategies for Parallel
Processing, June 2003 [23].

regime, these processors are then dedicated to runningothigntil it terminates. The set of
processors dedicated to a certain job is callghdition of the machine. To increase utilization,
parallel machines are typically partitioned into severah+overlapping partitions, allocated to
different jobs running concurrently, a technique calipdce slicing

To protect the machine resources and allow successful #ara@f jobs, users are not allowed
to directly access the machine. Instead, they submit tbes jo the machine’s scheduler — a
software component that is responsible for monitoring aadaging the machine resources. The
scheduler typically maintains a queue of waiting jobs. Tdtesjin the queue are considered for
allocation whenever the state of the machine changes. Talochanges are the submission of a
new job (which changes the queue), and the termination afigimg job (which frees an allocated
partition). Upon such events, so callecheduling stepghe scheduler examines the waiting queue
and the machine resources and decides which jobs (if anipevgtarted at this time.

Allocating processors to jobs can be seen as packing jobghetavailable space of free pro-
cessors: each job takes a partition, and we try to leave asdlewprocessors as possible. The
goal is therefore to maximize the machine utilization. Tdueklof knowledge regarding future jobs
leads current on-line schedulers to use simple heurigtipsitform the packing at each scheduling
step, as described in Section 2. These heuristics do noamggg to minimize the machindiee
capacitywhich is the number of processors left unused.

We propose a new scheduling algorithm guaranteed to magimtitization at each scheduling
step. Unlike current schedulers that consider the queurdgoe at a time, our scheduler bases its
scheduling decisions on the whole contents of the queues Weunamed it LOS — an acronym
for “Lookahead Optimizing Scheduler”. LOS starts by examgnonly the first waiting job. If it
fits within the machine’s free capacity it is immediatelyrgtd. Otherwise, a reservation is made
for this job so as to prevent the risk of starvation. The résh® waiting queue is processed using
an efficient scheduling algorithm based on dynamic-prognarg. The algorithm chooses a set of
jobs which will maximize the machine utilization and will na@olate the reservation for the first
waiting job.

In some cases, itis possible to achieve the same utilizatiomy several alternative sets of jobs.
The initial algorithm respects the arrival order of the jodusd uses the set of jobs that is closer to
the head of the queue. However, we show that performanceuctnef improve if we disregard
the queue order and choose the set which contains the maximmdder of jobs or the jobs with the
maximal overall slowdown.

Section 3 provides a detailed description of the algoritimg of the different alternatives
when several job sets lead to the same utilization. It thesenmts a discussion on complexity.
While the problem of packing jobs is in general NP-complete show that this particular instance
is actually tractable using the dynamic programming pseamgnomial algorithm. Section 4
describes the simulation environment used in the evaluatial presents the experimental results
from the simulations in which LOS was tested using trace files real systems. It also presents
and compares LOS’s results when using alternative job sets.

2 Scheduling with Backfilling

The First Come First Serve (FCFS) scheduling algorithntsjabs in the same order in which
they arrive in the queue. If the machine’s free capacity oamccommodate the first job, it will
not attempt to start any subsequent job. It is a fair schegyiolicy which guarantees freedom
of starvation, since a job cannot be delayed by other jobmdtdd at a later time. The problem
with FCFS is the resulting poor utilization of the machinace small jobs which could utilize idle
processors are delayed until all jobs ahead of them aredtart

To improve utilization and other performance metrics, theuwe may be considered in some
other order [12, 22]. Th&hortest Job Firs{SJF) algorithm sorts the waiting jobs by increasing
estimated runtime and executes the jobs with the shortesinre first. A job’s runtime can be
estimated through repeated executions of the job [6] outiin&wompile-time analysis [20, 3]. The
opposite algorithmlLongest Job Firstexecutes the jobs with the longest processing time first.
The Smallest Job Firsfl6] and the oppositeargest Job Firsalgorithms sort the waiting jobs by
increasing and decreasing size respectively. The latteois/ated by results in bin-packing that
indicate that a simple first-fit algorithm achieves bettarijiag if the packed items are sorted in
decreasing size [5]. Finally, th®@mallest Cumulative Demand Fifdt6, 21] algorithm sorts the
jobs in an increasing order according to the product of thige and expected execution time, so
small short jobs get the highest priority.

The problem with all the above algorithms is that jobs mayesdfom starvation, and process-
ing power is wasted if the first job cannot run. This problersatsed bybackfilling algorithms,
which allow small jobs from the back of the queue to executeredarger jobs that arrived earlier,
thus utilizing the idle processors, while the latter aretingifor enough processors to be freed
[15]. Backfilling is known to greatly increase user satisifat since small jobs tend to get through
faster, while bypassing large ones [11, 2]. Note that bdiidilalgorithms require the jobs’ run-
times to be known in advance. In real implementations, teesuseed to provide an estimate of
their job’s runtime, which in practice is often specified asiatime upper-bound. Surprisingly, it
turns out that inaccurate estimates generally lead torq@téormance than accurate ones [17].

Backfilling was first implemented on a production system ia tBASY” scheduler devel-
oped by Lifka for the IBM SP1 parallel supercomputer [15]ddater integrated with IBM’s
LoadLeveler product [24]. EASY implements an aggressivsioa of backfilling, in which any
job can be backfilled provided it does not delay the first jolthim queue. This means that star-
vation cannot occur since the queuing delay for the job ah#del of the queue depends only on
jobs that are already running, and these jobs will eventegtlher terminate or be terminated when
they exceed their estimated runtime. The problem is thatgdber than the first may be repeatedly
delayed by newly arriving jobs that skip them in the queudctvineduces predictability.

When predictability is required one can use “conservatbheckfilling, which makes reserva-
tions forall queued jobs rather than only for the first one. In this verdiackfilling is done subject
to checking that it does not delay any previous job in the quaad thus the risk of starvation is
eliminated. The Maui scheduler [10] has a parameter thatvalthe system administrator to set the
number of reservations. Mu’alem and Feitelson [17] comp&ASY backfilling to conservative
backfilling and show that for most cases the performanceeE&hSY backfilling algorithm was
better than that of conservative backfilling. Further asiglghowed this to be the result of complex
interactions among the scheduler, the workload, and theaneted to evaluate the performance

[8].

Another parameter of backfill algorithms is the order in vitilee queue is scanned. The Maui
scheduler allows a general priority function to be defind].[Chiang et al. show that prioritizing
jobs by estimated runtime (shortest first) or by expecteddtovn (highest first) improves several
performance metrics [4]. Our results corroborate theserfgwdin the context of selecting among
alternative job sets that achieve the same utilization.

Additional variants of backfilling allow the scheduler mdtexibility. Dynamic backfilling
allows the scheduler to overrule a previous reservationtibducing a slight delay will improve
utilization considerably [11]. Talby and Feitelson praserslack based backfillingan enhanced
backfill scheduler that supports priorities [26]. Thesepties are used to assign each waiting
job a slack, which determines how long it may have to wait teefonning: important jobs will
have little slack in comparison with others. Backfilling ik&ed only if the backfilled job does
not delay any other job by more than that job’s slack. Sreéwaet al. [25] have suggested a
strategy calledelective backfillingvhere reservations are provided selectively only to jobeseh
expected slowdown exceeds some threshold. This is in factagnt to slack-based backfilling,
where the slack is set to a value that will limit the slowdownhe desired threshold. Ward et al.
have suggested the use ofadaxed backfillstrategy, which is similar, except that the slack is a
constant factor and does not depend on priority [27].

Lawson and Smirni presentedmaultiple-queue backfillingpproach in which each job is as-
signed to a queue according to its expected execution tintegach queue is assigned to a disjoint
partition of the parallel system on which only jobs from thiseue can be executed [14]. Their
simulation results indicate a performance gain compareti smgle-queue backfilling, resulting
from the fact that the multiple-queue policy reduces theliflood that short jobs get delayed in
the queue behind long jobs. Good results were also obtan&hltang et al. when simulating a
cluster of eight Origin 2000 machines, which effectivelyriwbke a multi-server queue [4].

One feature that all previous backfilling algorithms haveammon is that they use heuristics
that attempt to improve utilization and other performanatrios, but do not guarantee optimality.
Our main contribution is to show that optimal utilizationnci fact be achieved in this context,
despite the NP-completeness of packing in general. Thigedalthe relatively limited repertoire
of sizes provided by realistic machines, as shown in Se@ibnHowever, this is still only optimal
for each scheduling step; it is not optimal in the global sems could be achieved by an off-line
algorithm with knowledge of the future.

