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Abstract—McCabe’s Cyclomatic Complexity (MCC) is a
widely used metric for the complexity of control flow. Common
usage decrees that functions should not have an MCC above 50,
and preferably much less. However, the Linux kernel includes
more than 800 functions with MCC values above 50, and over the
years 369 functions have had an MCC of 100 or more. Moreover,
some of these functions undergo extensive evolution, indicating
that developers are successful in coping with the supposed high
complexity. We attempt to explain this by analyzing the structure
of such functions and showing that in many cases they are in
fact well-structured. At the same time, we observe cases where
developers indeed refactor the code in order to reduce complexity.
These observations indicate that a high MCC is not necessarily
an impediment to code comprehension, and support the notion
that complexity cannot be fully captured using simple syntactic
code metrics.

Index Terms—Software Complexity, McCabe Cyclomatic Com-
plexity, Linux Kernel

I. INTRODUCTION

Mitigating complexity is of pivotal importance in writing

computer programs. Complex code is hard to write correctly

and hard to maintain, leading to more faults [16], [4]. As a re-

sult, significant research effort has been expended on defining

code complexity metrics and on methods to combine them into

effective predictors of code quality [24], [8], [25]. Industrial

testimony indicates that using complexity metrics provides real

benefits over simple practices such as just counting lines of

code (e.g. [15], [7]).

One early metric that has been used in many studies is

McCabe’s Cyclomatic Complexity (MCC) [19]. This metric

essentially counts the number of linear paths through the code

(the precise definition is given below in Section II). In the

original paper, McCabe suggests that procedures with an MCC

value higher than 10 should be rewritten or split in order to

reduce their complexity, and other somewhat higher thresholds

have been suggested by others (e.g. [22], [32], [33], [36], [6]).

In general, proposed thresholds are typically well below 50,

and there appears to be some agreement that procedures with

much higher values are extremely undesirable.

Nevertheless, in the context of a study of Linux evolution,

we have found functions with MCC values in the hundreds

[14]. This chance discovery led to a set of research questions:

1) How common are such high-MCC functions? In other

words, are they just a fluke or a real phenomenon

reflecting the work practices of many developers?

2) What causes the high MCC counts? One may speculate

that they are the result of large flat switch statements,

that do not reflect real complexity. But if other more

complex and less regular constructs are found this raises

the question of how developers cope with them.

3) Do high MCC functions evolve with time? If these

functions are “write once” functions that serve some

fixed need and are never changed, then nobody except

the original author really needs to understand them. But

if they are modified many times as Linux continues

to evolve, it intensifies the question of how do the

maintainers cope with the supposedly high complexity.

4) Does a high MCC correlate with perceived complexity?

In other words, does MCC indeed capture the essence

of complexity? What other ingredients may be missing?

5) Altogether, do the high MCC functions indicate code

quality problems with the Linux kernel?

To gain insight into these issues we analyzed the 100 highest

MCC functions in kernel version 2.6.37.5, which turn out

to have MCC values ranging from 112 to 587—way above

the scale that is considered reasonable. We also analyzed the

evolution of all 369 functions that had MCC≥100 in any of

the Linux kernel versions released since the initial release of

version 1.0 in 1994 (more than a thousand versions).

In a nutshell, we found that the most common source of

high MCC counts is large trees of if statements, although

several cases are indeed attributed to large switchs. 33% of

the functions do not change, but the others may change

considerably. About 5% of the functions exhibit extreme

changes in MCC values that reflect explicit modifications to

their design, indicating active work to reduce complexity. We

speculate that the ability to work with these functions stems

from the fact that switchs and large trees of ifs embody a

separation of concerns, where each call to the function only

selects a small part of the code for execution. On the other

hand we also observed some cases of spaghetti-style gotos,

which are not directly measured by MCC. Such observations

motivate studying alternative ways in which code structure

may be analyzed when assessing the resulting complexity.

The remainder of the paper is structured as follows. In the

next section we define MCC and review its use. Our findings

concerning the Linux kernel are described in Sections III

through V, roughly corresponding to the research questions

above, and their significance is discussed in Section VI, which

also identifies further research directions.

