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Abstract

A major problem with time slicing on parallel machines
is memory pressure, as the resulting paging activity dam-
ages the synchronism among a job’s processes. An alter-
native is to impose admission controls, and only admit jobs
that fit into the available memory. Despite suffering from
delayed execution, this leads to better overall performance
by preventing the harmful effects of paging and thrashing.

1. Introduction

A major issue for parallel systems is how to divide the
system resources among a number of competing jobs, giv-
ing a reasonable quality of service to all the system’s users.
This allocation of resources is done by a central operating
system which runs on a host that manages the whole sys-
tem. The system scheduler determines when and on which
nodes a job will be executed.

One way of scheduling parallel jobs isgang scheduling
[10, 5]. The idea is to map the threads of a parallel job to
distinct processors, and then schedule them to be executed
simultaneously on their respective processors. Time slic-
ing is used for interactive response times, and this is coordi-
nated across the processors. Most studies find gang schedul-
ing to be very efficient.

A major drawback of current implementations of gang
scheduling is that they do not take memory requirements
into account. Today, when there is a tendency to run a com-
plete Unix operating system on every node of a parallel sys-
tem, paging can be had for free. However, such paging is
undesirable, because the paging mechanism is not synchro-
nized by nature [3]. Using it may harm the synchronization
of the parallel program’s threads. In order to avoid paging
all the program’s used address space must be memory resi-
dent.

The simplest way to prevent memory pressure is to run
only a subset of the jobs, and delay the rest until the needed
memory becomes available. The main question is whether
the queueing delay will be bigger or smaller than the delays
caused by the paging inefficiency. Our research indicates� c
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Figure 1. Data structure used to store and access
the jobs’ memory information.

that the answer is that delaying processes execution is more
efficient then running them all together, using paging.

2. Memory Usage Estimation

To use addmission controls, one has to know in advance
how much memory a job will use. This can be done in two
ways: estimation by using knowledge on previous execu-
tions of the job, or using information on the static memory
which exists in the executable file.

2.1. Using previous information

2.1.1. Identifying the job

In order to use data on previous executions of a job, first we
have to define how a job is identified; or in another words,
we have to define when two jobs are identical enough in a
way that there is a high probability they will consume the
same amount of memory. We use the following three char-
acteristics: file name (the executable path), number of nodes
the job uses, and the name of the user [7]. If we don’t have
information on previous executions of a job according to
this triple identification we can use information that exists
for partial identification of the job: path + number of nodes,
or even path only.

The data structure used to store job-related information
is shown in Figure 1. It is based on hasing the path, an array
of possible node values, and a record for each user. This
data structure’s total size (in the ParPar implementation)is
320K, where the maximum number of different job’s paths
is 2048, and the maximum number of different jobs (path +
user) is 4096.

1



2.1.2. Data collection

The memory consumption of every process is measured on
its node and then sent to the host. In principle, the mem-
ory usage of each process can be found from therusage
struct returned bywait4 after it terminates. Unfortunately,
these fields are not filled in all the versions of Unix that we
checked. Therefore we resort to reading the kernel data
structures periodically (once a second) as is done by the
top utility. Additional measurements are done immedi-
ately after a process is created, so as not to miss short pro-
cesses. As memory usage is non-decreasing, only the last
value is stored. When the process ends its run, the stored
value is sent to the host with other information about the
process and its run.

In order not to clog the system with stale data, it is neces-
sary to get rid of old information. To do so, each jobs’ mem-
ory information can be divided into two: current month in-
formation and previous month information (any other time
period can also be used). At the end of a month, the current
month data becomes the previous month data and the collec-
tion of the new month’s information is started. In case the
job hasn’t been run for two months, its entry is removed.
This way, the information that is used to estimate a job’s
memory usage is not older than two months and at least the
last month executions’ information, if such exists, is avail-
able.

2.1.3. Estimation function

The value we produce using estimations is most likely to be
inaccurate. Estimating a value too high or too low, com-
pared to the correct one, has disadvantages. A too high
value may cause a postponement of the execution of our job
or later arriving jobs due to the misconception that the avail-
able memory space is insufficient. The system resources
utilization will be damaged as a result of such an estima-
tion. On the other hand, a too low value is likely to cause
excessive paging and swapping, either because the job will
consume more memory than the nodes can supply, or be-
cause new jobs will be scheduled according to an over eval-
uation of the free memory space, which (in both cases) will
slow down the node and along with it, the whole system.

The estimation function we chose is the minimum be-
tween the maximum previous value and the average of
previous values plus 3 standard deviations. To check the
quality of the different estimation functions, we checked
their performance using a log file of 9 months (January to
September 1996, with approximately 50000 jobs) activity
on the LANL CM-5. We predicted the memory size of every
job according to previous similar executions and compared
this with the actual usage.

