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Abstract

Understanding the detailed behavior of an operating sy&emucial for making informed design decisions. But
such an understanding is very hard to achieve, due to thedsitrg complexity of such systems and the fact that
they are implemented and maintained by large and diversggrof developers. Tools like KLogger — presented in
this paper — can help by enabling fine-grained logging ofesysévents and the sharing of a logging infrastructure
between multiple developers and researchers, facilgatimethodology where design evaluation can be an integral
part of kernel development. We demonstrate the need formathodology by a host of case studies, using KLogger
to better understand various subsystems in the Linux keanel pinpointing overheads and problems therein.

1 Introduction

In the late 1970s, UNIX version 6 consisted of “60,000 linesamle [17]. Today, version 2.6 of the Linux kernel
consists of over 5,500,000 lines of code, and almost 15,00@s files. This is a great testimony to the complexity of
modern operating systems.

Modern, general purpose operating systems need to manalg¢harp of hardware devices: storage devices,
networking, human interface devices, and the CPU itselis &hdone using software layers such as device drivers,
file-systems, and communications protocols. The softvwsagesigned and implemented by hundreds of programmers
writing co-dependent code. This is especially true for camity-developed operating systems such as Linux and the
BSD family. While such open-source approaches benefit flwartadlents and scrutiny of multiple avid developers,
they may also lead to situations where different pieces déadash, and do not interoperate correctly [2].

Adding to this problem is the power of modern CPUs and theeiasing parallelism introduced by symmetric
multi-processing and multi-core CPUs. While increasindg@®wer might mask performance problems, the increas-
ing parallelism introduces a myriad of issues system desgymeed to deal with — most of which stem from the need
to synchronize parallel events.

The resulting software is too complex for a human progranmmeontain, and might even display counter-intuitive
behavior [15]. Analyzing system behavior based on measemésrs often thwarted by measurement overheads that
overshadow the effects being investigated. This sometdmssribed as thEleisenberg effedbr software [28]. All
this has detrimental effects on the engineering of crittiygtem components. For example, it is not uncommon that
code is submitted to the Linux kernel, and sometimes eveepted, based on a subjectifeels better” argument
[19].

This situation raises the need for better system analysis,tthat will aid developers and researchers in obtaining
a better understanding of system behavior. Given systeonsptexity, one cannot expect an all encompassing system
analyzer, because that would require a full understanditigeooperating system’s code. A more promising approach
is a framework allowing developers to build event loggeecHc to the subsystem at hand. This framework should be
integrated into the kernel development methodology, bigthsg a subsystem’s event logger along with the subsystem
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itself. In fact, an event logger based on the subsystemis loan also complement the subsystem’s documentation.
Ultimately, such a framework may facilitate the creatioraafollection of system loggers based on the experience of
developers writing the code in the first place.

In this paper we introdudéLogger, a fine-grained, scalable, and highly flexible kernel logg&iogger is designed
for post-mortem analysis, logging the configured kernehevevith very low overhead. It is reliable in the sense
that event loss due to buffer overflow is rare, and can be thatday the user by tracking gaps in the event serial
numbers (indicating a serial number was allocated but theesponding event not logged for lack of buffer space).
Furthermore, events can be logged from any point in the ngkeérnel. Logging is done into per-CPU buffers, making
KLogger scalable, a required feature for the increasinghalel modern processors. KLogger can be specialized for
specific subsystems using an event configuration file, widaeldd to the generation of event-specific code at kernel
compilation time. This structured specialization meckanicalledKLogger schemataallows kernel developers to
share their expertise and insights, thus allowing otherareshers to analyze code without having to fully understand
its intricacies. The idea behind this design is based onatiemthat a high level understanding of a subsystem should
be enough to evaluate it, rather than having to know the getgild of the implementation.

To better demonstrate the easeusinga schema vs. the difficulties ioreating one, we present the process
scheduler as an example. At the base of every multiprogragnoperating system there is a point in time where one
process is scheduled out (preempted), and another is deldéda context switch). However, the exact code snippet
performing the context switch — saving one process’s stad@@storing another’'s — is implementation dependent; in
Linux, it is a preprocessor macro with different versionsdach supported architecture. This is called from a variety
of locations, including but not limited to theontextswitchfunction.

Pinpointing the base code performing a context switch reguiernel expertise, but the real problem is verifying
that this is theonly place where a process may be resumed. In Linux, a new pracessated using the fork system
call. However, a process actually starts running only froside the context switch code, in which one process’s state
is saved and another’s state is restored. Obviously, thestged is the state of a process as seen by the context switch
function. After a process’s state is restored, the functierforming the context switch completes some accounting
and returns, thereby resuming the execution of the newlgdidied process. Had the fork system call duplicated
the parent’s running state to the child process as seen bfptkesystem call itself, the child process would have
continued to run from inside the fork system call in the finsiet it is scheduled. But this would skip the post-context-
switch accounting, thus threatening the consistency optbeess scheduler’s internal data structures. Therelfiere t
fork code actually constructs a stack frame for a new protfesisuses a specialized version of the context switch
function for newly created processes — in which the new peedll start its first quantum after it is scheduled in.
These are extremely intricate implementation details éngbne placing logging calls must be aware of, but are not
relevant for higher level tracking of scheduling eventthesi for evaluation of a process scheduler’'s performance or
for investigating the interaction of scheduling with otsabsystems such as the file system or memory manager.

We believe that the KLogger framework offers a solution ie groblem in its formalization of KLogger schemata.
Specifically to our example, the scheduler developer — whawgnall the implementation intricacies — will create
a schema for scheduler-related events, including a costekth logging call in the correct code snippets. This will
enable the community to use that event for keeping track @éhvbrocess is running at each instant, or for measuring
scheduler performance, without having to overcome thelawffully understanding the fine implementation details
described above. Moreover, once a KLogger schema is alailidlsan be used to shed light on the implementation
details of the relevant kernel subsystem, acting as codetations complementing the subsystem’s documentation.

KLogger currently supports the Linux kernel — both the 2.dnxl the 2.6.x kernel versions. Although a newer
series exists, we cannot dismiss the 2.4.x kernel seri¢ssastill favored by many administrators, especially sitioe
2.6.x series has been considered unstable for a long tirea,lBvsome kernel developers [5, 33].

To demonstrate the power and flexibility of KLogger, we datkcover half of this paper to describing several
case studies in which KLogger uncovered bottlenecks orfesiisres — including examples of what we have learned
about the behavior of the Linux kernel using KLogger.

The rest of this paper is organized as follows. Section Zwmsirelated work. Sections 3, 4, and 5 describe the
design principles, programmer/user interface, and implation of the KLogger infrastructure. Section 6 desaibe
our testbed, after which we describe the case studies imsect through 10.



2 Related Work

KLogger is a software tool used to log events from the opegasiystem’s kernel, with the developers defining the
events at compilation time. This is not a novel approach, thede exist several tools which operate on the same
principle. Unfortunately, these tools have various limitas, chief among which is high overhead that limits the
granularity of events that can be investigated.

