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Abstract

Many scientific and high-performance computing applications consist of multiple pro-
cesses running on different processors that communicate frequently. Because of their syn-
chronization needs, these applications can suffer severe performance penalties if their pro-
cesses are not all coscheduled to run together. Two common approaches to coscheduling
jobs are batch scheduling, wherein nodes are dedicated for the duration of the run, and
gang scheduling, wherein time slicing is coordinated across processors. Both work well
when jobs are load-balanced and make use of the entire parallel machine. However, these
conditions are rarely met and most realistic workloads consequently suffer from both in-
ternal and external fragmentation, in which resources and processors are left idle because
jobs cannot be packed with perfect efficiency. This situation leads to reduced utilization and
suboptimal performance. Flexible CoScheduling (FCS) addresses this problem by monitor-
ing each job’s computation granularity and communication pattern and scheduling jobs
based on their synchronization and load-balancing requirements. In particular, jobs that do
not require stringent synchronization are identified, and are not coscheduled; instead, these
processes are used to reduce fragmentation. FCS has been fully implemented on top of the
STORM resource manager on a 256-processor Alpha cluster andcompared to batch, gang,
and implicit coscheduling algorithms. This paper describes in detail the implementation
of FCS and its performance evaluation with a variety of workloads, including large-scale
benchmarks, scientific applications, and dynamic workloads. The experimental results show
that FCS saturates at higher loads than other algorithms (upto 54% higher in some cases),
and displays lower response times and slowdown than the other algorithms in nearly all
scenarios.

Keywords: Cluster computing, load balancing, job scheduling, gang scheduling, parallel
architectures, Flexible coscheduling

1. Introduction

Clusters of workstations are steadily growing larger and more prevalent. Although clus-
ter hardware is improving in terms of price and performance,cluster utilization remains
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poor. Load imbalance is arguably one of the main factors thatlimits resource utilization, in
particular in large-scale clusters [5]. Load imbalance canhave a marked detrimental effect
on many parallel programs. A large subset of high performance computing (HPC) software
can be modeled using the bulk-synchronous parallel (BSP) model. In this model a compu-
tation involves a number ofsupersteps, each having several parallel computational threads
that synchronize at the end of the superstep [6, 13, 23]. A load imbalance can harm the
performance of the whole parallel application because eachthread of computation requires
a different amount of time to complete, and the entire program must wait for the slowest
thread before it can synchronize. Since these computation/synchronization cycles are po-
tentially executed many times throughout the lifetime of the program, the cumulative effect
on the application run time and the system resource utilization can be quite high [20].

Load imbalance has three main sources: application imbalance, workload imbalance, and
heterogeneity of hardware resources. Application load imbalance occurs when different
parallel threads of computation take varying times to complete the superstep. This can
occur either as a result of poor programming, or more typically, because of a data set that
creates uneven loads on the different threads.

Even when one is using well-balanced software, load imbalances can occur. They occur,
for instance, when the compute nodes are not entirely dedicated to the parallel computation
because they are also being used for local user- or system-level programs, or because the
resource management system cannot allocate an even workload to all processors. This
uneven taxing of resources creates a situation in which someparts of the parallel program
run slower than others, and a load imbalance occurs [20].

Load imbalance can also be generated by heterogeneous architectures in which different
nodes have different computational capabilities, different memory hierarchy properties, or
even a different number of processors per node. Two examplesof such situations are grid
computing and HPC systems that accrue additional processing nodes over a period of time,
thus taking advantage of technological improvements.

The traditional approach to tackling load imbalance is at the application level: the pro-
grammer tries to balance the resources by changing the structure of the parallel program.
This approach is usually time-consuming and yields diminishing returns after an initial
phase of code restructuring and optimizations. In fact, there are some problems that are
inherently load-imbalanced. This approach is also not economically feasible with legacy
codes. For example, the Accelerated Strategic Computing Initiative (ASCI) program [25]
invested more than a billion dollars in recent years in parallel software.