II. MCCABE’S CYCLOMATIC COMPLEXITY

McCabe’s cyclomatic complexity (MCC) is based on the

graph theoretic concept of cyclomatic number, applied to a

program’s control-flow graph. The nodes of such a graph are



basic blocks of code, and the edges denote possible control

flow. For example, a block with an if statement will have

two successors, representing the “then” option and the “else”

option. The cyclomatic number of a graph g is

V (g) = e − n + 2p

where n is the number of nodes, e the number of edges, and p

the number of connected components. (In a computer program,

each procedure would be a separate connected component, and

the end result is the same as adding the cyclomatic numbers

of all of them.) McCabe suggested that the cyclomatic number

of a control-flow graph represents the complexity of the code

[19]. He also showed that it corresponds to the number of

linearly independent code paths, and can therefore be used to

set the minimal number of tests that should be performed.

Another way to characterize the cyclomatic number of a

graph is related to the notions of structured programming,

where all constructs have single entry and exit points. The

control-flow graph is then planar, and the cyclomatic number

is equal to the number of faces of the graph, including the

“outside” area. McCabe also demonstrated a straight-forward

intuitive meaning of the metric: it is equal to the number of

condition statements in the program plus 1 (if, while, etc.).

If conditions are composed of multiple atomic predicates, we

could also count them individually; this is sometimes called

the “extended” MCC [23]. Note that MCC counts points of

divergence, but not joins. It is thus insensitive to unconditional

jumps such as those induced by goto, break, or return.

In principle MCC is unbounded, and intuition suggests that

high values reflect potentially problematic code. It is therefore

natural to try and define a threshold beyond which code should

be checked and maybe modified. McCabe himself, in the

original paper which introduced MCC, suggests a threshold of

10 [19], and this is also the value used by the code analysis

tool sold by his company today [20]. The Eclipse Metrics

plugin also uses a threshold of 10 by default, and suggests

that the method be split if it is exceeded [27]. VerifySoft

Technology suggest a threshold of 15 per function, and 100

per file [36]. Logiscope also uses a threshold of 15 [33]. The

STAN static analysis tool gives a warning at 15, and considers

values above 20 an error [21]. The complexity metrics module

of Microsoft Visual Studio 2008 reports a violation of the

cyclomatic complexity metric for values of more than 25 [22].

The Carnegie Mellon Software Engineering Institute defined

a four-level scale as part of their (now legacy) Software

Technology Roadmap [32]. High risk was associated with

values of MCC above 20, and very high risk with values larger

than 50. Heitlager et al. used these risk levels and suggested

a complexity rating scheme based on the percentage of LOC

falling within each risk level [12].

All the above thresholds consider functions in isolation.

VerifySoft also suggests a threshold on the sum of all functions

in the same file. The Gini coefficient, used in economics, was

used by Vasa et al. to measure the degree of inequality in

different metrics including MCC [35]. An alternative approach

is to consider the distribution of MCC values. This was

suggested by Stark et al. as the basis for a decision chart

that plots the cumulative distribution function (CDF) of MCC

values on a logarithmic scale, and if the CDF falls below a

certain diagonal line then the project as a whole should be

reviewed [34]; in brief, this line requires 20% of the functions

to have an MCC of 1, allows about 60% to be above 10, and

dictates an upper bound of 90. However, it seems that this was

not picked up by others, and using simple thresholds remains

the prevailing approach.

It should be noted that MCC is not universally accepted as

a good complexity metric, and it has been challenged on both

theoretical and experimental grounds. Ball and Larus note that

with n predicates there can be between n + 1 and 2n paths

in the code, so the number of paths is a better measure of

complexity than the number of predicates [2]. Others show

that MCC is strongly correlated with lines of code, or point

out that it only measures control flow complexity but not data

flow complexity [28], [37], [29]. There is, however, no other

complexity metric that enjoys wider acceptance and is free of

such criticisms, so MCC remains widely used. Oman’s ‘main-

tainability index’ includes MCC as one of its components [26],

and Baggen et al. used thresholds on MCC in the context

of creating a certification mechanism for maintainability [1].

Curtis et al. use a criterion of MCC above 30 to identify

‘highly complex components’, and find that MCC is one of

the four most frequent violations of good architectural or

coding practice over different languages [6]. The ‘weighted

method count’ metric for object-oriented software is usually

interpreted as the sum of the MCC over all methods in a

class. Recently, Capiluppi et al. used MCC to evaluate the

change in complexity of successive revisions of the same file

in the Linux kernel [5], and Soetens et al. used it to check

the assumption that refactoring reduces complexity [30]. Thus,

given its wide use and availability in software development and

testing environments, MCC merits an effort to understand it

better.