The simplest logging tool in Linux iprintk, the kernel's console printing utility [4, 18], whose serties are
identical to those o€'’s standardrintf. This tool incurs a substantial overhead for formattingl ennot reliable —
it uses a cyclic buffer which that is read by an external uokyonized daemon. The buffer can therefore be easily
overrun, causing event loss.

The most effective Linux tool we have found is thimux Trace Toolkit(LTT) [35]. LTT logs a set of some 45
predefined events, including interrupts, system callsyoek packet arrivals, etc. The tool’s effectiveness is eed
by its relatively low overhead and a visualization tool thalps analyzing the logged data. However, it is not flexible
nor easily extensible to allow for specific instrumentation

IBM’s K42 operating system has an integrated logging toat ghares some features with KLogger [34]. These
features include fine-grained logging of events from eveinfin the kernel, variable-length timestamped events and
logging binary data that is decoded post-mortem, amongsithenere is currently and attempt to integrate some of
this system’s features into LTT, such as efficient transféogged data from the kernel to user-level [36].

A more flexible approach is taken l§erninst[30], and what seem to be its successordFrace[8] on Sun’s
Solaris 10 operating system, akgrobes[23] from IBM in Linux. These tools dynamically modify kerheode in
order to instrument it: either by changing the opcode at #upiested address to a jump instruction or by asserting
the processor’s debug registers, thus transferring clattbe instrumentation code. After the data is logged, nt
returns to the original code. The ability to add events atinue makes these tools more flexible than KLogger.

None of the above tools provide data about the overhead tioely per logging a single event (with the exception
of Kernins), which is the principal metric in evaluating a tool’s gréamity. We therefore measured them using the
KLogger infrastructure and found that their overhead isdgity much higher than that of KLogger. This measurement
is described below (in the section dealing with KLoggstpwatchcapabilities), and is summarized in Table 1.

TIPME [10] is a specialized tool aimed at studying system latexjoi¢hich logs system state into a memory
resident buffer whenever the system’s latencies were peitas problematic. This tool partly inspired the design of
KLogger, which also logs events into a special buffer. Itddanger supported, though.

The Windows family also has a kernel mechanism enablingitaggome events, calledindows Performance
Monitors[29], but very little is known about its implementation.

An alternative to logging all events is to use sampling [1hisTapproach is used @Profile which is the un-
derlying infrastructure for HP’®rospecttool. OProfile uses Intel's hardware performance countetdtp generate
traps everyN occurrences of some hardware event — be it clock cyclesecani$ses, etc. The overhead includes a
hardware trap and function call, so logging 10,000 eveatsisd can lead to 3-10% overall overhead (depending on
which hardware counter is being used). Also, this tool isquic, and thus bound to miss events whose granularity is
finer than the sampling rate.

Yet another approach for investigating operating systeemevis to simulate the hardware. For examBieOS
[25] was effective in uncovering couplings between the apeg system and its underlying CPU [26], but is less
effective when it comes to understanding the effects ofifipeeorkloads on the operating system per-se.

Finally, architectures with programmable microcode héeedption to modify the microcode itself to instrument
and analyze the operating system, as has been done on the224XIp principle, this approach is also viable for
Intel's Pentium IV processors, which internally map op-estbu.ops using some firmware. The problem is that this
firmware is one of Intel’'s best guarded secrets, and is ndlada for developers.

3 KLogger Design Principles

KLogger is a framework for logging important events to belgned offline. Events are logged into a memory buffer,
which is dumped to disk by a special kernel thread whenesdrde space drops below some low-water mark.



The design of KLogger originated from the need for a tool thatld enable kernel researchers and developers
direct, unabridged, access to the “darkest” corners of flegading system kernel. None of the tools surveyed above
provides the combination of qualities we required from a fjraéned kernel logging tool. Thus, KLogger was designed
with the following goals in mind:

A Tool for Researchers and Developers KLogger is targeted at researchers and developers, and fiog¢ auning
production systems. This goal forces us to maintain strieheordering, so events are logged in the same order as
executed by the hardware. Also, events must not get lostggirig must be reliable. These two features also make
KLogger a very handy debug tool. On the other hand, this gisal allows for event logging code to incur some
minimal overhead even when logging is disabled. An additioequirement was support for logging the hardware’s
performance counters. While such counters are now avaitaibimost platforms, we currently only support the Intel
Pentium IV performance monitoring counters [14].

Low overhead When monitoring the behavior of any system, our goal is “tdbea mere fly on the wall’. Thus
overhead must be extremely low, so as not to perturb therayisédavior. The overhead can be categorized into two
orthogonal partsdirect overhead— the time needed to take the measurement,iadiect overhead— caused by
cache lines and TLB entries evicted as a result of the loggihgse issues are discussed below in the section dealing
with KLogger’s stopwatch capabilities.

Flexibility ~KLogger must be flexible, in that it can be used in any partekiérnel, log any event the researcher/developer
can think of, and allow simplicity in adding new types of eteerAlso, it must allow for researchers to share method-
ologies: if one researcher comes up with a set of events thasare some subsystem, she should be able to easily
share her test platform with other researchers, who areanaitir with the gritty implementation details of that par-
ticular subsystem. This goal is important since it allowskbogger users to easily incorporate the ideas and insights

of others. KLogger's flexibility is further discussed in thection titled “KLogger Schemata” and demonstrated later

on in several case studies.

Ease of Use Using KLogger should be intuitive. For this reason we havedkstl to use semantics similar to printing
kernel data to the system log, leaving the analysis of theltsefor later. These semantics, along with the strictly
ordered, reliable logging, make KLogger a very handy demgyol. Another aspect of this goal is that configuration
parameters should be settable when the system is up, agaidinecessary reboots or recompilations. KLogger’s
programmer/user interface is further discussed below.

The design goals are specified with no particular order. Bvengh we have found them to be conflicting at times,
we believe we have managed to combine them with minimal tfksle

4 The Programmer/User interface

This section will discuss the business end of KLogger — hoapterate and configure this tool.

KLogger's operation philosophy is quite simple: when desig a measurement we first need to define what we
want to log. In KLogger’s lingo, this means defining an event the data it holds. Second, we need to declare when
we want this event logged. Third, we have to configure runfia@meters, the most important of which is the toggle
switch — start and stop the measurement. The last step igzimgkhe data, the only part in which the user is on her
own. Since analyzing the data is task specific to the dategadhthe user needs to write a specific analyzing program
to extract whatever information she chooses, be it avegagiime value, or replaying a set of events to evaluate an
alternate algorithm. To simplify analysis, KLogger’s lagtext based, and formatted as a Perl array of events, each
being a Perl hash (actually, the log is dumped in binary fafioreefficiency, and later converted into its textual form
using a special filter).

To simplify the description of the interface, we will go otbe different components with a step by step example:
defining an event that logs which process is scheduled to Tine event should be logged each time the process
scheduler chooses a process, and should holgithef the selected process and the number of L2 cache misses
processes experienced since the measurement startetingieglimpse into the processes’ cache behavior).



4.1 Event Configuration File

The event configuration file is located at the root of the kiesnarce tree. A kernel can have multiple configuration
files — to allow for modular event schemata — all of which mustriamed with the same prefixlogger.conf
(unlisted dot-files, following the UNIX convention for cogfiration files). The configuration file contains both the
event definitions and the hardware performance countensititefis (if needed).