The results are shown in Figure 2. We divided the jobs
into buckets, according to the difference between the pre-
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Figure 2. Quality of estimation function (note the
split linear scale).

dicted value and the real value. The left graph is a histogram
of the number of jobs in each bucket (they axis) where thex axis shows the absolute difference between the predicted
values and the real values; each bucket has a range of 1MB.
In the second graph thex axis shows the differences be-
tween predicted and the real memory size as a percentage
of the real size, and the range of each bucket is 50 percent-
age points. Observing the graphs, we can see that a high
number of jobs concentrated near 0 indicating very good
predictions. In about 87% of the jobs the absolute differ-
ence is smaller then 5MB, and in 70% of the jobs the abso-
lute difference is smaller then 1MB. We can also see there
are less jobs on the negative part of the graph, where the
estimated value is lower than the real value (this happened
to only 6% of the jobs).

2.2. Static memory information

We don’t always have information from previous runs.
The alternative is to find static information from the exe-
cutable. Every executable file ina.out [1] format contains
in its beginning a struct with compiler-known information
on the executable. This includes information about the sizes
of the text segment, the data segment, and the bss.

To check the accuracy ofa.out data as a predictor of
the program memory usage, we measured the actual mem-
ory usage of processes and compared it with theira.out
information. We measured three different classes of pro-
cesses:� Students’ programsgave very poor results: the static

memory size depended on the student’s course rather
then on the actual memory size. This is probably be-
cause most of the programs were written in C++, and
therefore included lots of dynamic allocations.� System utilities(applications like: netscape, csh, latex
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etc.) gave a better correlation.� Scientific programs, represented by the SPEC bench-
mark programs, showed a strong connection between
the static memory and the actual memory. However,
it should be remembered that the results from the pre-
vious section indicate that in real parallel systems the
situation is not so rosy — if jobs always used the exact
amount of memory indicated in their executable, the
predictions would always be perfect.

3. Scheduler Implementation

The idea of queueing jobs that do not have enough mem-
ory available was implemented in the framework of the
ParPar system [4]. This section first describes the system,
and then the implementation of the memory considerations.

3.1. The ParPar system

The ParPar prototype cluster is built from 17 PCs: A
host and 16 nodes. The PCs have an Intel Providence moth-
erboard with a Pentium Pro 200 processor, 64 MB DRAM,
and a 2.1 GB SCSI disk. The nodes are connected by two
independent networks. One is a switched Ethernet which
serves as a control network, using the conventional TCP/IP
protocol and a reliable multicast protocol developed locally
[8]. The other network is a 1.28 Gb/s Myrinet dedicated to
the users’ applications communication using MPI over FM
[11].

The ParPar software is based on the Unix BSDI system,
and runs at user level. It includes daemons which run on the
host (masterd) and on the nodes (noded), and graphical user
interfaces for each running job (job rep). In addition there
are the processes (sprocs) which make up the parallel jobs
(xprocs) which are executed by the system.

The job scheduling we are concerned with is done by the
masterd.

3.2. Adding memory considerations to scheduling

The ParPar system uses gang scheduling, combining
time slicing with space slicing. The main idea is that the
processes of a parallel job are mapped to distinct processors,
and are then scheduled to execute simultaneously on their
respective processors. The mapping of processes to pro-
cessors uses Ousterhout’s matrix algorithm, where columns
represent nodes and rows are scheduling slots [10]. Packing
of jobs into slots is done using a buddy system, as in the
Distributed Hierarchical Control scheme [5, 6]. This uses a
tree of controllers that preside over nested groups of power-
of-two processors.

After we estimated the memory size of a job, we need
to add this information to our scheduling decisions. The
original gang scheduling algorithm considers only the load
factor — the number of running processes on a node. It

selects the least loaded controller such that a time slot exists
in which all the controller’s nodes are free. To add memory
load considerations, we also check that each of these nodes
satisfiespro
 mem � (node0s phys mem)�C�used mem (1)

WhereC is a constant bigger then 0.C limits the maximum
used memory, and is expected to be near unity.

If there are not enough nodes with sufficient memory, the
job will be pushed into a queue until the required memory
will be available, or until the system total load will be zero
(to make it possible to run processes which consume more
then the initial total memory).

When a job finishes its execution the queue is scanned
for the first job that can be executed, i.e. there are enough
nodes with enough available memory (more or equal to its
estimated memory usage) to execute all its processes. This
procedure is repeated until there is not enough memory to
run any additional jobs. To avoid starvation a job in the
queue cannot be skipped more then 15 times. If a job was
skipped 15 times no job will be executed until this job will.