3 The LOS Scheduling Algorithm

The LOS scheduling algorithm examines all the jobs in theugue order to maximize the current
system utilization. Instead of scanning the queue in sorderpand starting any job that is small
enough not to violate prior reservations, LOS tries to findoenkination of jobs that together
maximize utilization. This is done using dynamic programgiNote that this is still a greedy on-
line algorithm, and therefore the result is a local optimbuat,not necessarily a global optimum. A
globally optimal schedule might choose to leave procesd@sn anticipation of future arrivals.
To ease the exposition, Section 3.1 first presents the bigsigtam, showing how to find a set
of jobs that together maximize utilization. Section 3.2rtlextends this by showing how to also

| symbol| meaning

N machine size

n free capacity

rJ; running job numbet

R the set of all running jobs

wj; waiting job numbeg

WaQ the set of all waiting jobs

S the set of jobs selected for schedulipg

Table 1: Summary of notation.

respect a reservation for the first queued job. Section 3aB@es selection among alternative
sets of jobs that achieve the same utilization value, innberést of improving other performance
metrics. Section 3.4 analyzes the complexity of the algorit

The notation we will use is summarized in Table 1. The machkine isN. At the time that
the scheduler is called, denoted hthe machine runs a set of jobs= {rji, 72, ...,7j.}, €ach
with two attributes: itssize, and its estimated remaining execution timen. For convenience
is sorted by increasingem values. The machine’s free capacitynis= N — Y7, rj;.size. The
queue contains a set of waiting jodsQ) = {wji, wjs, .., wj,}, which also have two attributes: a
size requirement and a user estimated runtimgi,e. The task of the scheduling algorithm is to
select a subset C WQ of jobs, referred to as theelected jobsetvhich maximizes the machine
utilization. These jobs are removed from the queue andestarimediately. The selected jobset is
safeif it does not impose a risk of starvation.

To provide an intuitive feel of the algorithms, the desadptincludes an on-going scheduling
example. Paragraphs describing the example are mark&d by

3.1 The Basic Algorithm

3.1.1 A Two Dimensional Matrix

Our goal is to find a set of jobs that will maximize utilizatiofio do so, the waiting queu&y @,

is processed using a dynamic-programming algorithm. nméeliate results are stored in a two
dimensional matrix denotedl/ of size(|IWQ| + 1) x (n + 1). Each cellm, ; contains an integer
valueutil, and a boolean flagelected. util holds the maximal achievable utilization at this time,
if the machine’s free capacity jsand only waiting jobq1..i} are considered for scheduling. Note
thatutil is not the machine’s average utilization; rather, it is a reatary utilization value which
represents the maximal number of processors that can Imedtlhy the considered waiting jobs.
Theselected flag, if set, indicates that j; was chosen for execution(; € S); when the algorithm
finishes calculating//, it will be used to trace the jobs which construtt For convenience, the
1 = 0 row andj = 0 column are initialized with zero values. Such padding aliaes the need of
handling end cases.

Algorithm 1 Constructing\/

forj=0ton
my,;j.util < 0 /1 init top row
fori =1to|WQ| // outer loop on rows (jobs)
mo.util «— 0 /[init first column
forj=1ton Il inner loop on columns (free processors)
my j.util «— my_q j.util /I default: don't use this job
m; j.selected < False
if wj;.size < j /Il job is a potential candidate
wttl’ «— M1 j_wj, size-util + wj;.size€ Il find achievable utilization with it
if wtil’ > m;_q j.util // improves utilization
my j.util «— util’ /] so use it
m; j.selected < T'rue
3.1.2 Filling M

M is filled from left to right, top to bottom, as indicated in Algthm 1. The values of each cell
are calculated using values from previously calculatetscelhe idea is that if adding another
processor (bringing the total {9 allows the currently considered jabj; to be started, we need
to check whether includingj; in the selected jobset increases the utilization. Thezatilbn
that would be achieved assuming this job is included is ¢afed in the variablextil’. If this is
higher than the utilization without this job, thelected flag is set to true for this job. If not, or
if the size of jobwj; is larger thany, the utilization is simply what it was without this job, that
is m;_y ;.util. The computation stops when reaching eell,, , at which time) is filled with
values. In particular, the last cell filled shows the maxin#ization that can be achieved at this
stage, as it is based on considering all possible combimatbjobs.

A special case occurs when the utilization with; turns out to be the same as without it. This
may happen if two different sets of jobs, one which contairisand one which doesn't, lead to
the same utilization. We must then decide which set to selde current algorithm ignores this
dilemma; it selects the currently considered job only ifatually improves the utilization, and
does not select it if it leads to the same utilization. Duehdrder in which jobs are considered,
this is equivalent to preferring jobs that appear closehtltead of the queue. However, other
options are also possible, and we discuss them in Section 3.3

The complexity of the basic algorithm is obviously the siZéhe matrix |IW Q| x n. This
can be trimmed by first removing all jobs that are larger thgthe current free capacity) from
consideration.

& Our example concerns a machine of sive= 10. At ¢t = 25, when the scheduler is called
(e.g. due to the termination of some previously running ,jol® machine runs a single jofy;
with size = 5 and expected remaining execution timen = 3. The machine’s free capacity is
thusn = 5. The set of waiting jobs and the resultidg is shown in Table 2. Theelected flag
is denoted by~ if it is set, and by if cleared. The first job has size 7, so it does not fit in the 5
free processors. The utilization in its row is thereforer] theselected flag is false. The second

J

1 (size) || O ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
O@) |0 O 0 0 0 0
1(7) O[{0T]10T7T]0T10T1]07
2(3) O[0T |07 |3 |3 |3\
3() O INC|INC] 37T |47 |4~
4 (2) O 1T 220137147 |5\
5(2) O[17 127137147157

Table 2: Resulting// for the example.

Algorithm 2 ConstructingS

S —{} Il initially empty
i— |WQ)| /I start from end
Jen
while: > 0 andj > 0 /l continue until reach edge
if m, ;.selected = True
S — SuU{wj} // add this job
j— j—wj;.size /I skip appropriate columns
1e—1—1

job has size 3. When only 1 or 2 processors are considerea, i$ too large to fit. But when 3 or
more processors are considered, it is selected and theatibh is then 3. The third job has size
1. When only 1 or 2 processors are considered, it is selecteédhre utilization is 1. But when
3 processors are considered, it is better to select the dgabrand not the third one. With 4 or
5 processors, both can be selected, leading to a totalafidiz of 4. The fourth job is selected
when two processors are considered (better than using itioejob with utilization 1), or when
5 are considered (achieving a utilization of 5 together yoth 2). Job 5 does not add anything
and is never selected. Thus the maximal achievable utdizatf thej; = 5 free processors when
considering all = 5 jobs ism; 5.util = 5. Note that a conventional backfilling algorithm, which
considers jobs in the queue order, would select jobs 2 and ®ialy achieve a utilization of 4.

3.1.3 ConstructingS

Starting at the last computed cell,, ., S is constructed by following the boolean flags backwards
as described in Algorithm 2. Each job is considered in tuohsXhat are marked as selected are
added toS. This induces a jump to a different column, that reflects thminer of processors
remaining after starting this job. Jobs that are not markedanply skipped.

& The resultingS contains two jobs:wj, and wjs, and its scheduling at time = 25 is
illustrated in Figure 1. The list of jobs in the queue anditk&pected runtime is also shown.

wj H size ‘ time

o | | e i 74
2 2 | 3 5
1 6

. T

5 | 2 2

1 - Time
Figure 1: Schedulingj, andwj, att = 25

3.2 Adding Reservations to the Algorithm
3.2.1 Freedom from Starvation

Algorithm 1 has the drawback that it might starve large jadbensider the first queued job in our
example. Its size is 7, so it cannot start running immedyadeld other jobs are selected in its place,
namely jobswj, andwj,. But after 3 time units jolrj; will terminate, releasing its 5 processors.
However, now jobsuj, andwj, are still running, so again 7 processors are not availabtbagain
other jobs will be selected. This can continue indefinitiélymaller jobs arrive and are backfilled.

The solution to this problem is to bound the waiting time @& finst queued job. The algorithm
begins by trying to start the first waiting job. 1fj;.size < n, it is removed from the waiting
gueue, added to the running jobs list and starts executitlier@ise, the algorithm calculates the
shadow timet whichwj; can begin its execution [15]. It does so by traversing thefisunning
jobs while accumulating their sizes until reaching ajgbat whichwj,.size < n-+37_, rj;.size.
The shadow time is defined to béadow = t + rj,.rem. A reservation is then made for jabyj,
at timeshadow (recall thatR is ordered by increasing:m times, so at this time the firstrunning
jobs have terminated and freed their processors). To dssimésconcern of handling special cases,
we setshadowto oo if wj; can be started dt In this caseeveryselected jobset is safe, as the first
waiting job is assured to start without delay.

& The 7 processors requirement ofj; prevents it from starting at = 25. It will be able to
start att = 28 afterrj; terminates, thushadow is set to28 in the example.