III. ANALYSIS OF HIGH MCC FUNCTIONS IN LINUX

When studying the evolution of the Linux kernel, and in

particular how various code metrics change with time, we

found that some Linux kernel functions have MCC values in

the hundreds [14]. Specifically, we found that the distribution

of MCC values has a heavy tail, the absolute number of

high-MCC functions is growing, but their fraction out of all

functions in Linux is shrinking. Here we focus on high-MCC

functions in version 2.6.37.5, released on 23 March 2011, as

well as on the evolution of high-MCC functions across more

than a thousand versions released from 1994 to 2011.

To calculate the MCC we use the pmccabe tool [3]. This

tool also calculates the extended MCC, i.e. it also counts

instances of logical operators in predicates (&& and | |). Our
scripts parse all the implementation files of each Linux kernel,

and collect various code metrics for functions with MCC above

100. However, in some cases the parsing is problematic. In

particular, the Linux kernel is littered with #ifdef preprocessor

directives, that allow for alternative compilations based on



 0

 100

 200

 300

 400

 500

 600

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95 100

M
C

C

function number

||
&&

case
while

for
if

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

if for while case && ||

to
ta

l 
fr

e
q

u
e

n
c
y

construct

Fig. 1. Distribution of constructs in high-MCC functions. Inset shows sums
over all 100 functions.

various configuration options [18]. As we want to analyze

the full code base and not just a specific configuration, we

ignore such directives and attempt to analyze all the code. As

the resulting code may not be syntactically valid, the pmccabe

tool may not always handle such cases correctly. Consequently

a small part (around 1%) of the source code is not included

in the analysis.

A. Statistics of High MCC

The 100 functions with highest MCC values in Linux kernel

2.6.37.5 have values ranging from 112 to 587. 76 of these

functions come from the drivers subdirectory, with others

coming from arch (8 functions), fs (9 functions), sound (3

functions), net (3 functions), and crypto (1 function).

A high MCC can be the result of any type of branching

statements: cases in a switch, if statements, or the loop

constructs while, for, and do. But in the high-MCC functions

of Linux the origin is usually multiple if statements or cases in

a switch statement, as shown in Fig. 1. These can be nested in

various ways. Somewhat common structures are a large switch

with small trees of ifs in many of its cases, or large trees of ifs

and elses. Logical operators, which can also be considered as

branch points due to short-circuit evaluation, also make some

contribution. Loops are quite rare.

Apart from the highest-MCC function, which is an obvious

outlier, the rest of the distribution shown in Fig. 1 is seen to

decline rather slowly. Indeed, in this version of Linux there

were 138 functions with MCC≥100, and 802 with MCC≥50.

Thus high MCC functions are not uncommon (albeit they are

a very small fraction of the total functions in Linux).

B. Visualization of Constructs and Nesting Structure

High-MCC functions are naturally quite long, and include

very many programming constructs. As a result, it is hard

to grasp their structural properties. To overcome this problem

we introduce control structure diagrams (CSD) to visualize the

control structure and nesting.

mxl5005s.c:MXL_TuneRF

Legend: if else switch for while
goto

Fig. 2. A function that is a largely flat sequence of ifs.

In these diagrams (for example Figure 2) the bar across the

top represents the length of the function, which starts at the

left and ends at the right. Below this the nesting of different

constructs is shown, with deeper nesting indicated by a lower

level. Each control type is represented by a different shape

and color. Each construct (except large loops) is scaled so as

to span the correct range of lines in the function. This helps

to easily identify the dominant control structures, which are

possible candidates for refactoring.

Using the CSDs we easily observe each function’s nesting

structure and regularity, which may affect the perceived com-

plexity of the code1. Some of the high-MCC functions are

relatively flat and regular. An example is shown in Fig. 2.

This function starts with many small ifs in sequence, and then

has 9 large ifs with nested small ifs, two of which have large

else blocks with yet another level of nested small ifs. Despite

the large number of ifs this function is shallow and regular

and does not appear complicated. Other functions, like that

shown in Fig. 3, include deep nesting and appear to be more

complicated.