An alternative approach is to attack load imbalance at the run-time level. Rather than
optimizing a single parallel job, we can coschedule (time-slice on the same set of proces-
sors) multiple parallel jobs and try to compensate for the load imbalance within these jobs.
This approach is also better suited to handling complex workloads and/or heterogeneous
architectures. Ideally, we would like to transform a set of ill-behaved user applications into
a single load-balanced, system-level workload. This approach has the appealing advantage
that it does not require any changes to existing parallel software, and it is therefore able
to deal with existing legacy codes. For example, coscheduling algorithms such as Implicit
CoScheduling (ICS) [3], Dynamic CoScheduling (DCS) [21] orCoordinated CoScheduling
(CC) [4] can potentially alleviate load imbalance and increase resource utilization.1 How-
ever, they are not always able to handle all job types becausethey do not rely on global

1These algorithms are distinguished by the location at whichthe coordination is inferred: at sender side,
receiver, or both, respectively.



coordination. On the other hand, global resource coordination and job preemption can have
a significant cost, if they are implemented using only software mechanisms [12, 17].

In this paper, we show that it is possible to increase the resource utilization in a cluster
of workstations substantially and to perform system-levelload balancing effectively. We
introduce an innovative methodology called Flexible CoScheduling (FCS), that can dynam-
ically detect and compensate for load imbalance. Dynamic detection of load imbalances is
performed by (1) monitoring the communication behavior of applications, (2) defining met-
rics for their communication performance that attempt to identify possible load imbalances,
and (3) classifying applications according to these metrics. On top of this, we propose
a coscheduling mechanism that uses this application classification to execute scheduling
decisions. The scheduler strives to coschedule those processes that require coscheduling,
while scheduling other processes to increase overall system utilization and throughput. This
approach does not alleviate the specific situation of an application that suffers from load im-
balances. Obviously, any given application receives the best service when running by itself
on a dedicated set of nodes. However, the proposed approach will prevent each job from
wasting too many system resources, and the overall system efficiency and responsiveness
will be improved, which, in turn, lowers the single application’s waiting time.

We demonstrate this methodology with a streamlined implementation on top of STORM
(Scalable TOol for Resource Management) [9]. The key innovation behind STORM is a
software architecture that enables resource management toexploit low-level network fea-
tures. As a consequence of this design, STORM can enact scheduling decisions, such as a
global context switch or a heartbeat, in a few hundreds of microseconds across thousands of
nodes. Thus, STORM avoids much of the nonscalable overhead associated with software-
only versions of gang scheduling. An important innovation in FCS is the combination of a
set of local policies with the global coordination mechanisms provided by STORM in order
to coschedule processes that have a high degree of coupling.

In preliminary work, we presented initial benchmark results for FCS running on a cluster
of Pentium-III machines [8]. This paper extends that work with new experiments on a
larger experimental platform and with new metrics, and using more realistic applications
and workloads. Additionally, FCS was further tuned and simplified and provides better
performance results. In the experimental section, we provide an empirical evaluation, which
ranges from simple workloads that provide insights on several job scheduling algorithms to
experiments with real applications representative of the ASCI workload.

2. Flexible CoScheduling

To address the problems described above, we propose a novel scheduling mechanism
called Flexible CoScheduling (FCS). The main motivation behind FCS is the improve-
ment of overall system performance in the presence of load imbalance, gained by using
dynamic measurement of applications’ communication patterns and classification of ap-
plications into distinct types. Some applications strictly adhere to the BSP model with
balanced, fine-grained communications. Others deviate from this model because of little
communication or inherent load imbalances. We can therefore restate FCS’ goal as iden-
tifying the proper synchronization needs of each application and process and trying to op-
timize the entire system’s performance while addressing these needs. FCS is implemented
on top of STORM [9], a tool that allows for both global synchronization through scalable
global context-switch messages (heartbeats) and local scheduling by a dæmon run on ev-
ery node (based on its locally-collected information). User-level as opposed to kernel-level
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Figure 1. Decision tree for process classification

scheduling incurs some additional overhead but eliminatesthe need to communicate fre-
quent scheduling information to the kernel [2].

2.1. Process Classification

FCS employs dynamic process classification and schedules processes using this class
information. Processes are categorized into one of three classes (Figure 1):

1. CS (coscheduling): These processes communicate often, and must be coscheduled
(gang-scheduled) across the machine to run effectively, because of their demanding
synchronization requirements.

2. F (frustrated): These processes have enough synchronization requirements to be
coscheduled, but because of load imbalance, they often cannot make full use of their
allotted CPU time. This load imbalance can result from any ofthe reasons detailed in
the introduction.