3.2.2 Maximizing Utilization

One way to ensure the safeness of the selected jobset isuioar@d] jobs inS to terminate before
the shadow time, so as not to interfere with the first job’eregtion. But this is overly restrictive.
The idea is that some processors may be left over at the sh@mevafterwj; is started. These
processors, referred to as thlegadow free capacifycan be used by backfilled jobs without inter-
fering with the reservation fowj;. Using them can lead to a better jobsét still safe but with a
much improved utilization.

If the first waiting job,wji, can only start after;, has terminated, than the shadow free capac-
ity, denoted byextra, is calculated as follows :

S
ertra =n + Z'r’ji.size — wjp.Siz€
i=1

To use the extra processors, the jobs which are expectedhintde before the shadow time are
distinguished from those that are expected to still run attime, and are therefore candidates for
using the extra processors. Each waitingdoh € W Q will now be represented by two values: its
original size and itshadow size— its size at the shadow time. Jobs expected to terminatedefo
the shadow time have a shadow sizé)ofrhe shadow size is denoted byize, and is calculated
using the following rule:

.) { 0 t + wy;.time < shadow
WjJ;.881z€ = . . .
wj;.stze otherwise

If wj; can start at, the shadow time is set t®, as noted above. As a result, the shadow sizee
of all waiting jobs is set t@, and any computations involving extra processors are @ssagcy.
In this case settingztra to 0 improves the algorithm runtime. All these calculation aoaelin a
pre-processing phase, before running the dynamic progmagnatgorithm.

& wj;which can begin execution at= 28 leaves3 extra processors.rtra is therefore set to
3. As for the queued jobsy j5 is the only job expected to terminate before the shadow tilnes,
its shadow size i8.

3.2.3 A Three Dimensional Data Structure

To manage the use of thetra processors, we use a three dimensional matrix dentteaf size
(IWQ|+1) x (n+1) x (extra + 1). Each celln/; ; , now contains two integer valuestil and
sutil, as well as the booleaselectedflag. util holds the maximal achievable utilization atif

the machine’s free capacity js the shadow free capacity ks and only waiting jobg1..i} are
considered for schedulingutil hold the minimal number of extra processors required toesehi
the util value mentioned above. Thelected flag is used in the same manner as described in
section 3.1.1. Likewise, the= 0 rows and;j = 0 columns are initialized with zero values, this
time for all k planes.

3.2.4 Filling M’

The values in everyn/; ; ;. cell are calculated in an iterative manner using values fpoeriously
calculated cells as described in Algorithm 3. The calcatats similar to Algorithm 1, except for
another encompassing loop, and the use of a slightly morekcated condition that checks that
enough processors are available both ram at the shadow time. First, we initialize the cell as
if the job is not selected. Then, if the job is small enough,clveck whether it will improve the
utilization. The job will be selected if it actually impros¢he utilization, or even if the utilization
stays the same but lesstra processes are used at #ieidow time. The computation stops when
reaching celh’|,q| n.cotra-

Algorithm 3 Constructingl/’

for k = 0toextra // outer loop on layers (extra processors)
forj=0ton
my,;.util «— 0 /1 init top row
my,j.sutil <+ 0
fori =1to |WQ)| // middle loop on rows (jobs)
m;o.util «— 0 /[init first column
m;o.sutil < 0
forj=1ton I/l inner loop on columns (free processors)
m/; jkutil «—m';_q j p.util /I default: don't use this job

m/; jk-sutil «—m';_q j p.sutil
m/; jx.selected «— False

if wj;.size < j andwj;.ssize < k /I job is a potential candidate

util' — m/i_1 j—wji size k—wji.ssize Uil + w7j;.512€
SULEL = M1 i size k—wjs ssize-SULEL + W 8512€
if (util' > m/;_q jp.util) or /l improves util or reduces shadow util
(util' = m/;_q j g.util andsutil’ < m/;_y j.sutil)
m/; jg-util — util’ I so use it
m/; jk-sutil — sutil’
m/; j.selected «— True

If the values ofutil and sutil when selecting a job remain the same as without that job, then
we have found two sets of jobs that have identical resourageus=or now we ignore this special
case, and simply skip the current job. Other options areidered in Section 3.3.

& We use the notatiorize,,;.. to represent the size and shadow size of the jobs. When
the shadow free capacity is = 0, only wj; who's ssize = 0 can be started. As a result, the
maximal achievable utilization of thg = 5 free processors, when consideringial: 5 jobs is
m's 5 0.util =2, as can be seen in the top of Table 3.

When the shadow free capacitykis= 1, wjs who's ssize = 1 is also considered for schedul-
ing. As can be seen in the second table in Table 3, starting’.at; the maximal achievable
utilization is increased ta, at the price of using a single extra processor. When corisglgb
wjs it becomes preferable when only two processors are avajlabi»'; , ;. But from the next
cell on, both jobsvj; andwjs are selected, and the utilization is 3.

As the shadow free capacity increases:te- 2, wj, who’s shadow size i8, joinswjs; and
wjs as a valid candidate. Its effect is illustrated in the thablé of Table 3. Atrn’y 5, it becomes
preferred over jolw ;3 and the maximal achievable utilization increase.tbhis remains the case
till the end of the row, because it uses both available extvagssors. Only when the fifth job is
considered can we increase the utilization further, udnegfact that it does not require any extra
processors. The maximal utilization is then 4, the sumvff andwj5 sizes, using a minimum of
2 extra processors, correspondingdg,’s shadow size.

It is interesting to examine the's , » cell, as it introduces an interesting heuristic decision.

10

k=0 j

i (sizéssize) || O ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
0 (¢4) 0o | Oo 0o 0o 0o 0o
1(77) 00 [00T | 00T [O0T | OoT | OgT
2(33) 00 [00T | 00T [O0T | OoT | OgT
3 (1) 00 [00T | 00T [O0T | OgT | OgT
4 (22) 0o | OoT] 00T [00T | OgT | OpT
5 (20) 0o | 0o T | 20™0 | 20™\ | 20"\ | 20"\,
k=1 i

i (sizegsize) || O ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
0(¢g) 0o | Oo 0o 0o 0o 0o
1(77) Oo | OoT {007] 00T | 00T | OgT
2 (33) 0o | 00T | 00T | 0T | OgT | 00T
3 (1) Oo | TiNC] IO TN TN | TN
4 (2,) Oo | LT | LT | i T | uT | It T
5 (20) Oo | 1o T | 2000] 30\ | 31\ | 31°\
k=2 i

i (sizegsize) || O ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
0 (¢g) 0o | Oo 0o 0o 0o 0o
1(77) Oo | OoT {007 | 00T |07 | Og T
2 (33) 0o | OoT [007] 00T | 00T | OgT
3 (11) Oo | LN LN LI LN | N
4 (2,) Oo | 1o T | 2200] 22°\0 | 220 | 2™\
5 (20) Oo | 1o T | 2000 | 30\ | 4™\ | 4™\
k=3 j

i (sizésgize) || O ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
0(¢g) 0o | 0o 0o 0o 0o 0o
1(77) 0o | 00T | 00T | 0T | OgT | 00T
2 (33) Oo | Oo T | 001 | 33° | 33"\ | 33"\
3 (11) O | N IO 337 [337 | 3317
4 (22) Op | 1o T [22| 337 | 337|337
5 (20) Oo | 1o T | 2000 | 30\ | 4™\ | 5™\

Table 3: FilledM’ in the example

11

T IIIIIIIIIIII
IIII\AIIJ,IIIIII
IIIIIJIIIIII
e wy H S12€4size ‘ time
o ﬁ* 1 7 4
w [ol o o< A
zZ 2 33 5
é%//ooooo 3 1y 6
% 4 29 4
5 20 2
1 [ol o o< A
t=25 tEZg
1 (shadow) Time

Figure 2: Schedulingj, andwj; att = 25

When the machine’s free capacityjis= 2 and jobs{1..5} are considered, the maximal achievable
utilization can be accomplished by either startingy or wjs, both with a size o, yetw;j, will
use2 extra processors whikejs will use none. The algorithm chooses to skip, and selectsj;

as it leaves more extra processors to be used by other jobs.

Finally the full ¥ = 3 shadow free capacity is consideredj,, who's shadow size i8 can
now join the other jobs as a valid candidate. As can be seemeifottom part of Table 3, the
maximal achievable utilization at= 25, when the machine’s free capacityris= j = 5, the
shadow free capacity isctra = k = 3 and all five waiting jobs are considered by the algorithm is
m's 5 3.util = 5. The minimal number of extra processors required to achif@seutilization value
ism/5 5 3.sutil = 3.

3.2.5 Constructings’

S’ is constructed in essentially the same waysg#lgorithm 2), with the necessary extension to
handle the third indek. The construction starts at the last computed@glly| » czirq, follows the
selected flags, and stops when reaching the 0 boundary of any plane.