Recall that the high MCCs observed are predominantly due

to if statements and cases in switch statements. This means

that the flow is largely linear, with branching used to select

the few pieces of code that should actually be executed in each

invocation of the function. Only a relatively small fraction of

the functions include loops, and in most cases these are small

loops. Fig. 4 shows an example of a function that had relatively

many loops, and even in this case they can be seen to be greatly

outnumbered by ifs and cases.

While most practitioners typically limit themselves to using

nested structured programming constructs, some also use goto.

The goto instruction is one that breaks the function’s structure

and decreases code readability, in particular when backwards

1More graphs are available at www.cs.huji.ac.il/˜ahmadjbara/hiMCC.htm



init301.c:SiS_EnableBridge

Fig. 3. A function with irregular ifs and relatively deep nesting.

easycap_main.c:easycap_usb_probe

Fig. 4. A function with relatively many loops.

nfs4xdr.c:nfsd4_encode_fattr

x86_emulate.c:x86_emulate_insn

Fig. 5. Examples of functions using goto.

jumps occur between successive constructs [9]. The CSD

visualizes the source and destination points of each goto and

their relative locations within the code. Fig. 5 shows examples

of two functions that use goto. In the first gotos are used

only to break out of nested constructs in case of error, and

go directly to cleanup code at the end of the function. This

is usually considered acceptable. But the second uses gotos

to create a very complicated flow of control, which is much

more problematic.

C. Correlation of MCC with Other Metrics

One of the criticisms of MCC is that it does not provide

any significant information beyond that provided by other

code metrics, notably LOC (lines of code). The claim is that

longer code naturally has more branch points, and thus LOC

and MCC are correlated. We checked this on our sample

of 100 functions, distinguishing between PLOC, the raw

number of lines, and LLOC, the non-comment non-blank lines

of code. The results are shown in Fig. 6. The Spearman’s

rank correlation coefficients are 0.340 and 0.395, respectively,

indicating a weak correlation; and in fact some functions have

a relatively low MCC but high LOC, or vice versa.

Another question is whether MCC is correlated with other

complexity metrics. As an example, we checked the correlation
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Fig. 7. Correlation of MCC with indentation and nesting.

of MCC with levels of indentation and nesting, based on the

premise that indentation reflects levels of nesting and higher

complexity [13]. Note that this has to be done carefully so

as to avoid artifacts resulting from continuation lines where

indentation does not reflect the structure of the code.

The results are shown in Fig. 7. Obviously there is almost

no correlation of MCC with the average level of indentation or

nesting in each function (verified by calculating the correlation

coefficient). This reflects our findings that high-MCC functions

could be either flat switchs and sequences of ifs, or else deep

trees of nested ifs, so high MCC can come with either high or

low nesting.

IV. MAINTENANCE AND EVOLUTION OF HIGH-MCC

FUNCTIONS

Linux is an evolving system [14]. It has shown phenomenal

growth during the 17 years till the time the kernel we studied

was released in 2011: version 1.0 had 122,442 lines of actual

code, and version 2.6.37.5 had 9,185,179 lines, an average

annual growth rate of 29%. This testifies to Lehman’s law

of “continuing growth” of evolving software systems [17].

Obviously, most of the functions in the current release didn’t

exist in the first release—they were added at some point along

the way. And there were also functions that were part of the

kernel for some time and were later removed.

A function can achieve high MCC by incremental additions,

or else a new function may already have a high MCC when

it is added. In fact, this happened in all versions as shown

in Fig. 8. (The relatively large number of new functions with

MCC above 100 introduced during the 2.6 series is due to the
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Fig. 9. Left: The distribution of the coefficient of variation of the MCC of
369 high-MCC functions. Right: Scatter plot showing relationship between
number of times the MCC changed and the degree of change as measured by
the coefficient of variation.

length of this series, which was staretd in December 2003.)

Regarding incremental growth, note that high-MCC functions

are expected to be hard to maintain. It is therefore interesting

to investigate their trajectory and check how often they are

changed. We did this for all Linux functions that achieved an

MCC of 100 or more in any version of the kernel. There were

369 such functions.

To get an initial insight about the evolution of high-MCC

functions, we calculate the coefficient of variation (CV) of

the MCC of each function in different versions of Linux. The

coefficient of variation is the standard deviation normalized by

the average. Thus if a function never changes it will always

have the same MCC, and the CV will be 0. If it’s MCC

changes significantly with time, its CV can reach a value of 1

or even more. Fig. 9 shows the distribution of the calculated

CVs. About 33% of the functions exhibit absolutely no change

in the MCC across different versions of the kernel. Note that

this does not necessarily mean that the functions were not

modified at all, as we are only using data about the MCC.