Performance counter definitions are a binding between aalidounter number and an event type. The number
of counters is limited only by the underlying hardware, whiwas a limited number of registers. Sometimes certain
events can only be counted using a specific subset of thosteneg further limiting the performance counters variety
The KLogger infrastructure defines a set of well known evearhes as abstractions, and allows the user to bind
virtual counters to these event types. When reading the gumatiion files, the KLogger code generator uses a set
of architecture-specific modules to generate the correas{imassembly) code for the underlying hardware. In our
example we set virtual hardware counter 0 to count L2 caclsseni
arch PentiumV {

counterO | 2 _cache_ni sses
,}Accessing a predefined hardware counter is described below.

Event definitions ar€-like structure entities, declaring the event’s name aeddidta fields it contains. The data
types are similar to primitiv€ types, and the names can be any l&galentifier. The event used in our example is
event SCHEDI N {

int pid

ul ongl ong L2 cache_mi sses
ll'his defines an event call@CHEDINthat has three fields — the two specified, and a generic heddehwontains
the event type, its serial number in the log, and a timestardjzating when the event occurred. The timestamp is
taken from the underlying hardware’s cycle counter, whiobdpces the best possible timing resolution. This event
will appear in the log file as the following Perl hash:

{
header => {
"type" => " SCHEDI N',
"serial" => "119",
"timestanp" => "103207175760",
1
"pid" => "1073",
"L2 _cache_mi sses" => "35678014",
}

A’more detailed description of the configuration file is beytime scope of this paper.

4.2 Event Logging

Logging events inside the kernel code is similar to usingdrmel’sprintk function. KLogger calls are made using a
specialC macro callecklogger, which is mapped at preprocessing time tarimed logging function specific to the
event. This optimization saves the function call overheadhe klogger logging code simply stores the logged data
on the log buffer.

The syntax of the logging call is:
kl ogger (EVENT, fieldl, field2, ...);
where the arguments are listed in the same order as theydeseattin the event definition. KLogger use's standard
type checks. In our scheduler example, the logging commanuddibe:
kl ogger ( SCHEDI N, task->pi d,

kl ogger _get |2 cache_m sses());

with the last argument being a specially auto-generatéukifilinction that reads the appropriate hardware counter.

Note that when KLogger is disabled in the kernel configurafeg. not compiled in the kernel), the logging calls
are eliminated usin@’s preprocessor, so as not to burden the kernel with any eageth



4.3 Runtime-Configurable Parameters

KLogger has a number of parameters that are tunable at rentamther than compile time. These parameters are
accessible using the Linwysctlinterface, or its equivaleriproc filesystem counterpart — namely by writing values
into files in the/proc/sys/kloggerMirectory. Accessing these parameters using the genezaydiem abstraction
greatly simplifies KLogger usage, as it enables users t@wshell scripts executing specific scenarios to be logged. It
also allows a running program to turn on logging when a ceiase of the computation is reached.

The most important parameter is KLogger's general on/offcdw Logging is enabled by simply writing “1” into
the /proc/sys/klogger/enablide. Writing “0” into that file turns logging off. This file caalso be read to determine
whether the system is currently logging.

Even though the kernel is capable of logging a variety of &yexi times we want to disable some so only a subset
of the events actually get logged. Each event is associatbdaviile named after the event in tigroc/sys/klogger/
directory. Like the main toggle switch, writing a value of 8 bto this file disables or enables the logging of that
event, respectively.

Another important configuration parameter is the buffee seet by default to 4MB. However, as the periodic
flushing of the buffer to disk obviously perturbs the systarigger buffer is needed in scenarios where a measurement
might take longer to run and the user does not want it disturbae/proc/sys/klogger/buffesizefile shows the size
of each CPU’s buffer (in MBs). Writing a new number into th#e fieallocates each CPU’s buffer to the requested
number of MBs (if enough memory is not available an error ggked in the system log).

The last parameter we review is the low-water mark. Thismatar determines when the buffer will be flushed to
disk, and its units are percents of the full buffer. KLoggéogging buffer acts as an asymmetric double buffer, where
the part above the low-water mark is the main buffer, and #relgelow the low-water mark is the reserve buffer that
is only used when during flushing. This is further explaine&ection 5.2. By default, the buffer is flushed when its
free space drops below 10%. In some scenarios the flushirpaistelf may generate events, therefore the threshold
should be increased to avoid overflowing the buffer. If anrfboe does occur the kernel simply starts skipping event
serial numbers until space is available, allowing verifaraof the log’s integrity. Changing the parameter’s valsie i
done by simply writing the new low-level mark (in percents}he/proc/sys/klogger/lowwatdile.

4.4 Internal Benchmarking Mechanism

The final part of KLogger's interface is its internal benchikiag mechanism. When designing a benchmark, one needs
to pay attention to the overhead incurred by the loggindfjtseorder to evaluate the quality of the data collected.
When KLogger generates its logging code, it also generanshmarking code for each event that iteratively logs
this event using dummy data, and measures the aggregatedimgthe hardware’s cycle counter. The number of
iterations defaults to 1000, and is settable using the ysmt interface at runtime. The average overhead (as an
integral division) for each event is reported using pemeviges in the/proc/sys/klogger/benchmarkgirectory. This
estimate can then be used by the developer/researchelta&varhether an event incurs an intolerable overhead, in
which case it can be simply disabled at runtime with no needd¢ompile the kernel.

The calculated average overhead gives a good estimatesfovéithead incurred by KLogger, but it is important to
remember that this overhead only accounts for the time dpggingthe information, but not the time speutttaining
the real information to be logged from kernel data structuo¥ even directly from the hardware. Estimating the
overhead of the latter is not feasible within the KLoggenfeavork, and is left for the user to cautiously evaluate.

Finishing with ourSCHEDIN example, the event’s logging overhead takes less than 2€l8scgn our 2.8GHz
Pentium IV machine — or0 nanosecondsIn fact, we have found this value to be typical for loggingets con-
taining up to 32 bytes§(x 32bit integers). The overhead incurretitainingthe information in this case cannot be
neglected, and is mainly attributed to reading the numbeaciie misses from the hardware’s performance monitoring
counters — measured at another 180 cycles. Neverthelessy¢dlasurement is a demonstrates KLogger’s low logging
overhead.



5 KLogger Implementation

In this section we discuss the details of KLogger’s impletatan and how its design principles — mainly the low
overhead and flexibility — were achieved.

5.1 Per-CPU Buffers

As noted in previously, KLogger’s buffer operates as an asgtnic double buffer, with the low-water mark separating
the main buffer from the reserve, flush time, buffer.