& In our example the selected flag in's 5 5 is set, sowjs is added toS’. Moving to cell
m’4 3,3 we find that the flag is not set, and the same applies inegli 5. Therefore the two jobs
wj, andwys are skipped. Landing in celh’s 5 5 we find a set flag, and add jabyj, to S’, thus
completing the algorithm and achieving a full utilizatiohSoprocessors. This selected jobset is
safe, and ensures thay; will start without a delay at timé= 28. The resulting jobset is illustrated
in Figure 2. Note the difference from the jobset shown in Fegli, which achieves the same
utilization, but is not safe, as it does not respect the vasien for jobwj;.

3.3 Improving Performance by Job Selection
3.3.1 Adding Merit Values

In Section 3.2.4 we noted that there are cases where sevé&etilt sets of jobs lead to exactly the
sameutil andsutil values. In these cases, we need to choose one of these gbisr tRan make

12

an arbitrary decision, we can define additional metrics withiguide the decision. To do so, we
enhanced our three dimensional data structure descrit&etiion 3.2.3 by including an additional
merit value in everym/’; ; ;. cell, in addition to the existingtil, sutil, andselected fields. We also
modified LOS’s core algorithm for constructing’ to update and consider the merit value. The
idea is that whenever the same utilization value can be aetiieither by selecting or skipping job
1, the modified algorithm considers the merit value in ordedl¢oide whether to set thelected
flag or not. By doing so, the selected jobséts optimized in view of the merit.

Algorithm 4 ConstructingV/’ With Merit

for k = 0toextra
forj=0ton

// outer loop on layers (extra processors)

my,;.-util «— 0 /1 init top row
mo,j.sutil «— 0
mo,;.merit < 0

fori =1to|WQ)| // middle loop on rows (jobs)
mio-util < 0 /1 init first column
m;o.sutil < 0
m;o.merit < 0

forj=1ton /l inner loop on columns (free processors)
m/; jgutil —m/;_q jutil /I default: don’t use this job
m/; jk.sutil «—m';_q j .sutil
m/; jg-merit «— m';_q ; p.merit
m'; jx.selected «— False

if wj;.size < jandwj;.ssize < k /Il job is a potential candidate

util' — m/i_1 j—wji size k—wji.ssize Uil + w7j;.512€
Sl <= MG 5 i cive iy ssize-SULEL + Wi s512¢€
merit’ «— calc_merit(m';_1 j_wj, size k—wj;.ssize-METTE, WJ;)
if (util' > m/;_q jp.util) or Il job leads to improvement
(util' = m/;_q j g.util andsutil’ < m';_y jx.sutil) or
(util' = m/;_q jputil andsutil’ = m';_y j .sutil andmerit’ > m/;_q ; . merit)
m/; jk-util — util’ I so use it
m/; j g-sutil «— sutil’
m/; jk.-merit < merit’
m/; jk.selected «— True

Algorithm 4 describes the use of the merit for the constarcof M’. As in the original
algorithm, it fills the 3-dimensional matrix one cell at a &mThe default is not to select the
current jobi, and to use thetil, sutil, andmerit values from the corresponding cell in raw- 1.
However, the current job will be selected for inclusionshif one of three conditions holds. The
first is that this will cause the utilization to increase. ezond is that the utilization will stay
the same, but this will be achieved using less extra procgss$be third and new condition is that
both the utilization and the extra processors are the saméh)é merit value improves.

13

‘ scheme ‘ calc_merit(m, wj;) ‘

always skip —i

always select 1

max jobs m+1

short first m — wj;.time

max slowdown| m -+ (t—wji.arr?va'l)+wji.time
wi;.time

Table 4: Options for Defining Merit

It is important to note that the use of the merit does change any of the utilization values
in any of M’s cells when compared to the values computed by the origlgalithm, and that
the selected sef’, will still maximize the machine utilization. Likewise, i$ also important to
understand that/’ is still filled in a similar iterative manner as described egc8on 3.2.4, thus the
use of the merit does not change the complexity of the algorit

The calculation of the merit values is represented in Atpani4 by the functioralc_merit().
We experimented with various merit functions, which are swarized in Table 4 and described in
the following sub-sections.

3.3.2 Always Skip or Always Select

The original algorithm never selects a job unless it acpuatbroves the utilization or reduces the
use of the extra processors. This can be called the “alwaps approach. It is motivated by the
desire to select jobs that are closer to the head of the \gagtireue, and therefore have waited
longer. In the framework of the merit values, we use(minus the job’s serial number) as the
merit value. In this way, jobs that have a low rank in the qugetea higher merit value.

The opposite approach is “always select”, in which we préseinclude the current job and
thereby tend to select jobs that are closer to the tail of thging queue. Surprisingly, simulation
results indicated that this improves the system’s perfocagas measured by the mean response
time and bounded slowdown metrics). This is explained byfdéice that the population of the
waiting queue is not homogeneous. The backfilling algoritepeatedly picks jobs out of the
gueue and starts them. The jobs that are thus removed aestttadsuse idle processors, and will
not interfere with the reservation for the first job; hencesth are jobs that tend to be small and
short. The head of the waiting queue has been subjected hosslections for a longer time, so
the characteristics of the remaining jobs are differentftbose that are present near the end of
the queue.

& In our example, usinglways selecinstead ofalways skipeads to selecting jobsj; and
wy, instead of jobwj,. This leads to the same maximal current utilization, ands ke same
number of extra processors, but the jobs are closer to thef thie queue.

3.3.3 Maximizing the Number of Jobs

An alternative approach attempts to improve the perforraanetrics directly. Both the response
time and bounded slowdown metrics are computed as an avevageill jobs executed by the

14

system. In this average, all jobs have the same weight. Tdreramproving the performance of a

larger set of jobs will boost the performance metrics moaattioing so for a smaller set of jobs.
In terms of the merit value, this idea is expressed by simplbnting the jobs int’. We select

the current job and add it t§’ if this will lead to a larger set of selected jobs; otherwise skip

it. And indeed, simulation results indicated that this didact improve the performance metrics

over the always select and always skip schemes.

3.3.4 Running Shortest Jobs First

It is well-known that the optimal off-line scheduling schenvith respect to the average response
time metric is the shortest jobs first algorithm. An approaiion of this algorithm can actually be
implemented in the context of backfilling, because we arergivser estimates of the running time
of each job. The merit value is then calculated as the sumeskthuntime estimates, with a minus
sign. As a result, the set of jobs with smaller runtimes walvé a higher merit value.

3.3.5 Maximizing the Total Slowdown

Another optional merit value is maximizing the overall sttiwwn of the selected jobs. Slowdown
is the ratio of the time it takes to run the job on a loaded systievided by the time it takes
on a dedicated system, i.&lowdown = %. Sinceresponse time = wait time +
running time and the jobs’ actuatunning time is unknown at the time of scheduling, we use
the user-estimated runtime for that job instead. Thus foh eansidered jolvj;, its slowdown is
computed as follows:

wait time + estimated runtime (t — wj;.arrival) + wj;.time

wj;.slowdown = : : = —
estimated runtime wy;.time

The proposed merit value is the total jobs slowdown with tlpse of choosing the s&t which
maximizeghis factor. This goes against intuition which states tretqgrmance metrics will in-
crease less if we add smaller values, not larger values. Hsishort-term view is wrong. The
reason is that if we choose the jobs with the minimal slowdow actually focus on those that
have the least waiting time; this is similar to the alway®sescheme described above. But by
selecting those jobs that have the maximal slowdown, wesfocLthose that are theost sensitive
to the slowdown metric (i.e. the shortest jobs) and have sldi@red the most so far. These are
the jobs that are also expected to cause the most signifizdhef degradation to the performance
metrics if we leave them in the queue. It is therefore bettatart them immediately, and prevent
worse degradation of the metrics in the future.

In other words, maximizing slowdown is a generalization cifieduling short jobs first. It
prefers short jobs, but also takes the time that they haeadyrwaited in the queue into account.
Simulation results shown in Section 4.3 indicate that thihe best job selection scheme among
those checked.

3.4 Complexity of the Algorithm

The complexity of the EASY algorithm is linear in the size bétqueue:O(|IWQ)|). The com-
plexity of LOS is much higher. However, it is still quite low absolute terms, and it leads to an

15

optimal packing.