3. DC (don’t-care): These processes rarely synchronize and can be scheduled indepen-
dently without penalizing the system’s utilization or the job’s performance. For ex-
ample, a job using a coarse-grained workpile model would be categorized asDC.
We include inDC also the processes of a fourth class,RE (rate-equivalent).RE is
characterized by jobs that have little synchronization, but require a similar (balanced)
amount of CPU time for all their processes. Since detection of REprocesses cannot
be made in run-time with local information only, they are classified asDC instead,
due to their low synchronization needs.

Figure 1 shows the decision tree for process classification.Each process is evaluated at
the end of its time slot.2 If a process communicates at relatively coarse granularity, it is
either aDC or REprocess and classified asDC. Otherwise, the process is classified accord-
ing to how effectively it communicates when coscheduled. Ifeffective, it is aCSprocess.
Otherwise, some load imbalance prevents the process from communicating effectively, and
it is consideredF. To estimate the granularity and effectiveness of a the communication of a
process, we modified the MPI library so that blocking communication calls take time mea-
surements and store them in a shared-memory area, where the scheduling layer can access
them. Only synchronous (blocking) communication calls aremonitored, since nonblocking

2In strict gang scheduling, each job is assigned a dedicated time slot and can only be run in that slot. FCS
also assigns a time slot to each job, but local scheduling decisions can cause the job to run in other time slots
as well, possibly sharing them with other jobs. We call the original time slot to which a process is mapped the
“assigned time slot.”



communications do not require tight synchronization and need not affect scheduling. (Thus
a call to MPI_Isend() is nonblocking, but MPI_Wait() is considered blocking.)

Processes of the same job will not always belong to the same class. For example, load
imbalance or system heterogeneity can lead to situations inwhich one process needs to wait
more than another. To allow for these cases and to avoid global exchange of information,
processes are categorized on an individual basis rather than per-job.

This classification differs in two important ways from a similar one suggested by Lee et
al. [14]. First, we differentiate between theCSandF classes, so that even processes that
require gang scheduling do not tax the system too much if heterogeneity prevents them from
fully exploiting coscheduling. Second, there is no separate class forRE applications.RE
applications are indistinguishable (from the scheduler’spoint of view) fromDC processes,
and they are scheduled in the same manner. The classificationalso differs from the one
suggested by Wiseman [24], which is based on CPU utilizationand is done at the job rather
than the process level.

2.2. Scheduling

The scheduling principles in FCS are as follows:

• CSprocesses are always coscheduled and should not be preempted.

• F processes need coscheduling but are preempted if synchronization is ineffective.

• DC processes impose no restrictions on scheduling.

The infrastructure used to implement this scheduling algorithm (STORM) is based on an
implementation of conventional gang scheduling [9]. A single systemwide manager, the
machine manager dæmon (MM), packs the jobs into an Ousterhout matrix. It periodically
sends multi-context-switch messages to the node manager dæmons (NM), instructing them
to switch from one time slot to another. A crucial characteristic is that the node managers
are not obligated to comply. They are free to make their own scheduling decisions based on
their local measurements and classifications.

Algorithm 1 shows the behavior of the node manager upon receipt of a multi-context-
switch message. The basic idea is to allow the local operating system the freedom to sched-
ule DC processes according to its usual criteria (fairness, I/O considerations, etc.), as well
as to useDC processes to fill in the gaps thatF processes create because of their synchro-
nization problems. AnF process that waits for pending communication does not block
immediately, but rather spins for some time to avoid unnecessary context-switch penalties,
as in ICS [3].

This scheduling algorithm represents a new approach to dynamic coscheduling methods,
since it can benefit both from scalable global scheduling decisions and local decisions based
on detailed process statistics. Furthermore, it differs from previous dynamic coscheduling
methods like DCS [21] and ICS in that:

1. A CS process in FCS cannot be preempted before the time slot expires even if a
message arrives for another process. (Processes classifiedasCShave shown that it
is not worthwhile to deschedule them in their time slot, because of their fine-grained
synchronization.) Blocking events therefore do not cause yielding of the CPU.