KLogger employs per-CPU, logically contiguous, memonkie buffers. In this manner allocating buffer space
need notinvolve any inter-CPU locks, but only care for I&€BU synchronization (as opposed to the physical memory
buffer used in [9]). On a single CPU, race conditions can aayur between system context and interrupt context,
so blocking interrupts is the only synchronization constrequired. In fact, since the buffer is only written linkyar
maintaining acurrent positionpointer to the first free byte in the buffer is all the accongtneeded, and safely
allocatingeventsizebytes on the buffer only requires the following operations:

1. block local interrupts

2. eveniptr = nextfree byte ptr

3. nextfree byte ptr += eventsize

4. unblock local interrupts
Interrupt blocking is required to prevent the same spaceatéd to several events, since tiextfree_ byte ptr pointer
is incremented on every event allocation. Furthermore, \watwo prevent the possibility that the buffer will be
flushed between the event allocation and the actual evegirigg As flushing requires the kernel to context switch
into the kernel thread in charge of flushing the specific petdMuffer (Section 5.2), disabling kernel preemption
during the logging operation assures reliability. This@iensynchronization imposes minimal interference with the
kernel’'s normal operation, as it only involves intra-CPl&ngtions — allowing KLogger to be efficiently used in SMP
environmentk

Logging buffers are written-to sequentially, and only réam at flush time. With these memory semantics
caching does not improve performance, but quite the contiacan only pollute the memory caches. We therefore
set the buffers’ cache policy Write-CombinindWC). This semantics, originally introduced by Intel witPentium-
Pro processor [14], is intended for memory that is sequentialiften-to and is rarely read-from, such as frame buffers.
WC does not cache data on reads, and accumulates adjacts® iwrd CPU internal buffer, issuing them in one bus
burst.

5.2 Per-CPU Threads

During the boot process, KLogger spawns per-CPU kernehttwethat are in charge of flushing the buffers when
the low-water mark is reached. Although the logging operathould not disturb the logged system, flushing the
buffer to disk obviously does. To minimize the disturbandelger threads run at the highest priority under the real
time SCHEDFIFO scheduler class. This class, mandated by Posix, hasgerce over all other scheduling classes,
preventing other processes from interfering with KLoggé#hntreads.

Each thread dumps the per-CPU buffer to a per-CPU file. Tharaepfiles can be interleaved using timestamps
in the events’ headers, as Linux synchronizes the per-CRlg cpunters on SMP machines [4, 18].

Flushing the buffer might cause additional events to bedadggo the buffer should be flushed before it is totally
full. As described above, KLogger’s full buffer is split man asymmetric double buffer by the low-water parameter.
This split enables the flushing thread to safely dump the tartspof the buffer. The full four step flushing process is
described in Figure 1.

To prevent the logged data from being tainted by KLoggeua®dl events, the log is annotated when the flush
begins and finishes with two special everidJMP_BEGIN and DUMP_FINISH. The presence of these two events
in the log allows for cleaning the data from artifacts intodd by the logging function itself, further diminishingeth
Heisenberg effect.

1in fact, locking interrupts is only needed because thereviatomic “fetch and add” operation in the x86 ISA. Such an ogeccould have
further reduced the overhead
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Figure 1: The four steps of the flush operation: (1) The log buffer reaahe low-water mark and wakes up the dump
thread. (2) Thread writes the data between the beginningedlbtiffer and the current position, possibly causing new
events to be logged to the reserve part. (3) Atomically teggthe buffer’s current position (with interrupts disad).

(4) Events from the reserve part are flushed to disk, possduging new events to be logged at the beginning of the
buffer.

When KLogger is being disabled, the KLogger threads are anedtin order to empty all CPU buffers, and only
then is KLogger ready for another logging session.

5.3 Low Overhead Through Code Generation

KLogger generates specific encoding and decoding code ¢hrueser defined event, as two complementing inli@ed
functions.

The decision to generate specific code for each event, rithrruse generic code, is motivated by the desire to
reduce the overhead as much as possible. An important gaktoafger is its simple, yet powerful code generator. The
generator produces specially crafted code for each evahsiimply allocates space on the CPU’s buffer and copies
the logged data field by field. The code avoids using any takendhes or extra memory which might cause cache
misses, in order to reduce the uncertainty induced by thgimggaction as much as possible. It is optimized for the
common code path: successfully allocating space and Igghmdata without any branches. The resulting overhead
is indeed minimal, as reported in Section 7.1. Moreovehefévent is disabled the code incurs an overhead of only a
few ALU operation and one forward branch, resulting in miaimuntime interference.

Neither the code generation nor executing the event speoifie requires intervention from the user — generating
the code is an implicit part of the compilation process, arehelogging is done using the genekiogger Cmacro
which is replaced with the event-specific inlined functigrthe C preprocessor.

5.4 Extent of Changes to the Linux Kernel

Knowing the complexity of the Linux kernel, and the rate ofleevolution therein, we have tried to make KLogger's
code self contained in its own files, non-intrusive to thenkésources.

The full KLogger patch consists of about 4600 lines of codeyluich, under 40 lines modify kernel sources, and
13 modify kernel Makefiles. The rest of the patch consists lobdgger’'s own files. This fact makes KLogger highly
portable between kernel versions — the same patch can appéveral minor kernel revisions.

Moreover, KLogger only uses a minimal set of kernel constu&ernel thread creation, memory allocation,
atomic bit operations, and just a few others. As such, ppitito other operating systems should be a feasible task.

5.5 KLogger Schemata

KLogger’'s schemata are its most powerful mode of operatoschema is simply a set of complementary events, that
provide comprehensive coverage of a certain subsystenswe.id-or example, if KLogger is set up to log all kernel
interrupts, we say it is using the Interrupt Logging Schemar wn Interrupt Logging Schema is described later
on). Such schemata turn KLogger into a flexible frameworkbéng easy instrumentation of kernel subsystems and
provide a platform with which the research community cacuss and standardize the evaluation of these subsystems.
This modular design enables the evaluation of separatesiginss individually, but also as a whole.



In practice, a KLogger schema is composed of one or more agafign files, and a kernel patch incorporating the
necessary KLogger calls. Such a kernel patch is consideligtitgpatch, as it just places KLogger calls in strategic
locations. This combination gives KLogger schemata thegvané simplicity: first, it is very easy to create new
schemata, assuming one knows his way around the kernel maligh to place the KLogger calls. Second, using a
schema only involves copying its configuration files and wipigl its kernel patch.

Even though KLogger simplifies the process of evaluatingn&esubsystems, creating a new schema requires a
good understanding of the subsystem at hand, as demondiyettee process context switch example described earlier.
Similar circumstances apply to almost all the kernel sutesys. For example, the network subsystem is based on a
stack of protocols. A network researcher may want to studyark latencies, in which case she must know when a
packet was received at the Ethernet layer, submitted td*thesyer and so on, until finally the user process is scheduled
and reads the payload. While this high level understandirgough for most studies, having to find the exact places
in the network subsystem code when the described events iscani arduous task. But this task can be avoided once
the proper Klogger schema exists — hopefully even createtthdyleveloper. Note that this example involves two
subsystem — the network and the process scheduler — eaclitsvitvn intricacies and the resulting code learning
curve.

Our vision is to collect a host of schemata, created by kemetarchers and developers, incorporating their
knowledge and insights. In particular, developers of nemékfacilities just need to write a schema able to log and
evaluate their work. We believe such a collection can besal@é asset for the operating system research community.

The following sections will describe some case studieszirtiy a few of the basic schemata we designed, and
show some interesting findings and insights we have gativened using KLogger.