However it does indicate that in all likelihood the control

structure did not change. Another large group of functions

exhibit small to medium changes in MCC over time. Finally,
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Fig. 10. Examples of functions that exhibit significant changes over time:
vortex probe1, and st int ioctl

some functions exhibited significant changes in their MCC.

Examples are shown in Fig. 102.

The degree to which the MCC changes is only one side

of the story. In principle a very large change may occur

all at once, or as a sequence of smaller changes. Therefore

it is also interesting to check the number of times that the

MCC was changed relative to the previous version. This has

to be done carefully, because the Linux release scheme of

using production and development versions (described below)

implies that several versions may be current at the same time.

Thus when a new branch is started, its previous version is

typically near the start of the previous branch, not at its end.

Fig. 9 shows a scatter plot that compares the degree of

change with the number of changes. The correlation between

these two metrics turns out to be relatively strong, with a

Spearman’s rank correlation coefficient of 0.83. This shows

that additional changes tend to accumulate. However, despite

the rapid rate in which new releases of the Linux kernel

are made, the high-MCC functions do not change often. The

highest number we saw was a function whose MCC changed

50 times.

An especially interesting phenomenon is that sometimes

very large changes occur in production versions. The Linux

kernel, up to the 2.6 series, employed a release scheme that

differentiated between development and production. Devel-

opment versions had an odd major number and their minor

releases were made in rapid succession. Production versions,

with even major numbers, were released at a much slower

rate, and these releases were only supposed to contain bug

fixed and security patches. However, our data shows several

instances of large changes in the MCC of a function that

2In this and subsequent figures, we distinguish between development
versions of Linux (1.1, 1.3, 2.1, 2.3, and 2.5), production versions (1.0, 1.2,
2.0, 2.2, and 2.4, shown as dashed lines), and the 2.6 series, which combined
both types. These are identified only by their minor (third) number.
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Fig. 11. Examples of functions that exhibit large changes in production
versions: sg ioctl and SiS EnableBridge.
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Fig. 12. Examples of functions that exhibit a sharp drop in MCC resulting
from a design change: sys32 ioctl and usb stor show sense.

occur in the middle of a production version (Fig. 11 and

vortex probe1 from Fig. 10). At least in some of these cases

the change was done in a production version during the

interval between two successive development versions. Such

behavior contradicts the “official” semantics of development

vs. production versions.

In most functions that saw a significant change in MCC

the MCC grew. But there were also cases where the MCC

dropped as shown in Fig. 12. The largest drop is in function

sys32 ioctl. This is the function with the highest MCC ever,

peaking at 620 in the later parts of kernel version 2.2. At an

earlier time, in version 2.3.46, it had reached an MCC value of

563, but then in version 2.3.47 this dropped to 8. The reason

was a design change, where a large switch was replaced by



a table lookup [14]. A similar change occurred in function

usb stor show sense, where a large switch statement was

replaced by a call to a new function implementing a lookup

table.

However, a sharp drop in MCC value does not nec-

essarily mean a design change which yields reduced

complexity. For example, in version 2.2.14 the function

isdn tty cmd PLUSF FAX had MCC 154. In version 2.2.15 it

dropped to 3 and the original code was replaced by conditional

calls to two other new functions. One of these functions has

MCC 154 exactly as the original function, and the other has

MCC 15. Thus the high-MCC code just moved elsewhere.

There were also cases where the whole function just moved to

another location, possibly undergoing revisions in the process.

Another example is function fd ioctl trans, where the original

function had many long compound if statements with heavy

use of the or operator. In its reduced MCC version the or

operator was replaced by the bitwise or which is not counted

by the MCC metric.

The above examples may leave the impression that design

changes to reduce MCC are purely technical. However, we

also observed cases where the reduction resulted from a design

change requiring a good understanding of the logic of the

function, as the changes are small and deeply interwoven

within the code. An example of such a function is main in

versions 2.4.25 and 2.4.26. The main change in MCC resulted

from defining 13 new secondary functions ranging from 1 to

50 lines of code. While in the old version negative numbers

were used to indicate an error code when returning from a

secondary function, in the new version these numbers were

replaced by positive ones. In addition, in the old version

all exceptional cases were handled locally, whereas in the

new version the goto mechanism was used; upon exception

execution jumps to a label which is located at the end of the

function. All these changes require intimate understanding of

the function.