3.4.1 Complexity Analysis

The most time and space demanding task is the constructidfi,oivhich depends on three input
parameter:|IW Q| — the length of the waiting queue,— the machine’s free capacity gtand
extra — the shadow free capacitylV’)| depends on the system load. Since each; . cell is
computed in a constant time, the total running time is simiply)| x n x extra. Bothn andextra
are bounded byw — the size of the machine, but there is a dependence between the first
gueued job must be bigger thanimplying thatextra < N — n. Their product therefore satisfies

n x extra <n x (N —n) = Nn —n? (1)

This is maximized whemn = N/2, leading to a value oiV?/4. Therefore the time complexity of
the algorithm for constructing/’ and thus for producing the optimal schedule is:

T = 0(WQ| x N?))

While this is a polynomial expression, it is important to argtand that it i:iot a polynomial
in the size of the inputThe input is the list of jobs sizes. To compute the size ofitipeit we
first need to encode each of the waiting jobs’ sizes in a bif@rmat. The length of encoding an
integerz is log z. As the sizes of jobs may be as big/sis each require®g N input bits. Hence
the size of encoding the entire input is:

1= O(WQ| x log N) 3)

As T'is not bounded by a polynomial ify this is not a polynomial time algorithm.

What we have here is an algorithm whose running tilmes bounded by a polynomial in
two variables: the size of the input, and the largest in@ltie Such algorithms, often based on
dynamic programming, are known pseudo-polynomialgorithms (defined in [9] and reviewed
in textbooks such as [18, chap. 16]). They are designed e $tP-complete problems using the
fact that in practice it is sufficient to solve the problem &orestricted set of inputs, in contrast to
the unbounded values which are considered in general tieranalysis. Not all NP problems
have such solutions: the ones that do not are called NP-@&tetfph the strong sense”. As we have
found a pseudo-polynomial solution, our problem is notrggip NP-complete (unlesB = N P).

In our case)V is a predefined constant. Moreover, for realistic systemsien quite small, on
the order of hundreds or maybe thousands of processorsreltigtion allows the optimal sched-
ule to be produced in a reasonable time, feasible for piddtigplementation. This is demonstrated
in our experimental results in Section 4.5. We show theredheng all our simulations, in which
we scheduled a total of more than 100,000 jobs, the schedelar took more than about 0.6
seconds to run, and the average was less than 2 milliseconds.

3.4.2 Limited Lookahead

The length of the waiting queug}’)|, depends on the system load. On heavy loaded systems the
mean waiting queue length can reach tens of jobs with peaksetimes reaching hundreds — a
fact that significantly increases the runtime of the aldponit

16

| log | location | nodes| jobs | load| duration |
CTC | Cornell Theory Ctr. 512 | 79,302| 0.55| 6/96—7/97
SDSC| San-Diego Supercomputer Ctr} 128 | 67,667| 0.69 | 4/98-4/00
KTH | Royal Inst. Technology, Sweden 100 | 28,490| 0.83 | 9/96-8/97

Table 5: The workload logs used to evaluate LOS.

A possible enhancement is to limit the number of jobs exathinethe algorithm by including
only the firstC' waiting jobs inWW@Q whereC' is a predefined constant. We call this approach
limited lookaheadsince we limit the number of jobs the algorithm is allowed xamine. It is
often possible to produce a schedule which maximizes théimes utilization by looking only at
the firstC' jobs, thus achieving the same result at a lower cost. Bubnisly this is not always the
case, and such a restriction might result in a jobset whidoi®ptimal. The effect of limiting the
lookahead on LOS’s results is examined in Section 4.4.

A more sophisticated possibility is not to use a constankabead, but rather to set this dy-
namically according to need and overhead. This is beyond¢bpe of the present paper and is
left for future work.

4 Experimental Results

4.1 The Simulation Environment

We implemented all aspects of the algorithm as describedeabod integrated them into the
framework of an event-driven job scheduling simulator.ne simulations, we used workload logs
from the Cornell Theory Center (CTC) IBM SP2, the San-Diegp&computer Center (SDSC)
IBM SP2, and the Swedish Royal Institute of Technology (KTBIYI SP2 parallel supercomputers
[19]. Each log contains a list of jobs, and for each job, a réas its size, arrival time, actual and
estimated runtimes, and other descriptive fields. Timeedlanformation is specified in seconds.
Details about the logs are given in Table 5. Each simulatseduthe number of nodes available
on the machine from which the log was taken. Unfortunatelycau®@t evaluate the algorithms for
other arbitrary machine sizes, as that would dramaticélnge the packing properties of the jobs,
and lead to unreliable results.

For each of these logs we calculateddtgation, which is the difference between the arrival
time of the last and the first jobs. We then calculated theslofféred loadoy multiplying the jobs
sizes by their runtimes, summing these values, and thedidgihe result by the log’s duration
and the size of the machine it represents. Given the offerad, we generated logs of varying
loads ranging from.5 to 0.95 by multiplying thearrival time of each job by a constant factor.
For example, if the offered load in the log(50, then by multiplying each job’s arrival time by
% the duration of the log is reduced, leading to a load.6f This is better than changing the
jobs’ sizes, as that would affect their packing propertegsause in the original logs most job sizes
are powers of two. The logs were used as an input for the storulahich generatearrival and
terminationevents according to the specifications in the log.

On each arrival or termination event, the simulator invok@$S which examines the waiting

17

System_Utilization vs. Load System_Utilization vs. Load System_Utilization vs. Load

1 1
Easy --+-- Easy --+-- Easy --+--
LOS.50 —=— LOS.50 —»— LOS.50 —»—

System_Utilization
System_Utilization
System_Utilization

0.5 0.5 0.5
05 055 0.6 0.65 0.7 0.75 0.8 0.85 0.9 095 1 05 055 06 065 0.7 0.75 0.8 0.85 0.9 095 1 05 055 06 065 0.7 0.75 0.8 0.85 0.9 095 1
Load Load Load

(@) CTC log (b) SDSC log (c) KTH log

Figure 3: Average system utilization vs. load

gueue, and based on the current system state decides whgtojetart. For each started job, the
simulator updates the system free capacity and enqueugasiaation event corresponding to the
job termination time. For each terminated job, the simuladgords its response time, bounded
slowdown (applying a threshold of = 10 seconds), and wait time. Note that in this type of
simulation the overall utilization is not a meaningful metras the system utilization is dictated
by the workload and is not affected by the scheduler (thisgeetially thep = \/u of open-
systems queueing analysis). However, one must verify tieastheduler is not overwhelmed and
that the system is not saturated. When this happens, theuneeagtilization becomes lower than
the offered load.

4.2 Improvement over EASY

We used the framework mentioned above to run simulationseoEASY scheduler [15, 24], and
compared its results to those of LOS which was limited to aimaklookahead of 50 jobs. The
reason for comparing with EASY is that it is the most populacKiilling algorithm today, and is
used in many systems.

By comparing the average system utilization vs. the offéoed of each simulation, we saw
that for the CTC and SDSC logs a discrepancy occurs at loaftehthan 0.9 (Figure 3(a,b)),
whereas for the KTH log it occurs only at loads higher thab@Fgure 3(c)). Such discrepancies
indicate that the simulated system is actually saturatsthte which is characterized by a contin-
uously growing length of the waiting queue. As a result, adasured values are meaningless and
depend on the length of the simulation. For this reason, wlparting our results, we limit the
x axis to the range where the simulation is still stable, amdiig the results beyond the point at
which the discrepancy begins.

As the results of schedulers processing the same jobs mambarswe need to compute con-
fidence intervals to assess the significance of observesteiftes. Rather than doing so directly,
we first apply the “common random numbers” variance redadigchnique [13]. For each job in
the workload file, we tabulate tltkfferencebetween its response time (or slowdown) under EASY
and under LOS. We then compute 90% confidence intervals @e ttiferences using the batch

18

means approach. By comparing the difference between trezlatgdrs on a job-by-job basis, the
variance of the results is greatly reduced, and so are theence intervals.

The results for the response time are shown in Figure 4, ofethef each sub-figure. The
results for bounded slowdown are on the right. All graphsaskite actual mean job response
time (or bounded slowdown) of the two schedulers as well adtfierential results. As can be
seen, the mean job differential results are positive adfes®ntire load range for both metrics
and all three logs, indicating that LOS outperforms EASY lircases. This result is statistically
significant, as witnessed by the fact that all lower bouregaaf the confidence intervals remain
above zero. Comparing the actual results with the diffeaéonnes illustrates the significance of
these differences and their dependency on the load. For@&ahy looking at sub-figure 4(a), we
see that for a load of 0.75, the mean job differential respénse is about 900 seconds. Comparing
this to the actual mean job response time for the same loadew/¢hat this is an improvement of
7% of the absolute value. On the other hand, at 0.90 load, iffexrethce in response is 4200
seconds, which in absolute value means an improvement ad than 20%.