6 Testbed

Our case studies demonstrating KLogger’s abilities werelooted on klogger-enhanced 2.6.9 and 2.4.29 Linux ker-
nels, representing the 2.6 and 2.4 kernel series, respbctiKi_ogger was set to use a 128MB memory buffer, to avoid
buffer flushing during measurements.

Our default hardware was a 2.8GHz Pentium IV machine, equipyth 512KB L2 cache, 16KB L1 data cache,
12Kpops L1 instruction cache, and 512MB RAM. Other hardware ussgecified when relevant.

7 Case Study: Stopwatch Schema

The Stopwatchschema defines two event typeSTARTand STOR As the name suggests, it is used to measure the
time it takes to perform an action, simply by locating the ®w@nts before and after the action takes place. In fact,
when used in conjunction with the hardware performance tart can measure almost any type of system metric:
cache misses, branch mis-prediction, and instructionsyme (IPC), just to name a few.

7.1 Measuring Kernel Loggers

A good demonstration of KLogger'’s flexibility is its abilitp measure the overhead incurred by other logging tools.
We have used three interference metridisect overheadthe number of computing cycles consumed by the logging
action, and_1 andL2 cache misses estimating timelirect overheadtaused by cache pollution — a well known cause
of uncertainty in fine grained computation, and in operasipgtems in general [31].

The logging tools measured are Linux’s system log prinfirigtk [18] (whose intuitive semantics KLogger uses),
theLinux Trace Toolkit (LTT)35], a well known logging tool in the Linux community, and ligger itself. In order to
create a meaningful measurement, we needed the loggingamisaofrs to log the same information, so we implemented
a subset of LTT's events as a KLogger schema. Another pragtsiol is Sun'DTrace[8], which is an integral part
of the new Solaris 10 operating system. At the time of writihgwever, we did not have access to its source code.
Instead, we estimated its direct overhead by measuringuhear of cycles consumed by a hardware trap (which is
the logging method used in tx@6 version of Solaris). A hardware trap is also at the core ofikimKprobestool.



| Tool | Direct Overhead L1 Cache Misseg

KLogger 321+35.66 6.55+0.56
LTT 1844+1090.24 69.03t25.94
printk 4250+40.80 227.40k2.73
H/W Trap 392+1.95 N/A

Table 1: The mean overheadstandard deviation incurred by different logging fadi#j measured using ti8top-
watchschema. Direct overheads are shown in cycles, after sagitize worst 0.1% of the results for each measure-
ment and subtracting the Stopwatch events’ overhead.

Table 1 shows the results of one of the most common and simple®— checking if there is any delayed work
pending in the kernel (softirg). This event is logged at & @&t 1000Hz in the 2.6.x Linux kernel series, each time
saving just two integers to the log. To eliminate suspicioutliers we have removed the worst 0.1%%%th) of
the results for each measurement. This greatly reducedahdard deviation for all measurements, as the removed
samples contained extremely high values reflecting systeenférence. For example, the removed samples of the
H/W trap measurements — which mostly contained nestedrinies — reduced the standard deviation frdé5 to
1.9.

The table shows that KLogger incurs much less overhead teather tools: by a factor of 5 less than LTT, and
more than an order of magnitude for printk. The differendsvieen indirect overheads is even greater (we only show
L1 misses, as L2 misses were negligible for all tools). Ad¥trace, while KLogger incurs less overhead than a single
hardware trap — DTrace’s basic building block on the x86 éecture — we only see a small difference in the direct
overhead. DTrace however, is based on a virtualized envieon, so its direct overhead is assumed to be considerably
greater.

8 Case Study: Locking Schema

Modern operating systems employ fine grained mutual exatusiechanisms in order to avoid inter-CPU race condi-
tions on SMPs [3, 27]. KLoggerlecking schemds intended to explore the overheads of using inter-CPUdock

Fine grained mutual exclusion in Linux is done through twesibdusy-wait locksspinlockandrwlock [4, 18].
The first is the simplest form of busy-wait mutual exclusiwhgere only one CPU is allowed inside the critical section
at any given time. The second lock separates code that doesoaify the critical resource — @ader— from code
that modifies that resource —vaiter, allowing multiple readers to access the resource simedtasly, while writers
are granted exclusive access.

The goal of the locking schema is to measure lock contenéind,identify bottlenecks and scalability issues in
the kernel. The schema tracks the locks by the locking veermmemory address, and is composed of 5 events. The
first two are initialization eventRWINIT/SPININIT) which are logged whenever KLogger first encounters a lock —
these events log the lock’s address and name (thr@uglacro expansion). The three other eventREAD WRITE
andSPIN— are logged whenever a lock is acquired. Each log entry logéack’s address and the number of cycles
spent spinning on the lock. The lock’s memory address isdddg uniquely identify the lock, and to allow correlation
with the kernel's symbol table. This schema is the most siteias it wraps the kernel’s inlined lock functions with
macros to allow for accounting. Still, its overhead is orll% of the cycles required to acquire a free lock (let alone
a busy one).

8.1 Overhead of Locking

How many cycles are spent by the kernel spinning on locks? Mtle data is known on the matter: Bryant and

Hawkes [7] wrote a specialized tool to measure lock contenitn the Linux kernel which they used to analyze
filesystem performance [6]. Kravetz and Franke [16] focusedontention in the 2.4.x kernel CPU scheduler, which
has since been completely rewritten. A more general approas taken by Mellor-Crummey and Scott [20]. Their
goal however was to measure the time for aquiring a lock in a-Noiform Memory Architecture (NUMA). Unrau
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et al. [32] extended this work for the experimenitalrricane operating system. Both papers did not address the
overall overhead of locking on common workloads, hardwaine,operating systems. Such an evaluation is becoming
important with the increasing popularity of SMP (and the egitey multi-core) architectures both in servers and on
the desktop.

Locking is most pronounced with applications that accesseshresources, such as the virtual filesystem (VFS)
and network, and applications that spawn many processesrdbr to identify contended locks, we chose a few
applications that stress these subsystems, using vargorgels of parallelization.

e Make, running a parallel compilation of the Linux kernel. Thigdipation is intended to uncover bottlenecks in
the VFS subsystem. In order to isolate the core VFS subsystenthe hardware, compilations were performed
both on memory resident and disk based filesystems.

e Netperf, a network performance evaluation tool. We measured thesside, with multiple clients sending
communications using the message sizes in Netperf's stdrrdand-robin TCP benchmark — 1:1, 64:64,
100:200, and 128:8192, where the first number is the sizeeohtssage sent by the client, and the second is the
size of the reply. Each connecting client causes the creafi@ corresponding Netperf process on the server
machine.

e Apache the popular web server was used to stress both the netwdrtharfilesystem. Apache was using the
default configuration, serving Linux kernel source filesnfra RAM based filesystem. To simulate dynamic
content generation (a common web server configuration)filee are filtered through a Perl CGI script that
annotates the source files with line numbers. Stressing v dsing the Apache project’s oinodtool. Its
performance peaked at 117Req/s

In this case study we used the largest SMP available to usway4Pentium Il Xeon processors (512KB L2
cache), equipped with 2GB of RAM. Its network interface c@\tC) is 100Mb/s Ethernet card. The stressing clients
are a cluster of 2-way Pentium IV 3.06GHz machines (512KB a2he, 4GB RAM), equipped with 1Gb/s Ethernet
cards. KLogger was set with a 128MB buffer for each of the @esvCPUs. To verify the results obtained on this
somewhat aging hardware, we repeated all measurementaguha box with only 2 CPUs, and compared the results
with those of the modern 2-way SMP. The similarity of thessules indicate that although the processors are older,
the SMP behavior of the systems has not changed. For lackagcEspve only show the results for the 4-way SMP
hardware.