2. The local scheduler’s decision in choosing among processes in theDC time slots
andF gaps is affected by the communication characterization of processes, which



Algorithm 1: Context switch algorithm for FCS

// context_switch: switch from one process to another process
// Invoked for each processor by a global multi-context-switch
procedure context_switch (current_process, next_process)
begin
if current_process == next_process then return
if type of next_process is CS then
suspend whatever is running on this PE
run next_process for its entire time slot
use polling for synchronous communications

else
resume DC and F processes belonging to this PE
let local OS scheduler schedule all processes
use spin-blocking in synchronous communications
if next_process is of type F

prioritize it over all other processes.
end

end

could lead to less-blocking processes and higher utilization of resources. Another
improvement over the work presented in [8] is thatCSprocesses are no longer allowed
to run in theF slots. Empirical evaluation has shown that this sharing typically results
in worse overall performance. This is probably because bothcompeting processes are
essentially fine-grained and cannot run both well at the sametime, while on the other
hand, context-switch and cache-flushing issues degrade their performance.

2.3. FCS Parameters

There are three types of parameters used in FCS:

• Process characteristics measured by the MPI layer, summarized in Table 1. (The “re-
set” mentioned in the table is either a class change or a predetermined age expiration.)

• Parameters measured or determined by the scheduling layer,also detailed in Table 1.

• Algorithm and run-time constants, shown in Table 2.

Measurements are taken whenever a process is running. For highly synchronized pro-
cesses, we have verified that processes typically make progress only in their assigned slots,
so the measurements indeed reflect their behavior when coscheduled. For other processes,
the assigned slot does not have a large effect on progress, except possibly forF processes
that get a higher priority in their slot. ForDC andF processes, the assigned time slot is
used mainly to track the age of a process using thecslots andtslots counters.

Following are some of the considerations that led us to choose the values in Table 2:

• Tslice was chosen to be low enough to enable interactive responsiveness and high
enough to have no noticeable overhead on the applications asmeasured in [7].

• Tspin was chosen to be high enough to accommodate twice the averagecommunica-
tion operation (in our setup,≈ 60 us [19]) and low enough so that resources are not
wasted unnecessarily.
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Table 1. FCS parameters

Name Description Value

Tslice Time slice quantum 100 ms

Tspin Spin time for spin-block communications 120 µs

cslotsMIN Minimum value ofcslots for process to be evaluated for a class change20
DCthresh DC granularity threshold: above this value process isDC 1s
CSthresh CSgranularity threshold: below this value process isCS 2 ms

Fthresh
threshold of computation granularity to identify processes waiting for 0.85 × CSthres

communication asF
tslotsMAX Maximum value oftslots, after which a reset to classCS is forced 32768

Table 2. FCS constants and values used in experiments.

• cslotsMIN should allow enough time for some initializations to occur,but without
overly delaying proper classification.

• For CSthresh it was found that proper classification has the most effect for processes
with a granularity finer than≈ 5 ms on this architecture.

All constants, and the last two in particular, were found by careful tuning and testing on
all our hardware and software combinations to offer good average performance across the
board [7, 9].

2.4. Characterization Heuristic

Algorithm 2 shows how a process is reclassified. This algorithm is invoked for every
process that has just finished running in its assigned time slot, so this happens at determin-
istic, predictable times throughout the machine. Thus, when the time to reset a process to
classCSarrives, it is guaranteed that all the processes of the same job will be reset together.
(Otherwise they might not actually be coscheduled.)

The algorithm can be illustrated with the phase diagram shown in Figure 2. Recall that
the granularityg is defined as the average time per iteration, which is the sum of the average



Algorithm 2: Classification function for FCS

// re-evaluate, and possibly re-classify the process
// using FCS parameters and measurements
procedure FCS_reclassify
begin

old_class = class

if cslots < cslotsMIN

return // Not running long enough in current class
if tslots mod tslotsMAX == 0 OR g < CSthresh

class = CS // Reset or change class back to CS
else if g < DCthresh AND Tcpu < Fthresh

class = F // Communication too slow
else class = DC // Coarse granularity

if class ! = old_class

cslots = 0

end
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Figure 2. Phase diagram of classification algorithm

computation and communication times. Therefore, constantgranularity is represented by
diagonals from upper left to lower right.CSprocesses occupy the corner near the origin,
whereasDC processes are those that are far from this corner.F processes are those that
should be in the corner because of their lowTcpu, but suffer from a relatively highTcomm.