4.3 Job Selection Effect on Performance

In Section 3.3 we introduced several alternative meritegfor guiding the selection when several
sets of jobs lead to the same utilization. The first wasthays-selecscheme. Unlike the original
always-skipscheme which selects jobs closer to the head of the queualviags-selecscheme
favors jobs near the tail. The results for the CTC log are shioviFigure 5(a). We decided to focus
our analysis on the mean job bounded slowdown metric, sinases relative runtime values,
and thus more accurately reflects the difference betweebnwthealgorithms. Results for KTH
are generally similar to CTC, and SDSC are generally somelsteer, but still show a positive
difference; this is true for all job selection schemes.

We see that the mean job bounded slowdown difference isiy®aitross the entire load range
— a clear indication that thalways-selectlgorithm outperforms the originalways-skipwith
respect to this metric. On the other hand, if we compare thgltiag plots to the corresponding
plots in Figure 4, where LOS was compared to EASY, we see lleaturves here are significantly
lower and in fact some of the lower boundaries of the confidanterval bars fall below zero.
For example, the mean job differential bounded slowdown@@ ad for the CTC log in Figure
5(a) is 2, while in Figure 4(a) it is about 18. The reason far lttw values is the fact that unlike
Section 4.2, where we compared LOS to the suboptimal EAS¥righgn, we now compare two
versions of the same scheduler, both of which maximize thieatton, and only differ in their
jobset selection. Therefore we can expect the performaags @ be smaller.

Another approach we suggested was to maximize the numbel®f) the selected jobset. We
stated that by considering the number of jobs which willtsiareach scheduling step, and selecting
the jobset which holds the maximal number of jobs (in additmmaximizing utilization), LOS’s
performance is expected to improve since less jobs will remwaiting.

The results of simulations using this approach are shownigaré 5(b). The fact that the
mean job differential bounded slowdown remains positivelie entire load range indicates that
the max-jobsapproach also outperforms the original algorithm for carding M/’. But it is not
significantly better than thalways-selecapproach.

The third proposed approach was to select the jobset wittsiiedler sum of runtimes, so

19

(@) CTClog

Mean Job (Differential) Response_Time vs. Load Mean Job (Differential) Bounded_Slowdown vs. Load

c
@ 25000 2 30
£ Easy --+- - = Easy -+ -
F LOS.50 —+— g LOS.50 —»—
Q - eneggeenes D L - g
8 20000 | Easy-LOS.50 . w‘ 25 Easy-LOS.50 |
& g 20
] 4 c
X 15000 e 3
= - ‘_,—ue/“/ 2
g 10000 5
g £
o
€ 5000 ey
= <}
S =}
S c
o - a
= 0 o}
05 055 06 065 07 075 08 085 09 =
Load
(b) SDSC log
Mean Job (Differential) Response_Time vs. Load -
@ 60000 2
E Easy - - S
F LOS.50 —+— g
@ 50000 || Easy-LOS.50 -a-- | [
c |
o °
2 3
@ 40000 2
o 3
= 3]
[/| —
£ 30000 ; 3
o . <
() 4 [
£ L 2
: 20000 - / - g
= P P S, <)
S 10000 2
= =
ST c
%] R TR SRR RS S
= 0 o}
05 055 06 065 07 075 08 085 09 =
Load
(c) KTH log
Mean Job (Differential) Response_Time vs. Load Mean Job (Differential) Bounded_Slowdown vs. Load
90000 700

E
Q
£ 3
=, 80000 | LOS.50 —— 2 600 - LOS.50 —w—
3 Easy-LOS.50 - % Easy-LOS.50 -
2 70000 2
2 g s00
2 60000 £
14
= 50000 @ 400
S 40000 5 a0
6 [
£ 30000 g
=) L £ 200 . .
= 20000 e =
2 e A N £ 100 B e
< 10000 S D S S i
R —, 5 e e
= [
=

0 0
05 055 06 065 07 075 0.8 085 09 0.95 05 055 06 065 07 075 08 085 09 0.9
Load Load

Figure 4. Raw results and difference comparing LOS with EASY

as to approximate the shortest job first scheduling schemeshawn in Figure 5(c), this indeed
improves performance considerably more than the previsasthemes.

We also introduced thax-Slowdowrapproach in which the s&t’ is chosen in a way that
its overall total slowdown is maximized. The results usihig approach are presented in Figure
5(d). These results far exceed those ofdlveays-selecalgorithm in Figure 5(a) and theax-jobs
approach in Figure 5(b), and are even slightly better thashlortest-jobs-firsapproach in Figure
5(c). This is also true for the other workloads; for example maximal differential bounded
slowdown for the KTH log usinglways-selectompared talways-skigs 60, usingmax-jobsit
is 55, and for théVlax-Slowdowrapproach it is 90.

20

Mean Job Differential Bounded_Slowdown vs. Load Mean Job Differential Bounded_Slowdown vs. Load

35 25

I “Always SKip - Always Select | [Always SKip-Max Jobs -]

3 2

25

15

2

1

15

0.5

1

05 0

-0.5

0

Mean Job Differential Bounded_Slowdown
Mean Job Differential Bounded_Slowdown

-0.5 -1
05 055 06 065 07 075 08 085 09 05 055 06 065 07 075 08 085 09

Load Load
(a) Improvement witlalways select (b) Improvement withmax jobs
Mean Job Differential Bounded_Slowdown vs. Load Mean Job Differential Bounded_Slowdown vs. Load

[_Always SKip - Shortest First = | Always Skip-Max Slowdown =+]

Mean Job Differential Bounded_Slowdown

Mean Job Differential Bounded_Slowdown

05 055 06 065 07 075 08 085 09 05 055 06 065 07 075 08 08 09
Load Load

(c) Improvement withshortest first (d) Improvement withmax slowdown

Figure 5: Improved performance using different job setacichemes, CTC log.

To complete the performance evaluation, we also compar&mi@en using thiax-Slowdown
approach directly with the EASY scheduler. The results hmve in Figure 6, for all three logs,
again with the response time metric on the left and the badisttevdown metric on the right.
These should be compared with Figure 4, wherethays-skipalgorithm for constructing’ was
used. As can be seen, for all three logs and for the entireraagle, the mean job differential
bounded slowdown curves in Figure 6 are higher than the sporeding curves in Figure 4. The
fact that the new curves are higher indicates thatdifferencebetween the jobs bounded slow-
down under EASY and under LOS has increased. Since EASY wamodified, it is another
indication that thévlax-Slowdowrapproach further reduces the jobs’ bounded slowdown, argl th
outperforms the original algorithm. We can also assessitjmefisance of the improvement in
terms of absolute values. For example, in sub-figure 6(a)seeethat at 0.90 load, the mean job
bounded slowdown has dropped from 30 to 8, an improvementavé rthat 73%, while in the
corresponding sub-figure 4(a) it improves by no more than.60%

Considering the response time results, we see that forrak tlogs, the curves for the mean
job differential response time of tidax-Slowdowrapproach are higher than those of the original
algorithm, which means that thdax-Slowdowrapproach outperforms the original algorithm with
respect to the response time metric as well. On the other, lifame compare the absolute results,
we see that at 0.90 load in SDSC and 0.95 in KTH, there is atsdigiantage for the unmodified

21

(@) CTClog

Mean Job (Differential) Response_Time vs. Load

2 25000
£ Easy -+ -
o LOS.50 —»—
Q 5
8 20000 | | EASY-LOSS0 -x
[}
o
: .
€ 15000)
g A S it [- 77‘/‘/
["—'——"e——é‘e—————
$ 10000
E=
a
€ 5000
3
c
N O T S R e
= JUSpeeReY SRELEES
= 0
05 055 06 065 07 075 08 085 09
Load

(b) SDSC log

Mean Job (Differential) Response_Time vs. Load

60000

Eas

50000 r

y -
LOS50 —w—
Easy-LOS.50 -

40000

30000

20000

10000

Mean Job (Differential) Response_Time

0

05 055

(c) KTH log

Mean Job (Differential) Response_Time vs. Load

90000

80000

LOS50 —w—
Easy-LOS.5Q

70000

60000

50000
40000

30000

20000
10000

I T
R I

B PR

Mean Job (Differential) Response_Time

o

Load

Mean Job (Differential) Bounded_Slowdown Mean Job (Differential) Bounded_Slowdown

Mean Job (Differential) Bounded_Slowdown

Mean Job (Differential) Bounded_Slowdown vs. Load

30
EaSy i S
LOS.50 —w— ;
25 1| Easy-LOS.50 wm- | ,
20 e
15 e
10
0
05 055 06 065 07 075 08 08 09
Load

Mean Job (Differential) Bounded_Slowdown vs. Load

80
60 .
40 e
20 N P__,ar’/,
e SO B S L
P S
05 055 06 065 07 075 08 085 09
Load
Mean Job (Differential) Bounded_Slowdown vs. Load
700
Easy --+--
LOS.50 —»—
600 | Easy-L0S.50 s
500 %
400 :
300 T
200 e
i