Tests consisted of running each application with diffefewels of parallelism — 1, 2, 4, 8, 16, and 32 concurrent
processes: whefy was the degree of parallelism, Make was run with {iNeflag spawningV parallel jobs, while
Apache and Netperf simply servédclients. During test execution KLogger logged all lockinvgm,ts within a period
of 30 seconds. The reason for this methodology is that theskeses locks very frequently, generating a huge amounts
of data. The 30 seconds period was set so KLogger could masiitsi buffer utilization, while avoiding flushing it
and interfering with the measurement.

Using the logged data, we aggregated the total number oéswgplent spinning on locks in the kernel, as percents
of the overall number of cycles used. The results are showigure 2.

At the highest level of parallelism, running Apache has tRP&JE spend over 20% of their cycles waiting for locks,
and both measurements of Make exceed 15% overhead. Netpeelbr, suffers from only a little more than 6%
overhead — simply because the 100Mb/s network link gets atztd.

If we focus on the point of full utilization, which is at 4 comjing processes for our 4-way SMP, we see that
Apache loses 9% to spinning. This is a substantial amoueyaés that the CPUs spend waiting.

The case of the Make benchmarks is especially interestingenNising a memory based filesystem vs. a disk
based one, we would expect better performance from the mebased filesystem, as it does not involve accessing
the slower hard disk media. But when using 4 processes, Hudtsdor both mediums were roughly the same. The
answer lies in the locking overhead: while the ramdisk badakle loses just over 3% to spinning, the disk based one
loses just over 1%. It appears time spent by processes géitirdisk data actually eases the load on the filesystem
locks, thus compensating for the longer latencies.

The next step was to identify the bottlenecks: which locksrmaost contended? It seems the cause of this behavior
in all but the Netperf example is just one lock — LinuBgy Kernel Lock(BKL).
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The BKL is a relic from the early days of Linux’'s SMP supporth@& SMP support was first introduced to the
kernel, only one processor was allowed to run kernel codeygaen time. The BKL was introduced somewhere
between the 2.0.x and 2.2.x kernel versions as a hybridispltitat will ease the transition from this earlier mondtth
SMP support, to the modern, fine grained support. Its purp@seo serve as a wildcard lock for subsystems not yet
modified for fine-grained locking. The BKL has been deemedmetmated feature for quite some time, and developers
are instructed not to use it in new code. It is still extenlsivesed, however, in filesystem code, and in quite a few
device drivers.

Figure 3 shows the portion of the BKL in the overall lock oveaid for the ramdisk based Make benchmark. Results
for the disk-based version and Apache are similar. ObwoBEKIL accounts for the lion’s share of the overhead, with
all other locks taking no more than 2% of the overall cycles] anly roughly 0.5% in the common case. In addition,
we found that the memory-based Make accesses BKL twice as aftthe disk-based one.

The picture is completely different for the Netperf benchikn@igure 4). BKL is completely missing from this
picture, as both the networking and scheduling subsystesns eompletely rewritten since the introduction of BKL,
and have taken it out of use. Instead, locking overhead iedHay the device driver lock, socket locks, and all other
locks. The device driver lock protects the driver’s privagtings and is locked whenever a packet is transmitted or
received and when driver settings change — even when thealgWED blinks. basically, this lock is held almost
every time the device driver code is executed. In fact, ibckéd more times than any other lock in the system by
a factor of almost 3. The socket locks referabthe sockets in the system, meaning at least the number ofn@inn
Netperf processes: each Netperf process owns one sockistfigire is a rough estimate of the aggregate locking
overhead caused by the networking subsystem. Both theaddxiier lock and the socket locks indicate the saturation
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of the networking link when running somewhere between 8eeting processes. All other locks in the system are
responsible for “33% of all the locking activity, peakinga&vhrunning 8 competing processes. The majority of those
cycles are spent on various process wait queues, probdatgadeo the networking subsystem. We did not, however,
find any group of locks causing the 8 process peak.

In conclusion, our measurements demonstrate the congriaibilities caused by BKL even in the recent 2.6.9
kernel, and the harmful effects of device drivers with a goeable design. This is just a simple analysis of critical
fine-grained locking mechanisms in the Linux kernel, madssjide by KLogger’s low overhead. The fact that we
immediately came by such bottlenecks only strengthenssthaaption that many more of these performance problems
are found in the kernel, but we simply lack the tools and théhadology to identify them.

9 Case Study: Scheduler Schema

The scheduler schemeonsists of 8 basic events which allow for an accurate repfgyrocess CPU consumption.
Essential information about each event is also logged. Vaets are:

1. TRY.TO.WAKEUP— some process has been awakened.

. REMOVEFROMRUNQ— a process has been removed from the run queue.
. ADD_TO_.RUNQ— a process has been added to the run queue.

. SCHEDOUT— the running process has been scheduled off a CPU.
SCHEDIN— a process has been scheduled to run.

FORK— a new process has been forked.

EXEC— theexecsystem call was called

. EXIT — process termination.

0O ~NOUTAWN

Using KLogger, creating these events is technically vesyeldowever, designing this schema and the data it logs
requires in-depth knowledge about the design and behaftbed inux CPU scheduler, as described above.

9.1 Evaluating the Scheduler's Maximal Time Quantum

KLogger’s scheduling schema can be used to empiricallyuenalaspects of the Linux scheduler’'s design. The
maximal CPU timeslice is an example of a kernel parameterias changed several times in the past few years. It
was 200ms by default in the 2.2.x kernels. The 2.4.x kerretlé $0 a default 60ms, but it could be changed in the
10-110ms range based on the process’s dynamic priorityayTdtde 2.6.x kernels set it to a value in the range of
5-800ms based omice (the static priority),with a 100ms default when nice is 0,iebhit nearly always is. When
searching the Linux kernel mailing list we failed to find amafreasoning behind these decisions.
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Figure 5: Cumulative distribution function (CDF) of the effectiveanta for the different workloads. Quantum length
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An interesting question is whether these settings mattal.atVe refer to areffective quanturas the time that
passed from the moment the process was chosen to run on agogaantil the moment the processor was given to
another process (either voluntarily or as a result of preemp In this case study, we wish to determine whether the
effective quanta of various common workloads corresporidganaximum quantum length.

Using KLogger’'s scheduling schema, determining the adegoé the maximum quanta is very simple. The
applications were chosen as representatives of a few commidoads:

e Multimedia — Playing a 45 second MPEG2 clip using the multithreadedand the single threadédPlayer
movie players. Both players are popular in the Linux comnymiith xine’s library being the display engine
behind many other movie players.

e Network — Downloading a "30MB kernel image using thwgetnetwork downloader.

e Disk Utilities — Copying a 100MB file, and usinfind to search for a filename pattern on a subtree ofiike
filesystem.

e Computation+Disk — Kernel compilation.

e Pure Computation — A synthetic CPU-bound program, continuously adding ietsgand never yielding the
CPU voluntarily, running for 60 seconds.