Another interesting phenomenon that occurred during main-

tenance was co-evolution. This occurs when two related

functions, e.g. do mathemu in /arch/sparc64/math-emu/math.c

and do one mathemu in /arch/sparc/math-emu/math.c, evolve

according to a similar pattern. In many cases this happens

because one of the functions was originally cloned from the

other. In the above example, these are analogous functions

in 32-bit and 64-bit architectures; when a large change was

implemented, it was done in both in parallel. Also, in both

cases the change that was initially done in a development

version was soonafter propagated to the contemporaneous

production version.

V. SURVEY OF PERCEIVED COMPLEXITY

The raison d’être of the definition of MCC is the desire

to be able to identify complex code, with the further goal

of avoiding or restructuring it. This is also the reason for

specifying threshold values, and requiring functions that sur-

pass these thresholds to have proper justification. But the

perceived complexity of Linux hi−MCC functions

function MCC
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Fig. 13. Scatter plot showing relationship between measured MCC and
perceived complexity. The small markings are individual grades, and the
average grade for each function is marked by a larger diamond.

switch (mod_det_stat0) {

case 0x00: p = "mono"; break;

case 0x01: p = "stereo"; break;

case 0x02: p = "dual"; break;

case 0x04: p = "tri"; break;

case 0x10: p = "mono with SAP"; break;

case 0x11: p = "stereo with SAP"; break;

case 0x12: p = "dual with SAP"; break;

case 0x14: p = "tri with SAP"; break;

case 0xfe: p = "forced mode"; break;

default: p = "not defined";

}

Fig. 14. Example of simple switch structure from log audio status.

question remains whether MCC indeed captures complexity

as perceived by human programmers.

To gain some insight into this question, we conducted a

survey of the perceived complexity of high-MCC functions.

The survey included 92 high-MCC functions that had been

identified at the time. It was based on 8 participants of a

summer Linux kernel workshop (advanced undergraduates,

some with industrial experience, but with no prior kernel

experience). The goal was to identify notions of perceived

complexity, not to quantify the actual effect of complexity.

Thus the survey was conducted in two hour-long sessions, in

which participants were required to page through each function

for one minute and then grade its perceived complexity on a

personal scale3. These scales where then linearly normalized to

the range 0 to 10, and the average grade for each function was

computed. The order in which the functions were presented

was randomized.

The results, shown in Fig. 13, indicate little correlation

between MCC and perceived complexity. In particular, some

functions with relatively low MCC (within this select set of

high-MCC functions) were graded as having either very high

or very low perceived complexity. In the following paragraphs

we focus on these extreme grades.

3This was chosen to enable them to respond to surprises. Thus if they see
a function they think is “very complex”, and later another that is even much
more complex, they can still express this.



bytes.high = 0x14;

bytes.low = j->m_DAAShadowRegs.SOP_REGS.SOP.cr4.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.SOP_REGS.SOP.cr3.reg;

bytes.low = j->m_DAAShadowRegs.SOP_REGS.SOP.cr2.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.SOP_REGS.SOP.cr1.reg;

bytes.low = j->m_DAAShadowRegs.SOP_REGS.SOP.cr0.reg;

if (!daa_load(&bytes, j))

return 0;

if (!SCI_Prepare(j))

return 0;

bytes.high = 0x1F;

bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr7.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.XOP_xr6_W.reg;

bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr5.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.XOP_REGS.XOP.xr4.reg;

bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr3.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.XOP_REGS.XOP.xr2.reg;

bytes.low = j->m_DAAShadowRegs.XOP_REGS.XOP.xr1.reg;

if (!daa_load(&bytes, j))

return 0;

bytes.high = j->m_DAAShadowRegs.XOP_xr0_W.reg;

bytes.low = 0x00;

if (!daa_load(&bytes, j))

return 0;

if (!SCI_Prepare(j))

return 0;

Fig. 15. Example of a sequence of independent ifs with the same structure,
from ixj daa write. The full function includes 113 such ifs.

The functions that were ranked as low complexity are

relatively easy to characterize. These are generally functions

dominated by a very regular switch construct, where the cases

are very small and straightforward. For example, the switch

may be used to assign error or status message strings to

numerical codes, leading to a single instruction in each case

as illustrated in Fig. 14.