0
05 055 06 065 07 075 08 085 09 0095

Load

Figure 6: Raw results and differences comparing L&&x-Slowdowrwith EASY

22

algorithm. This does not mean that thkax-Slowdowrhas failed to perform and in fact a positive
mean response difference of 13900 in SDSC (19000 in KTH) isjnmprovement over EASY,

which is about 25% improvement in terms of absolute valudsaMhis means is that for extremely
high loads when the machine almost saturates, a change hethisstic may be considered if the
scheduler target is to minimize the response time of the jobs

(@) CTClog

Mean Job Response_Time vs. Load = Mean Job Bounded_Slowdown(thresh=10) vs. Load
21000 : : S 30 : :
Easy --+-- i Easy --+--
20000 | LOS.10 -owee @ LOS.10 -s-emr
o LOS.25 S 25 LOS.25
E 19000 | '5235 .m £ LOS.35 @
" 18000 || LOS:50 —— s LOS.50 —=—
% LOS.100 === ’ § 20 [|LOS.100 ---o--
S 17000 [{LOS.250 --we- E LOS.250 v
a o
$ 16000 by o 15
;- / g e 5
g 15000 4 k5 s /
2 14000 i '//“ 5 0 L g g
8 i 3] T
< 13000 = /
g S Sl —
12000 [z : PR
11000 g o0

05 055 06 065 07 075 08 085 09

Load Load
(b) SDSC log
Mean Job Response_Time vs. Load . Mean Job Bounded_Slowdown(thresh=10) vs. Load
55000 : . S 200 . .
Easy --+-- i Easy --+--
50000 | LOS.10 -wwe @ 180 1| LOS.10 s
@ LOS.25 £ LOS.25
E 45000 1| 10535 s g 1601 10535 -a
| 40000 || LOS.50 —=— e S 140 || LOS50 ——
8 LOS.100 ---o-- iy s LOS.100 ---o--
S 35000 [{LOS.250 e £ Z 120 [|LOS.250 e
=3 CG 2
§ 30000 = y] o, 100
o 25000 / 8 =0
S S c
2 20000 S 3 60
[R
g 15000 P = g i
. 3 I -
10000 g= < i
5000 e 0
05 055 06 065 07 075 08 085 09 05 055 06 065 07 075 08 085 09
Load Load
(c) KTH log
Mean Job Response_Time vs. Load = Mean Job Bounded_Slowdown(thresh=10) vs. Load
120000 . . , S 1600 , . .
Easy --+-- u Easy --+--
LOS.10 --w-res @ 1400 || LOS.10 s
2 100000 [LOS25 £ LOS.25
(55 = i =
q)\ L . = LOS.5
& 80000 [{LOS.100 ---o-- 8 1000 |LOS.100 --ee
S LOS.250 e E LOS.250 e
o =
$ 60000 o 800
a A 2 00
S 40000 i <
=4 .’ [=}
<] @ 400
> 20000 o 8 500
B AN B S S
E R A S
0 g [
05 055 0.6 0.65 07 075 0.8 085 0.9 0.95 05 055 06 065 07 075 08 085 09 0.95

Load Load

Figure 7: Limited lookahead affect on mean job response &intebounded slowdown.

4.4 Limiting the Lookahead

Subsection 3.4.2 proposed an enhancement chiftetbd lookaheadhimed at reducing the run-
time of LOS. We explored the effect of limiting the lookahead LOS'’s results by performing
six LOS simulations with a limited lookahead o, 25, 35, 50, 100 and 250 jobs respectively.
Figure 7 presents the effect of limiting the lookahead omtlean job response time and the mean
job bounded slowdown. The notatitw®S.Xis used to represent LOS’s results wheéfes the
maximal number of waiting jobs that LOS was allowed to exaon each scheduling step (i.e.
its lookahead limitation). We also plotted EASY’s result\aito allow a comparison.

23

| Log | #Jobs| Load | Tot Sim[sec]| Avg Time/Job[ms] Max Time/Step[ms]

CTC | 79302| 0.90 129 1.63 613.3
SDSC| 67667 0.90 36 0.53 204.9
KTH | 28490| 0.90 8 0.28 139.8

Table 6: Running time of simulations.

The lookahead limitation that can be tolerated without ddigrg the performance depends
on the log. For the CTC log (Figure 7(a)) we find that when LO$8nmsted to examine only
10 jobs at each scheduling step, its resulting mean job nsgpime and bounded slowdown is
relatively poor. In fact, the result curve of LOS.10 and EASXn intersect several times along the
load axis, indicating that the two schedulers achieve simésults with neither one consistently
outperforming the other as the load increases. The reasahdgpoor performance is the low
probability that a jobset which maximizes the machine zdiiion actually exists within the first 10
waiting jobs, thus although LOS selects the best jobsetn itas rarely the case that this jobset
indeed maximizes the machine utilization. However, witbhakahead of 25 or more LOS achieved
essentially optimal results.

For the SDSC log in Figure 7(b), LOS manages to provide goatbpeance even with a
limited lookahead of only 10 jobs. But for the KTH log in Figui7(c), a lookahead of 50 is
required for optimal performance, at least under the higpessible load. For lower loads, a
lookahead of 10 suffices. To summarize, it seems that we daly ggace a bound of 50 on the
lookahead, and thus also bound the runtime of the algorithm.

The explanation for the good performance under limited &aad is that for most of the
scheduling steps, especially under low loads, the lengtheofvaiting queue is actually small, so
a lookahead of hundreds of jobs has no effect in practice.h@ddad increases and the machine
advances toward its saturation point, the number of wajtibg increases, and the effect of limiting
the lookahead is more clearly seen. The left-hand side airEi§ compares the mean queue
length under EASY and LOS which was limited to a lookahead®fdbs. We can make two
interesting observation based on these measurements. ViAtIsLOS, the mean queue length is
actually smaller compared to EASY, due to its efficiency iokpag jobs, which allows more jobs
to terminate faster. The second observation is that onlyhierKTH log in sub-figure 8(c), the
mean number of waiting jobs exceeds the lookahead limitaifdb0 jobs, and this happens only
at a load of 0.95.

The problem with the plots on the left of Figure 8 is that theamgueue length provides only
a summary to what happened over the entire simulation. Weftive performed a detailed time-
dependent analysis of the queue behavior, where the quegih lis examined at every scheduling
step across the entire simulation. The results show tHadwdth peaks of hundreds of jobs actually
exist, they are relatively rare, and that LOS often managé&sép the queue length below 50 jobs
at times when it reaches a length of more than 100 under EASY.

24

(@) CTClog

Mean_Queue_Length vs. Load Queue Length Comparison at 0.85 Load
50 30 Easy --- -~
W‘W‘j b ‘LOS.SO —
45 {LOS.50 —— | o 250
R
2 3 : 200
=
30 2 150
(4} 3
g 25 ® B
[} - [
& g 100 : .
20 : = ! i I
I 3) ; IR
c . " |] N
g 15 o — 50 0 S O § i AA b
PR S e 0 bt LA I W AATS A\ !
5 ‘_//—w/
-50
05 055 06 065 07 075 08 08 09 0 20000 40000 60000 80000 100000 120000 140000 160000
Load Scheduling Step
(b) SDSC log
Mean_Queue_Length vs. Load Queue Length Comparison at 0.85 Load
500
60 Easy --- -~
— , o [T]
LOS.50 —»— .
50 . 400
s .
g . 350
¢ 40 ; S 300
P ’ H 250
3
3 30 3
E) 3§ 200 .
<o - & 150 “
IS R I)
2 /‘ 100 T .
10 / 50 A ‘\,\/"VA‘ :
poo o AN A~
0
-50
05 055 06 065 07 075 08 08 09 0 20000 40000 60000 80000 100000 120000 140000
Load Scheduling Step
(c) KTH log
Mean_Queue_Length vs. Load Queue Length Comparison at 0.90 Load
140 W
’—Eiasy—";'—" LOS.50 ——
120 |1LOS:50 —— ’ 250
< .
g 100 "r 200
- <
o 80 2 150 R R |
=] — " " "
: : 1
& 60 g 100 o s S |
AN AT TR N
g 40 - 38 (I R ARRAR AN
g SOJW\’VJ L 4\ J\/J \/\ ;
20 - \ A ‘ "
I =y 0
-50 !
05 055 06 065 07 075 08 08 09 095 0 10000 20000 30000 40000 50000 60000
Load Scheduling Step

Figure 8: Queue behavior in simulations.

4.5 Running Time

The main feature of the LOS algorithm is that it computes tp&noal packing of queued jobs.