Measurements were run with the defaniite value, meaning a 100ms maximum time quantum on the 2.6.%Linu
kernel. We ran each application on a dedicated machine. 8huts are shown in Figure 5.

Let us first discuss the synthetic CPU-bound applicatioenetis synthetic workload only reaches the maximum
guantum in “40% of its runs, with a similar percentage noheeaching half the maximal quantum. Thus "60 %
of the quanta were shortened by some system daemon waking tine -enly background load in the system. These
interruptions hardly consumed any CPU: only 0.00675% ofditel run. They occured at an average rate of 5 times
per second. With the maximal quantum set at 100ms, at mostdd@& quanta should have been affected, contrary
to the results displayed in figure 5 which show that 60% wefectdd. The explanation is simple: an interrupted
guantum is split into at least two effective quanta (a quantan be broken down more than once), so the effect of the
noise generated by system applications is actually angblifie

As for the other workloads, it is clear that the maximum quanis almost a theoretical bound that is never
reached: "90% of the effective quanta of all applicationsNdake and the CPU-bound are shorter theni906- a
thousandth of the maximum quantum. The kernel Make is anpgiace with its 90th percentile lying at 1ms (this is
still a negligible 1% of the maximum quantum). In fact, if fot the logarithmic scaling of th& axis we would not
have been able to show any differences.

Our conclusion is that although required to prevent stasmathe actual length of the time quantum has little
importance in modern systems. The only workload affected lsyCPU-bound. It would need to be shortened by
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Figure 6:Aggregate CPU percentage utilized by each applicatiomgsliole the frame loss experienced by Xine.

more than 100 to affect other application types (regardifadat the effect would actually be), but as Linux currently
uses a 1000Hz clock (on tkk&6architecture) it cannot support a sub-millisecond quantuengthening the maximum
time quantum on CPU servers in an attempt to reduce the doswatch overhead (measured using KLogger to be
3608t1630 cycles and 14033 L1 misses) is also futile in light of the scheduling noise gaited by system daemons.
This is an example of how a consistent use of logging toolk ssd<Logger by kernel developers can help make more
informed decisions about parameter settings, adapting taeeommon workloads.

9.2 How Adding Load Can Actually Improve Performance

The advent of chip multiprocessors (CMP) and symmetricithuétading (SMT) has raised the question whether mod-
ern general purpose operating systems are capable of @adcuendling the resulting increase in software paraiali
[12]. To evaluate the adequacy of the scheduler to such wadd we used the Xine multithreaded movie player and
the synthetic CPU-bound stressors described in the pregection.

In our experiment, we ran Xine alongside an increasing nurobstressors on a 4-way, 550MHz Pentium Il
machine. The machine was chosen so that together, Xine antisbrver (the two applications involved in displaying
the movie) consume less than 100% of a single CPU'’s cycleaeler, since they are both prioritized by the scheduler
as interactive applications, assigning them to the same€fes them to compete with each other every time a frame
is to be displayed — potentially resulting in failure to degpthe frame on time. In contradistinction, when assigned
to a CPU alongside a stressor, their identification as inteeayields a priority boost over a competing stressor.

The results of this experiment are shown in Figure 6. Thisréigghows that using the default Linux scheduler
Xine's performance degrades as the load increases. Suoglyishough, this degradation is not monotonic in the
number of CPU stressors — we observe temporary performiass®f Xine when running 3 stressors, whereas
running 10 stressors results in temporary performayaie (this is consistent in repeated runs). Using KLogger’s
scheduler schema we analysed the migration patterns oiCalls, and how each CPU's cycles were allocated to the
different processes.

When running less than 3 stressors, both Xine and the X sgetea dedicated CPU each. When running 3
stressors however, the scheduler attempts to balancedtebippushing both Xine and X onto the same processor
— as each consumes less than 100% of a CPU'’s cycles — makingabmpete against each other, and leading to
degraded performance. When running 4-7 stressors the wehésl unable to balance the load and again separates
Xine and X, letting each compete with a different stressat; dince it considers both Xine and the X server to be
interactive, they both receive an interactive priorityrgajiving them priority over the co-located stressors. Nb&t
while intuitively running 7 stressors may seem similar torring only 3, that is not the case from the scheduler’s point
of view: the scheduler sees all CPUs engaged in computatiothat some imbalance is necessary. The result is that
Xine and the X server are not pushed to the same CPU, but iahgute on different CPUs with one or two stressors
— over which they have priority. Conversely, when runningsfr@ssors the same imbalance leads to a positive effect
when Xine’s threads and the X server align on different CRIdhjeving a much better performance than expected.
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recalculating priorities. Also shown are the number of kagations for each run.

This case study exemplifies how KLogger can uncover migngtigtterns in multiprocessing environments, ex-
plaining an unexpected behaviour that at a first glance mdigate that increasing the load on a multiprocessor may
actually improve performance. In fact, this result suggdisat Linux’s process scheduler might be inadequate for
non-trivial parallel workloads.

9.3 When 8 Competitors Are (Slightly) Better Than 1

During our work we needed to evaluate the effects of mulgprmming on the overall throughput of the computation.
Our testbed was the Linux 2.4.29 kernel, and the benchmartlse® was a single threaded program sorting an integer
array whose size is one half the L2 cache. Our throughputieristsimple: how many times was the array sorted
during a specified time frame? (the array was reinitializethe same random values after each sort). We expected
that this CPU-bound benchmark would achieve lower aggeatpabughput if we ran several competing copies of it,
since that would require the operating system to spend QRE din context switching (with its corresponding cache
pollution).

Our results, however, showed that throughput improved#ligvith more processors, and peaked at 8 — a "0.3%
improvement. In fact, this slight difference almost tengptes to dismiss it, but since it was consistent we decided
to check whether KLogger can help explain this discrepantsing the scheduler schema, we measured the CPU
scheduling overhead, only to find it has a U shape (Figurervjatrticular, the total time spent on context switches
(accumulating the time between SICHEDOUTevents and their immediately followir@CHEDINevents) was much
greater for the single process case than for the 8 process3@a2ms vs. 13.24ms respectively.

Unearthing the reason for this required a careful exanonaif the kernel’'s scheduling code. The 2.4.x scheduler
linearly iterates over all the runnable processes to chdusene with the highest priority. If no runnable process
exists, the scheduler iterates over all existing processeslculating their CPU timeslice [4]. When running the
benchmark with a single process this recalculation tookepkt almost every scheduling point. This is inefficient, as
it considers dozens of system daemons which are dormantohths time. With more user processes the frequency
of these recalculations was decreased, saving much ovk(bean though the number of cycles consumed by each
recalculation increased). On the other hand, the time @lealate priorities, and the time to select a runnable @E®ce
became longer — but these only grew enough to dominate thiaeaed at more than 8 processes — leading to 8 being
the sweet spot.