2.5. Implementation Framework

We have implemented FCS and several other scheduling algorithms in STORM [9], a
scalable, flexible resource management system for clusters, implemented on top of various
Intel- and Alpha-based architectures. STORM exploits low-level collective communica-
tion mechanisms to offer high-performance job launching and management. As mentioned
above, the basic software architecture is a set of dæmons, one for the entire machine (ma-
chine manager, or MM), and an additional one for each node (node manager, or NM). This
architecture allows the implementation of many schedulingalgorithms by “plugging-in”
appropriate modules in the MM and NM. Thus, FCS was added to STORM with two rel-
atively simple enhancements: an MPI hook to measure and export information on process



synchronous communication to the NM, and a module in the NM that translates this infor-
mation into classification, and schedule processes based ontheir class. Note that the MM
was not modified relative to GS.

2.6. Implementation Issues

Measuring process statistics can be both intrusive and imprecise if not performed care-
fully. It is important to take measurements with as little overhead as possible, without signif-
icantly affecting or modifying the code. To realize this goal, we implemented a lightweight
monitoring layer that is integrated with MPI. Synchronous communication primitives in
MPI call one of four low-latency functions to note when the process starts/ends a syn-
chronous operation and when it enters and exits blocking mode. Applications only need
to be relinked with the modified MPI library, without any change. The accuracy of this
monitoring layer has been verified using synthetic applications for which the measured pa-
rameters are known in advance and found to be precise within0.1%.

The monitoring layer updates the MPI-level variables shownin Table 1. These variables
reside in shared memory to allow the NM to read them without issuing a system call. While
this transfer is asynchronous and a lag could exist between the actual communication event
and the time the NM gathers the information, these parameters converge quickly to an ac-
curate picture of the process characteristics.

To count communication events (Ccomm), we employed the following guideline: multi-
ple communication events with no intervening computation are considered to be a single
communication event. This heuristic works very accuratelyas long as the granularity of
the process is greater than that of the local operating system. Otherwise, the computation
intervals are too short to be registered by the operating system. We found this value to typ-
ically be around twice the Linux 1/HZ value (the timer interrupt frequency), which defaults
to≈ 1 ms on our cluster. To detect finer granularities, we increased the HZ value to4096.

3. Synthetic Scenarios

In this section we analyze the characteristics of FCS under four basic synthetic bench-
marks and compare it to three scheduling algorithms: batch scheduling (first-come-first-
serve, or FCFS), gang scheduling (GS), and spin-block (SB).SB is an instance of implicit
coscheduling (ICS) [3] and has been shown to perform on a par with other implicit algo-
rithms without global coordination as in gang scheduling [1, 4]. With SB, processes that
wait for a synchronous communication poll for a given interval—and only if the communi-
cation has not completed by this time they do block (in contrast, gang-scheduled processes
always busy-wait). Thus, processes tend to self-synchronize across the job, so relatively
good coordination is achieved without the need for a explicit coscheduling. In ICS, the
spin time can be adaptive [3], thus decreasing inefficiencies resulting from spinning too
long. In our implementation of SB we chose a small constant time for spinning (120 µs),
so that very little time is wasted. Note that typical communication operations with this
hardware and software setup complete in far less than this time (a few tens ofµs), so if
two communicating processes are coscheduled, they are almost guaranteed to complete the
communication within this time interval.

We use two metrics to compare the performance of different scheduling algorithms [6]:

• turnaround time—the total running time (in seconds) of the entire workload; and



Figure 3. One iteration of two “building-block” jobs

• average response time—the mean time it takes a job to complete running from the
time of submittal (enqueuing), which is not necessarily theactual execution time.

Turnaround time is considered a system-centric metric, since it describes the reciprocal of
the system’s throughput. Response time on the other hand is more of interest to users who
would like to minimize the time they wait for their individual jobs to complete. In practice, it
is difficult to discuss these metrics in isolation, since with real dynamic workloads, various
factors and feedback effects create interactions between the metrics [6, 7]. However, the
four scenarios we describe in this section are simple enoughto allow a comprehensive
understanding of the factors involved. We believe that thisset of synthetic tests covers a
wide spectrum of basic workload combinations.

For all four scenarios, we use a simple synthetic application as the “building-block” of
the workload. This job is modeled after the BSP model [23], containing a simple loop with
some computation followed by a communication phase in a nearest-neighbor, ring pattern.
The computation granularity (per iteration) in the basic case was chosen to be1 ms, which is
considered to be a relatively fine granularity when comparedto real scientific applications’
performance in the given hardware environment [10]. When running in isolation, the basic
“building block” job takes approximately60 s to complete.