As packing is in general NP-complete, this may raise corscezgarding the running time of the
algorithm. In Section 3.4 we claimed that our specific ins&aof the packing problem is actually
tractable, due to the relatively small number of procesgargently less than 10,000 even in the
biggest machines in the world). To support this claim, wesentruntime data from the simulations
in Table 6. Note that the simulations contain a full impletagion of LOS, and execute exactly the
same algorithm as would be executed in a real system using TRefore the simulation time

25

gives an upper bound on the running time of the algorithm iead system processing the same
workload.

The results are that the running time of the full simulatiarhigh load values, and processing
up to nearly 80,000 jobs, is often less than a minute and neweh more than two minutes.
When this is divided by the number of jobs, we find that the agerscheduling overhead per
job is measured in milliseconds. The maximum measured insargle scheduling step is also
much less than a second. While these numbers are signifidaigtier than for EASY (where
simulations complete in a few seconds), they are still vewyih absolute terms, especially relative
to other overheads on parallel machines, where loadingedi@igob for execution may take several
minutes [1].

Thus we conclude that optimal packings can indeed be fowaltieally.

5 Conclusions

Backfilling algorithms have several parameters. In the,gasi parameters have been studied:
the number of jobs that receive reservations, and the ondehich the queue is traversed when
looking for jobs to backfill. We introduce a third parameténe amount of lookahead into the
gueue. We show that by using a lookahead window of about 5ifab possible to derive much
better packing of jobs under high loads, and that this imgsdyoth the mean job response time
and mean job bounded slowdown metrics.

In addition, improving packing positively effects secondmetrics such as the queue length
behavior. We show that on heavily loaded systems under th&atoof traditional backfilling
schedulers, the waiting queue length can reach tens of jadhgp@aks sometimes reaching hun-
dreds. On the other hand, when lookahead is used and paskopgimized, the waiting queue is
shorter across a large fraction of the scheduling steps.

There is often more than a single way to pack jobs and achieveame utilization value. We
explored various alternatives by including a merit caltalain the lookahead process and choos-
ing the set of jobs which maximizes the merit value. We shat performance is indeed sensitive
to such choices, despite the fact that all lead to the sarfiratittn. Surprisingly, performance
is boosted when choosing the set of jobs with itieximaltotal slowdown. A possible reason is
the nature of the slowdown metric which is mostly effectedthy shorter jobs; therefore a set
with a large total slowdown is likely to contain the shortedts, and specifically, those short jobs
that have waited the most. By starting these jobs ahead ef ottes, a further degradation of the
performance metrics is avoided.

Future work can further explore various ways to reduce tgerghm runtime. For example,
it is possible to calculate the utilization in an on-goingHeon and stop the construction &f’
when the utilization reaches a certain threshold. Extendur algorithm to perform reservations
for more than a single job and exploring the effect of suchwaibgc on performance also presents
an interesting challenge. On the other hand, it is possitdeniplify the algorithm significantly by
removing reservations altogether, and relying on the seleof jobs with maximal slowdowns to
prevent starvation. The question is how well this performgractice.

26

References

[1] G. A. Abandah and E. S. Davidson, “Modeling the commutigzaperformance of the IBM SP2". In
10thintl. Parallel Processing Symppp. 249-257, Apr 1996.

[2] O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo, “A cparative study of on-line scheduling algo-
rithms for networks of workstationCluster Computing(2), pp. 95-112, 2000.

[3] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer, “Aistperformance estimator to guide data
partitioning decisions”. In 3rymp. Principles and Practice of Parallel Programmiipg. 213-223,
Apr 1991.

[4] S.-H.Chiang, A. Arpaci-Dusseau, and M. K. Vernon, “Thepiact of more accurate requested runtimes
on production job scheduling performance”.Job Scheduling Strategies for Parallel Processipg.
103-127, Springer-Verlag, 2002. Lect. Notes Comput. Saii. 2537.

[5] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Apjpr@tion algorithms for bin-packing — an
updated survey”. Ilgorithm Design for Computer Systems Desi@nAusiello, M. Lucertini, and P.
Serafini (eds.), pp. 49-106, Springer-Verlag, 1984.

[6] M. V. Devarakonda and R. K. lyer, “Predictability of prgs resource usage : a measurement based
study on UNIX".IEEE Tans. Sotfw. End.5(12), pp. 1579-1586, Dec 1989.

[7] D. G. FeitelsonA Survey of Scheduling in Multiprogrammed Parallel SystdResearch Report RC
19790 (87657), IBM T. J. Watson Research Center, Oct 199#e@ version, Aug 1997.

[8] D. G. Feitelson, “Experimental Analysis of the Root Casi®f Performance Evaluation Results: A
Backfilling Case Study”lEEE Trans. Parallel & Distributed Sys1.6(2), pp. 175-182, Feb 2005.

[9] M. R. Garey and D. S. Johnson, “ “Strong” NP-completenessilts: motivation, examples, and im-
plications”.J. ACM25(3), pp. 499-508, Jul 1978.

[10] D. Jackson, Q. Snell, and M. Clement, “Core algorithrhghe Maui scheduler”. InJlob Scheduling
Strategies for Parallel Processingpringer-Verlag, Lect. Notes Comput. Sci. Vol. 2221, pp B2,
2001.

[11] J.P.Jones and B. Nitzberg, “Scheduling for parallpesaomputing: a historical perspective of achiev-
able utilization”. InJob Scheduling Strategies for Parallel Processiog. 1-16, Springer-Verlag, 1999.
Lect. Notes Comput. Sci. Vol. 1659.

[12] D. Karger, C. Stein, and J. Wein, “Scheduling algorifimin Handbook of Algorithms and Theory of
Computation M. J. Atallah (ed.), CRC Press, 1997.

[13] A. M. Law and W. D. Kelton Simulation Modeling and Analysi8rd ed., McGraw Hill, 2000.

[14] B. G. Lawson and E. Smirni, “Multiple-queue backfillimgheduling with priorities and reservations
for parallel systems”. Inlob Scheduling Strategies for Parallel Processigpringer-Verlag, Lect.
Notes Comput. Sci. Vol. 2537, pp. 72-87, 2002.

[15] D. Lifka, “The ANL/IBM SP scheduling system”. lob Scheduling Strategies for Parallel Processing
pp. 295-303, Springer-Verlag, 1995. Lect. Notes Compuit.\%&t. 949.

27

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Majumdar, D. L. Eager, and R. B. Bunt, “Scheduling ialtiprogrammed parallel systems”. In
SIGMETRICS Conf. Measurement and Modeling of Comput., §pstl04-113, May 1988.

A.W. Mu'alem and D. G. Feitelson, “Utilization, predability, workloads, and user runtime estimates
in scheduling the IBM SP2 with backfillinglEEE Trans. on Parallel and Distributed Sy4R(6), pp.
529-543, Jun 2001.

C. H. Papadimitriou and K. Steiglit€;ombinatorial Optimization: Algorithms and ComplexiBren-
tice Hall, 1982.

Parallel Workloads ArchiveJRL http://www.cs.huji.ac.il/labs/parallel/workload.

V. Sarkar, “Determining average program executioreirand their variance”. IRroc. SIGPLAN Conf.
Prog. Lang. Design and Implementatjqop. 298-312, Jun 1989.

K. C. Sevcik, “Application scheduling and processdoeétion in multiprogrammed parallel process-
ing systems”Performance Evaluatiod9(2-3), pp. 107-140, Mar 1994.

J. Sgall, “On-line scheduling — a survey”. Mnline Algorithms: The State of the AA. Fiat and G.
J. Woeginger (eds.), Springer-Verlag, 1998. Lect. Notem@d. Sci. Vol. 1442, pp. 196-231.

E. Shmueli and D. G. Feitelson, “Backfilling with lookedd to optimize the performance of parallel
job scheduling”. InJob Scheduling Strategies for Parallel Processipg. 228-251, Springer-Verlag,
2003. Lect. Notes Comput. Sci. Vol. 2862.

J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The EASY - ldigeveler API project”. InJob Scheduling
Strategies for Parallel Processingp. 41-47, Springer-Verlag, 1996. Lect. Notes Comput. %al.
1162.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. $agpan, “Selective reservation strategies for
backfill job scheduling”. InJob Scheduling Strategies for Parallel ProcessiS8gringer-Verlag, Lect.
Notes Comput. Sci. Vol. 2537, pp. 55-71, 2002.

D. Talby and D. G. Feitelson, “Supporting prioritiesteimproving utilization of the IBM SP scheduler
using slack-based backfilling”. In 13thtl. Parallel Processing Symppp. 513-517, Apr 1999.

W. A. Ward, Jr., C. L. Mahood, and J. E. West, “Scheduljoigs on parallel systems using a relaxed
backfill strategy”. InJob Scheduling Strategies for Parallel ProcessiBgringer-Verlag, Lect. Notes
Comput. Sci. Vol. 2537, pp. 88-102, 2002.

28