Both the recalculation and the process selection loops we#menated from the kernel as part of a complete
scheduler redesign [18] between 2.4.x and 2.6.x versiomd, tBis case study serves as a good example of how
KLogger was used to understand extremely fine inconsistengiresults which were initially attributed to common
system noise. Using KLogger we were able to correctly lirdsthresults to a specific design issue.
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10 Case Study: Interrupt Schema

KLogger'sinterrupt schemaneasures the start and finish of all interrupts in the systeoyding IRQs, traps, and
exceptions, as well as L1 and L2 cache misses caused by thetiogesystem code.

10.1 Operating System Noise

Noise caused by the operating system is becoming a growingeen. Interrupts, scheduling, TLB and cache con-
tention are all causes for computational uncertaintyctifig multimedia and HPC applications [13, 24, 31].

In order to characterize interrupt noise we designed a syisthpplication, based on a calibrated loop taking 1ms
on average. The only memory activity is reading the couniiigx from the stack, incrementing it, and writing it
back to the stack. This loop is repeated 1,000,000 timegikgerack of the number of CPU cycles consumed by
each repetition. We ran the application on a klogger enadlé® Linux kernel under the Posix FIFO scheduler, so
the only operating system noise that can disrupt the agjaiteg hardware interrupts.

Figure 8 shows a CDF of the repetition’s times, zooming infenitead and tail. The figure shows that over 40% of
the repetitions exceed 1ms, and about 1% of them even excemd, Ireaching a maximum of 2ms. When examining
the head we notice that more th%ﬁth of the iterations took less than 8@8 The meaning of this is that running a
specific piece of code can vary in time by a factor of over 2.3&ms vs. 1.96ms).

The only interrupts that occurred during the measuremeats the timer and network interrupts. As KLogger
and the application use the same cycle counter, we can figeafietitions that included specific interrupts and sub-
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Figure 10:The measurements of Figure 8 repeated with caches disabled.

tract them. However, Figure 8 also shows us that removingliteet overhead of these interrupts did not affect the
measurement. Where did the cycles go, then?

The solution is apparent when measuring the cache missesday the interrupts. Figure 9 shows the number
of cache misses caused by interrupts, when running the tineoth 100Hz and 1000Hz (100Hz is standard in the
2.4.x kernel), for perspective. It is clear that the numbferache misses caused by interrupts increases significantly
with the increase in timer frequency, suggesting cacheasigsght cause the 1ms loop overhead. And indeed, when
repeating the previous measurements with both the L1 andacBes disabled (Figure 10), subtracting the direct
overhead leads to consistent measurements, indicatihththaariability in the original measurements resulteahrfro
indirect overhead due to cache interference.

Identifying system noise is becoming a real problem for ferand distributed computing [24]. This case study
shows how KLogger’s tight coupling with the underlying haetde can be used to pinpoint the computational noise
generated by common operating system interrupts.

10.2 Keeping Time in the Kernel

Operating systems keep track of time using the stan82b@ programmable interrupt timgPIT). PIT has been used
with several generations of processors for over 10 years.

In principle, whenever the kernel needs the wall clock tithean simply access the 8253 through its I/O bus and
read the data. This is done from tte_gettimeofdaykernel function (of which th@ettimeofdaystem call is just a
wrapper). Reading the time from the 8253 PIT is a relativ&lyemsive operation, so Linux is optimized (on machines
which have a hardware cycle counter) to accesses the 8258ontener interrupt, and interpolate using the cycle
counter indo_gettimeofday Accessing the hardware’s cycle counter is much faster #ltaessing the 8253 PIT, so
this mode of operation limits the overhead incurred by thetBlthe number of timer interrupts per second. The two
modes, common to both the 2.4.x and the 2.6.x kernel seresadledPIT mode andr'SCmode.

Using KLogger's interrupt schema we have measured the eaerbf the timer interrupt handler in both modes,
on various generations of Intel processors. The resuligifaily presented in [11]) are shown in Figure 11. When
running the kernel in PIT mode, the timer interrupt handleeginot access the 8253 PIT. It consumes roughly the
same number of cycles over all the hardware generationts g® doverhead decreases as the hardware speed increases.
When running the kernel in TSC mode, however, the 8253 issseckfrom the timer interrupt handler. As access time
to the PIT has not changed over the years, the time consuntbeé Imandler remain roughly the same, and the number
of cycles actually grows with the increase in CPU speed [22].

Given that TSC mode is the default, the timer interrupt hanidl in fact becoming a liability — the more so as
the timer interrupt rate increases (2.4 used 100Hz, whet€asases either 100Hz, 250Hz, or 1000Hz). The TSC
optimization, aimed at reducing the overhead ofdgk#&imeofdaystem call, is actually workload dependent. It only
helps for workloads that cadlettimeofdayat a higher frequency than the kernel's timer frequency. Sihetion should
be accessing the 8253 PIT on demand, but only if it was notsaeckrecently, and interpolating if it was.

These results demonstrate why measurements and toolseatedhir kernel development. One kernel developer
changed something in the kernel (the timer frequency) bunn&@vare of its effect on another mechanism ¢h#ime-
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Figure 11:Overhead of the timer interrupt when using the TSC and PITasoblote that th& axis is log scaled.

ofdayoptimization). A simple performance measurement tool siscKLogger can help uncover such cases, allowing
for more informed design decisions.

11 Conclusions

We have presenté€l ogger, a low overhead, fine grained logging tool for the Linux keérié ogger’s prime objective

is to help analyze kernel behavior, and help researcherd@aralopers understand what is really happening under the
operating system’s proverbial hood. Such support is requiue to the increasing number of developers working on
the Linux kernel, and situations in which modules are intependent in unexpected ways.

Making efficient use of the underlying hardware featurespéder is able to achieve much finer granularity and
lower overheads than any other kernel logging tool. KLoggfeme granularity and flexibility enables it to be used
in the tightest corners of the kernel, and shed light on therating system’s nuts and bolts. Moreover, KLogger
allows devlopers to create subsystem-specific loggingsateethat can be used out-of-the-box by others. Another of
KLogger uses is for kernel debugging. Although not discdssehe case studies, it is also a very efficient debugging
tool.

Using KLogger and its schemata in our research has helpeddesrstand some interesting and sometime unex-
pected phenomena in the kernel. These case studies, wigicheabulk of this paper, both demonstrate the tool’s
abilities, and more importantly suggest some major desighlpms in the Linux kernel. We have shown how locking
issues can seriously limit the kernel’s ability to handle BSknvironments, and how both its scheduler and timing
services’ parameters are less than optimal for modern fasdw

Kernel developers and the research community should apletter understand the operating system kernels’
intricacies. We hope a tool such as KLogger would be integréto operating system development process by
having developers write performance analyzing schematdhéosubsystems they code. KLogger, its manual and the
schemata described in this paper are available for dowrdbagw.cs.huji.ac.il/labs/parallel/kloggett is our hope
kernel researchers and developers will use this tool aradesehemata for other subsystems — such as the filesystem,
network, and others — through which we can all share our Imisigbout the operating system’s kernel operation.

KLogger is currently used by a few of our research colleagigs, provide us with feedback about it interface and
capabilities. The reviews so far are very encouraging.
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