The hardware used for the experimental evaluation was the “Wolverine” cluster at LANL.
This cluster consists of64 HP Alpha compute nodes and a dual-rail QsNet network [19].
Each compute node contains four833 MHz EV6 processors,8 GB of ECC RAM, two
independent32 MHz/64-bit PCI buses, two Quadrics QM-400 Elan3 NIC [19] for the data
network, and a 100 Mbit Ethernet network adapter for the management network. All the
nodes run Red Hat Linux 7.3 with Quadrics kernel modifications and user-level libraries.
Our tests used a simple workload of up to three jobs arriving concurrently using half the
cluster, 128 processors on 32 nodes. This cluster architecture and size combined with the
very fine granularity, is a good stress test for scheduling algorithms. This configuration
is not conducive for good performance with fine-grain applications and/or global context
switching because of the machine’s high sensitivity to noise created by system dæmons
and our own scheduling system [20]. To mitigate this problem, we used a context-switch
interval of100 ms, which is high enough to reduce most of the overhead and noiseeffects
while still being responsive enough to be considered interactive. Every experiment was
repeated five times, and the best result was taken for each algorithm.

3.1 Balanced Jobs

Many HPC applications are latency-bound in the sense that they synchronize often with
short messages. These synchronous applications require that all their processes be cosched-
uled to communicate effectively. If another application orsystem dæmon interrupts their
synchronization, large skews can develop that significantly hamper their performance [20].



Figure 4. Two load-imbalanced jobs

In the first scenario, we emulate such situations by running two identical, fine-grained
jobs concurrently. Figure 3 depicts the run timeper iteration, which is balanced and equal
for both jobs.3 The following table presents the results for running this workload, giving
the termination time in seconds for each job and for the complete set. It also shows the total
turnaround and mean response times, all in seconds.

Algorithm Job 1 Job 2 Turnaround Mean Response
FCFS 60 120 120 90
GS 124 124 124 124
SB 126 134 134 130
FCS 125 126 126 126

Since synchronous, balanced jobs require a dedicated environment to run effectively,
FCFS scheduling and GS offer the best performance. SB scheduling shows noticeable
slowdown when compared to the others, because of the lack of global coordination. FCS
exhibits performance comparable to that of GS, since all processes are classified asCSand
are therefore gang-scheduled. Still, total turnaround time is slightly higher than that of GS
because of the added overhead of process classification. When one is considering response
time, batch scheduling is the only algorithm that has a significant advantage over the other
algorithms, since job 1 that runs in isolation terminates quickly and lowers the average.

3.2 Load-Imbalanced Jobs

This scenario represents a simple load-imbalanced case with two complementing jobs,
as depicted in Figure 4. Every alternating node (four processes) in the first job computes
twice as muchper iterationas the other node, while the situation is reversed for job 24.
The faster processes compute for the same amount of time as inthe previous scenario. In
a sense, this workload represents the exact opposite of the previous one, in which jobs
need a dedicated partition to communicate effectively. In contrast, these unbalanced jobs
are guaranteed to waste compute resources when running in isolation. The following table
shows the performance of each scheduling algorithm.

3In this and the following figures, the compute and communicate phases are shown per iteration. Schedul-
ing determines which processes run together and for how manyiterations.

4In reality, the speed ratio is slightly over 2:1, bringing the total run time of each job to120 s. The gap is
produced by the communication time, which is unchanged, requiring additional computation to increase the
run time.



Figure 5. Complementing jobs

Algorithm Job 1 Job 2 Turnaround Mean Response
FCFS 120 240 240 180
GS 244 245 245 245
SB 193 194 194 194
FCS 197 197 197 197

It can be seen from the data that both FCFS and GS take almost twice as much time to run
each job (compared to the previous scenario), whereas the total amount of computation per
job is only increased by 50%. SB does a much better job at load-balancing, since the short
polling interval allows the algorithm to yield the CPU when processes are not coscheduled,
giving the other job a chance to complete its communication and wasting little CPU time.
FCS is also successful in exploiting these computational holes. After a brief interval, it
classifies the first job’s processes in alternating nodes asF,F,F,F,DC,DC,DC,DC,..., and the
second job’s asDC,DC,DC,DC,F,F,F,F,.... The resulting scheduling is effectively the same
as SB’s, with the exception thatF processes are prioritized when their assigned slot is the
active one. The total turnaround time is similar to SB’s, andrepresents close to optimum
resource utilization: both jobs complete after running for≈ 159% of the time it took the
previous scenario, which corresponds to≈ 6% more than the total amount of compute work.