The queue and its management already existed in the
ParPar system. The memory considerations full implemen-
tation was added to the ParPar resource management mod-
ule, in the function that chooses the controller and slot.

4. Experimental Results

In order to check the efficiency of these ideas, we com-
pared the system performance with and without our im-
provements. We checked the effect of memory pressure on
performance, comparing the influence of different degrees
of memory pressure. In cases of lack of available memory
space, a major factor that influences the system performance
is the locality of the program’s memory accesses. Therefore
we ran programs with several locality levels.

4.1. Workload

Our workload was composed of synthetic applications
that were executed on the ParPar system. This is not a sim-
ulation but a real execution of multiprocess jobs. Thus all
the paging effects are real and measured directly, and we do
not need to model them.

We chose to use synthetic programs instead of existing
benchmarks for several reasons. The main reason is a desire
to check very specific issues. The behavior of real programs
is influenced by lots of factors. Using synthetic programs
lets us restrict the influence of irrelevant factors and limit
the checking to issues that interest us. Another reason not
to use benchmarks is that there are no agreed benchmarks,
especially for memory usage.

The programs we created use lots of memory, enough to
cause memory pressure by executing only a small number
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Figure 3. The spread of 90909 random accesses
with low and high degrees of locality.

char mem[K*RANGE];

for (i=0 ; i<max ; i++) f
randint = random();
r = ((double)randint) / maxrand;
jump = pow( r, theta );
if (randint & 0x01)

jump = -jump;
addr += jump;
intaddr = (int)addr;
intaddr = intaddr % RANGE;
if (intaddr < 0)

intaddr += RANGE;
intaddr *= K;
mem[intaddr] = intaddr % 200;g

Figure 4. The code of the program that was used in
the experiments. max and theta are arguments.

of jobs. The programs also have a varying degree of locality
based on the fractal model [13]. According to this model,
the dynamic behavior of a program can be modeled as a
one-dimensional fractal random walk. A program’s mem-
ory accesses are simulated by generating random numbersX(t), whereX(t) indicates the jump from the address ac-
cessed at timet to the address at timet+1. The distribution
of X(t) is given by:Pr[X(t) > u℄ = Bu��
Wheret is the virtual time marked by the ticks of the ac-
cesses to memory,B is a normalizing constant (we choseB = 1) and� is the locality degree of the program’s mem-
ory accesses and satisfies1 � � � 2. � = 1 produces the
lowest locality and� = 2 produces the highest locality. Fig-
ure 3 shows the spread of 90,909 random accesses, when�
= 1 and when� = 2.

Figure 4 shows the main part of the code of the program.
The program uses a static array of 10MB. To ensure that this

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

to
ta

l e
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

number of processes (10MB each)

theta = 1.5, no mem limit
theta = 2, no mem limit

theta = 1.5, 100% mem used
theta = 2, 100% mem used

theta = 1.5, 150% mem used
theta = 2, 150% mem used

Figure 5. Execution time as a function of number of
processes, for different combinations of memory
pressure and locality level.

whole range is covered when� = 2, about 100000 accesses
are needed. Thereforemax is a multiple of this number.
In each iteration, the program produces a random jump and
accesses an array cell on the K multiple of the new address
(previous address + jump). The size of the jump depends
on �. When� = 2 (the highest locality) 94% of the jumps’
sizes are less than 4. Two successive memory accesses with
such a jump will be within a range of 4K, thus in a range of
a page. When� = 1 (the lowest locality), only 75% of the
jumps’ sizes are less than 4.

4.2. Memory load and locality

The first experiments used a static workload on a reduced
version of the ParPar: masterd and two nodeds.

The first experiment was run once without limiting the
memory pressure, and again when limitating the memory
load to 100% and 150% (this limit isC from Equation 1).
We considered all the non-kernel memory as our free mem-
ory. This size is exaggerated, because apart from the nod-
eds and sprocs some other system processes also run there.
These processes’ memory usage can reach up to 20% of
the non-kernel memory. The size of the main memory of a
node machine is 64MB. About 55MB of it is the non-kernel
memory, and about 45MB of those 55MB are actually free.

We measured the execution time of different numbers of
jobs from 5 jobs till 50. Every job runs on two nodes. Ev-
ery instance of the job used 10MB of memory space on each
node. Thus, the available memory on a node can contain 4
jobs at most. The experiment was repeated several times
with different degrees of locality of memory accesses. Fig-
ure 5 shows 6 different graphs, one for each combination
of memory pressure and locality level. The graphs show
execution time as a function of number of jobs (which cor-
relates with memory pressure).