In addition to these single-instruction cases, survey partici-

pants noted that long sequences of empty cases should not be

counted as adding complexity; indeed, these are equivalent to

predicates in which many options are connected by logical

or (and of the tools we surveyed, VerifySoft indeed does

not count empty cases). Furthermore, repeated use of the

same code template (easily identified using a CSD), e.g. in

a long sequence of small ifs that all have exactly the same

structure, also reduces the perceived complexity considerably.

An example is shown in Fig. 15.

if (ret_val

&& !item_pos) {

pasted =

B_N_PITEM_HEAD

(tb->L[0],

B_NR_ITEMS

(tb->

L[0]) -

1);

l_pos_in_item +=

I_ENTRY_COUNT

(pasted) -

(tb->

lbytes -

1);

}

Fig. 16. Example of excessive line breaks that seem to make the code harder
rather than easier to understand, from balance leaf.

At the other end of the spectrum, functions that received

very high grades for perceived complexity tended to exhibit

either of two features. One was the use of gotos to create

spaghetti-style code, in which target labels are interspersed

within the function’s code in different locations. An example

was shown in Fig. 5. Note that such a goto is deterministic, and

therefore not counted by the MCC metric as a branch point.

This should be contrasted with forward gotos that are used to

break out of a complex control structure in case of an error

condition. Such gotos were tolerated by survey participants

and even considered as improving structure.

The second feature that added to perceived complexity

was unusual formatting. One manifestation of such formatting

was using only 2 characters as the basic unit of indentation

(instead of the common 8-character wide tab). This led to

the code looking more dense and made it harder to decipher

the control structure. Another manifestation was the use of

excessive line breaks, even within expressions, as illustrated in

Fig. 16. These observations hark back to the work of Soloway

and Ehrlich [31], who show that even expert programmers

have difficulty comprehending code that does not conform

to structural conventions. Obviously the problem could be

avoided by using a pretty-printing routine to reformat the code,

but evidently this was not done.

VI. DISCUSSION AND CONCLUSIONS

We have shown that the practice as reflected in the Linux

kernel regarding large and complex functions diverges from

common wisdom as reflected by thresholds used in various

automatic tools for measuring MCC. This is not surprising,

as a simplistic threshold cannot of course capture all the

considerations involved in structuring the code. However, it

does serve to point out an issue that deserves more thorough

empirical research. We now turn to the implications of our

findings.

A. MCC and Linux Quality

The basic underlying question we faced was whether the

high-MCC functions in the Linux kernel constitute a code

quality problem, or maybe such functions are actually accept-

able and the warnings against them are exaggerated.



Linux provides several examples where long and sometimes

complex functions with a high MCC seem to be justified. It

is of course possible to split such functions into a sequence

of smaller functions, but this will be an artificial measure that

only improves the MCC metric, and does not really improve

the code. On the contrary, it may even be claimed that such

artificial dissections degrade the code, by fragmenting pieces

of code that logically belong together.

For example, one class of functions that tend to have very

high MCC values are those that parse the options of some

operation, in many cases the flag values of an ioctl (I/O control)

system call for some device. There can be very many such

flags, and the input parameter has to be compared to all of

them. Once a match is found, the appropriate action is taken.

Splitting the list of options into numerous shorter lists will

just add clutter to the code.

Another class of functions that tend to have high MCC

values are functions concerned with the emulation of hardware

devices, typically belonging to unavailable (possibly legacy)

architectures. The device may have many operations that each

needs to be emulated, and furthermore this needs to take

into account many different attributes of the device. Thus

there are very many combinations that need to be handled,

but partitioning them into meaningful subgroups may not be

possible.

Despite the inherent size (and high MCC) of these functions,

in many cases it may be claimed that they do not in fact

cause a maintenance burden. This can happen either because

they need not be maintained, or because they are actually not

really complex.

As we saw in Section IV, more than a third of our func-

tions exhibited no or negligible changes during the period of

observation. In some of the other functions, which had larger

changes, there was only a single large-change event. Thus most

functions actually displayed strong stability the vast majority

of the time. On average these functions do not require much

effort to maintain.