The response-time metric again shows some preference for batch scheduling, although
FCS and SB are not far behind, because of their lower turnaround time. GS exhibits ap-
proximately the same turnaround time as FCFS, but since all the processes terminate con-
currently, the mean response time is actually higher.

3.3 Complementing Jobs

The third scenario exposes the ability of various algorithms to pack jobs efficiently in a
more imbalanced workload. It consists of two noncommunicating 60 s jobs and one com-
municating180 s job that are arranged so that alternating nodes run for different amounts
of time, taking a total of180 s per processor when aggregated over all processors. (See
Figure 5.) An optimal scheduler should pack all these jobs sothat the total turnaround time
does not exceed that of the third job when run in isolation (assuming zero context-switch
overhead). The following table again shows the performancefor each algorithm.



Figure 6. Balanced and imbalanced job combination

Algorithm Job 1 Job 2 Job 3 Turnaround Mean Response
FCFS 60 121 301 301 161
GS 185 186 308 308 226
SB 144 142 244 244 177
FCS 192 193 197 197 194

Once more, FCFS and GS exhibit similar turnaround time—the combined run time of all
the jobs run in isolation. SB shows some ability to load-balance the jobs, reducing the over-
all turnaround and response times, but since it lacks a detailed knowledge of the processes’
requirements, it can only go so far. Job 3 still shows a significant slowdown (≈ 36%) when
compared to FCFS. With FCS, the situation is even better. Thescheduler classifies all the
processes asDC, except for the faster processes of job 3, which are classified asF. As such,
they receive priority in their time slot, and thus, the totalrun time of job 3 suffers a slow-
down of≈ 9% from the interference of the other jobs, which pack neatly into the other
time slices. This approach not only reduces the turnaround of this workload to≈ 9% of
the optimal packing value (paying some price to overhead), but also minimizes the mean
response time, which is competitive with that of FCFS. A reordering of the jobs would not
affect FCS’ metrics, while it would worsen FCFS’ response times. Time-sharing algorithms
are not as sensitive to job order, which becomes an advantagewhen the order is not known
in advance.

3.4 Balanced and Imbalanced Job Combination

The last synthetic scenario is designed to expose the interaction between synchronous
balanced and imbalanced jobs in a mixed workload. This situation might occur when a
machine is running more than one type of application or with different data sets that have
different load-balancing properties. Even if the workloadof a parallel machine is composed
of only balanced applications, this situation can occur whenever job arrivals and sizes are
dynamic. For example, in a time-sharing system, different nodes might run different num-
bers of jobs, thus creating a dynamic imbalance.

We encapsulate some of this complexity in a set of three jobs.The first two are com-
plementary imbalanced and identical to jobs 1 and 2 of the second scenario (Section 3.2).
The third job is the basic, load-balanced job used in the firstscenario (Section 3.1). The
following table shows the run time results for the four algorithms.



Algorithm Job 1 Job 2 Job 3 Turnaround Mean Response
FCFS 120 241 302 302 221
GS 185 185 305 305 225
SB 213 214 276 276 234
FCS 252 253 155 253 220

Once more, batch and gang scheduling demonstrate similar performance. Shuffling the
job order so that job 3 is actually first would have improved the response time for FCFS
even further, to around181 s.

Another weakness of SB scheduling is exposed in this scenario. Since it gives an equal
treatment to all processes, fine-grained jobs suffer from the noise generated by other jobs.
This effect is clearly shown in the performance of job 3 underSB, which is much worse
than that under FCS. Since FCS identifies the special requirements of job 3, it classifies it
asCS. As such, it receives dedicated time slots that allow it to communicate effectively,
hindered only by context-switch overhead. The overall result is a decrease in turnaround
time and mean response time when compared to the other algorithms.

Summary

These basic benchmarks demonstrate the inherent strengthsand weaknesses of multi-
programming vs. batch schedulers and dynamic vs. rigid schedulers. In all cases, FCS’
performance was close to or better than that of the scheduling algorithm most suited to
each scenario, attesting to its flexibility. The next section explores how these properties are
translated to two actual scientific applications.