From Figure 5 it can be seen that when the memory pres-
sure is limited by our mechanism the graph is linear. When
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Figure 6. Execution time as a function of locality
level, for different memory pressures.

there is no memory limit, the graph’s gradient grows super-
linearly with the number of jobs. It also can be seen that
the locality degree has a big influence on the results when
the system uses more memory than available. The most im-
portant result is that for a given� the run time of the jobs is
consistently smaller when the improved version of the sys-
tem is used, that is, when the maximum used memory is
limited and the jobs are put in a queue until enough mem-
ory becomes available (in contrast to the case when the used
memory is not limited and the UNIX operating system has
to deal by itself with the memory overload).

In another experiment we investigate the interaction of
the locality level with different limitations on the maximum
memory pressure, from 80% till 200% (as explained above,
the size we refer to is the initial free memory, which might
be 20% higher then the actual size, so 80% is roughly the
actual free memory). We measured the execution time of
50 jobs at each locality level. Each job runs on two nodes,
and every instance of the job uses 10MB of memory space.
Figure 6 shows different graphs for the different memory
pressures. Each graph shows execution time as a function
of locality (theta).

From Figure 6 it can be seen that low locality coupled
with a high degree of memory overallocation causes long
execution times. On the other hand, if either locality is high,
or memory is not overallocated, the jobs’ runtime remains
low.

4.3. Paging vs. queueing

In the experiments described above, all the jobs are run
together and every one of them uses all the nodes in the
system. Thus, the system is fully used all the time. Under
these conditions, the influence of memory management on
job scheduling is not checked, and a possible delay in the
execution of jobs is not brought into consideration. Such a
delay can damage the scheduling and decrease the system
performance.
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Figure 7. Average response time and average slow-
down as a function of load, for different locality
degrees.

We therefore also checked the efficiency of our ideas un-
der more realistic conditions — on a system where the ar-
rival time, the number of nodes, and the run time of the jobs
change. We used the full size system: masterd + 16 nodeds.
We ran 1000 jobs of 10MB each. The distributions of the
run times, numbers of nodes, and arrival times were based
on the workload model developed by Uri Lublin [9]. We
checked different degrees of locality in memory accesses.
The experiment was repeated for different loads, once when
the memory load was not limited and once with limitation
of memory load to 100% of the real memory. The system
load is defined as:load = avg run time� avg node numavg interarrival time� total nodes

The results are presented in figure 7. The graphs present
average response time and average slowdown as a function
of system load. Response time is the total time the job spent
in the system, from its arrival time till its execution is com-
pleted (including the time it spent in the queue). Slowdown
is the ratio of actual run time (response time) to expected
run time.

As can be expected, when the system is run without lim-
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iting memory load, there is a critical load at which it be-
comes saturated and cannot handle the job stream any more.
If programs have a high degree of locality, this happens at a
higher load.

Limiting the memory load consistently decreases the re-
sponse time. The slowdown on the other hand, is highest
when the maximum memory load is limited. The reason for
these high values is a high slowdown of short jobs which
are forced to wait in the queue. The percentage of queued
jobs starts to grow when the load becomes more than 0.5,
and reaches 80% when the load is 0.8.

5. Conclusions and Future Work

Thrashing by nature damages the performance of a sys-
tem, but for a system that runs parallel jobs the damage is
much worse. The main question we faced was how to add
memory considerations to the system’s scheduler, which
would prevent thrashing and also would not harm the sys-
tem’s utilization.

Our solution was to estimate the memory usage of newly
arrived jobs, using information on their previous runs or on
their static memory consumption. A job is executed only on
a node that has enough available memory for its estimated
memory usage. If there are not enough nodes that fulfill this
demand for all the job’s processes, the job is inserted into a
queue until the needed memory will be vacated.

This idea was fully implemented on the ParPar testbed.
Experimental results showed that the system performance
improved significantly. When the maximum memory load
of the system was not limited the system couldn’t stand high
loads and thrashed. Limiting the maximum memory load
prevented the thrashing and the system managed to handle
higher loads. The best performance was obtained when the
maximum used memory was exactly the available physical
memory. These results show that our technique of adding
memory considerations is efficient and can significantly im-
prove the system performance.

Still, there is further work to be done. The biggest dis-
advantage of our proposed method is not specifically han-
dling limitation of the time short jobs wait in the queue. The
slowdown of a job depends on the relation between its pure
run time and the whole time it spends in the system, includ-
ing the time it spends in the queue. There are two possible
solutions to limit the queue wait time:

1. To use swapping. If a job runs for too long time we can
swap it out and load other job, which might be shorter
[2].

2. To add run time considerations to the scheduler simi-
larly to the memory considerations [7], and give prior-
ity to short jobs.

Another improvement to our work can be handling very
big jobs whose memory usage was underestimated. Such

processes can thrash the system. These jobs should be de-
tected, swapped out of memory and their memory usage
should be re-estimated.
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