Alternatively, functions with a high MCC may not really be

so difficult to comprehend and maintain. MCC counts branch

points in the code. If the cumulative effect of many branch

points is to describe a complex combination of concerns, it

may be hard for developers and maintainers to keep track of

what is going on. But if the branching is used to separate

concerns, as in the example of handling different flag values

in an ioctl, this actually makes the code readable.

Our conclusion is therefore that for the most part the high-

MCC functions found in Linux do not constitute a serious

problem. On the contrary, they can serve as examples of

situations where prevailing dogmas regarding code structure

may need to be lifted.

B. Refinements to the MCC Metric

The observation that the MCC value of a function may not

reflect “real” complexity as it is perceived by developers has

been made before. Based on this, there have been suggestions

to modify the metric to better reflect perceived complexity.

Two previously suggested refinements are the following:

• Do not count cases in a large switch statement. This was

mentioned already in McCabe’s original paper [19], and

is re-iterated in the MSDN documentation [22].

• Also do not count successive if statements, as successive

decisions are not as complex as nested ones [11].

Both of these modifications together define McCabe’s “essen-

tial” complexity metric, leading to a reduced value that assigns

complexity only to more convoluted structures. But at the same

time McCabe suggests a lower threshold of only 4 for this

metric [20].

Generalizing the above, we suggest that one should not

penalize “divide and conquer” constructs where the point is to

distinguish between multiple independent actions. This may

include nested decision trees in addition to switch statements

and sequences of if statements. Note, however, that this refines

the simple syntactic definition, as it is crucial to ensure that

the individual conditions are indeed independent. For example,

a switch statement in which a non-empty case falls through

to the next case violates this independence, and thus adds

complexity to the code.

The above suggestions are straightforward consequences of

applying the principle of independence to basic blocks of

code. However, this does not yet imply that they lead to any

improvements in terms of measuring complexity. This would

require a detailed study of code comprehension by human

developers, which we leave for future work.

In addition, we note based on our experience with Linux

scheduling (e.g. [10]) that at least in some cases complexity

is much more a result of how the logic of the code is expressed

than a result of its syntactical structure. Thus syntactic metrics

like MCC cannot be expected to give the full picture.

C. Threats to Validity

Our results are subject to several threats to validity.

Linux uses #ifdefs to enable configuration to different cir-

cumstances. Analyzing code that contains such directives may

be problematic due to unbalanced braces. We are aware of this

and dropped files that were tagged as syntactically incorrect

by the pmccabe tool. In spite of their low percentage, these

files may contain interesting functions with high MCC values

that we may miss.

While pmccabe is a well known tool for calculating MCC

values, we found a bug in it: it counted the caret symbol (bit-

wise xor) as adding to the MCC value. We wrapped pmccabe

with code that fixed this bug, and manually confirmed the

results for selected functions. However, other bugs may exist

in this and other tools.

In assessing the evolution of high-MCC functions, we

actually rely on the MCC values. This is not necessarily right

because a function may change without affecting the control

constructs, or it may be that one construct was deleted but

another was added. Thus our counts of changes may err on

the conservative side. Our survey on perceived complexity also

suffers from a few threats. For example, grading 92 functions



within 2 hours is difficult and causes fatigue, which may affect

the grading of the last functions. Moreover, a learning effect

may also occur.

Finally, all the results are naturally only true for Linux.

Generalizations to other systems need to be checked.

D. Future Work

One avenue for additional work is to assess the prevalence

of high MCC functions. It is plausible that an operating

system kernel is more complex than most applications, due

to the need to handle low-level operations. Thus it would be

interesting to repeat this study for other large-scale support

and infrastructure software (such as compilers) and user-level

applications (such as web browsers).

Another important direction of additional research is em-

pirical work on comprehension and how it correlates with

MCC. This is especially needed in order to justify or refute the

suggested modifications to the metric, and indeed alternative

metrics and considerations, and improve the ability to identify

complex code. For example, our perceived complexity survey

identified formatting and backwards gotos as factors that

should most probably be taken into account. An interesting

challenge is to try and see whether the functions with spaghetti

gotos could have been written concisely in a more structured

manner.

Finally, in the context of studying Linux, the main drawback

of our work is its focus on a purely syntactic complexity mea-

sure. It would be interesting to follow this up with semantic

analysis, for example what happens to the functionality of high

MCC functions that seem to disappear into thin air. Thus this

study may be useful in pointing out instances of interesting

development activity in Linux. Investigating them may shed

light on the dynamics of the development process as a whole.
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