4. Application Tests

For a more realistic experimental evaluation, we compared FCS to the other three schedul-
ing algorithms when running two real MPI applications. The results presented in this sec-
tion describe three scenarios based on different job mixes:two fine-grain applications, two
medium-grain applications, and a combination of both. The applications used in this section
are SWEEP3D and SAGE, both running on 128 processors.5 We used a multiprogramming
level of 2 for these experiments to reflect the fact that thesereal applications have significant
memory footprints, preventing the accommodation of many instances of these applications
entirely in physical memory. In addition, because of the applications’ large working set and
the cluster’s susceptibility to noise when using four processors per node [20], these experi-
ments were run with a time slice of200 ms to amortize some of the context-switching cost.
Still, some overhead was noticeable for all the scheduling algorithms—and especially with
the explicit algorithms (GS and FCS).

SWEEP3D: SWEEP3D [10] is a time-independent, Cartesian-grid, single-group, discrete
ordinates, deterministic, particle transport code taken from the ASCI workload. SWEEP3D
represents the core of a widely used method of solving the Boltzmann transport equation.
Estimates are that deterministic particle transport accounts for50% to 80% of the execution
time of many realistic simulations on current DOE systems. SWEEP3D is characterized by
very fine granularity (averaging≈ 1 ms in the configuration tested) and a nearest-neighbor

5These two applications are representative of the ASCI workload.



communication stencil. We used a realistic input file comprising 10,000 cells per processor
and taking≈ 270 MB of memory per process. We increased the number of iterations
from 12 to 600 so that a single run took≈ 111 s6. The combination of this data set and
architecture represents a rather extreme case of a load-balanced, fine-grained application,
as different configurations and architectures typically result in coarser granularities [8, 9].

We ran a simple workload consisting of two identical SWEEP3Djobs (similar to the first
synthetic scenario of the previous section). We present theresults in the same format.

Algorithm SWEEP3D 1 SWEEP3D 2 Turnaround Mean Response
FCFS 111 222 222 167
GS 232 232 232 232
SB 275 275 275 275
FCS 244 244 244 244

All the multiprogramming algorithms are hindered by the overhead associated with multi-
tasking between highly synchronous jobs with an active working set. Context-switch over-
head, interruptions to synchronous communication, cache flushing, and skew caused by
noise (and exacerbated by the fine granularity of SWEEP3D) causes a per-job slowdown
of ≈ 2.25% and≈ 4.95% for GS and FCS respectively, compared to batch scheduling.
FCS suffers from relatively high reclassification overhead, because of the high number of
communication events. In the case of GS and FCS, there is alsothe occasional interruption
by the NM, which is awakened to perform the context switch. While SB has the potential
for less overhead, since the NM does not intervene with the scheduling, the lack of ex-
plicit coscheduling is shown to have a significant effect on SWEEP3D’s performance, with
a per-job slowdown of11.93% compared to FCFS.

SAGE: SAGE (SAIC’s Adaptive Grid Eulerian hydrocode) is a multidimensional (1D,
2D, and 3D), multimaterial, Eulerian hydrodynamics code with adaptive mesh refinement
(AMR) [11]. SAGE comes from the LANL Crestone project, whosegoal is the investigation
of continuous adaptive Eulerian techniques to Stockpile Stewardship problems. SAGE has
also been applied to a variety of problems in many areas of science and engineering includ-
ing water shock, stemming and containment, early time frontdesign, and hydrodynamics
instability problems.

SAGE is more load imbalanced than SWEEP3D, which implies that SAGE does not al-
ways follow the classic BSP model as the granularity varies across processes and over time.
The effective granularity is thus much coarser than the computation granularity. While most
processes reach a synchronization point every5 ms or less, because of unequal partitioning
of the input data, they are often waiting for their peers for afew morems, so the average
granularity over all processes is closer to8 ms. Most such "computational" fragments are
not large enough to fill effectively with another process, but are still large enough to clas-
sify ≈ 75% of the processes as classF . Once more, we ran two concurrent copies of SAGE
with the "timing_h" input file, (using335 MB/process) and we present the results in the
following table:

6This does not change the application behavior, but merely serves to increase its run time artificially to
more than a few seconds.



Algorithm SAGE 1 SAGE 2 Turnaround Mean Response
FCFS 126 252 252 189
GS 260 261 261 261
SB 274 276 276 275
FCS 264 264 264 264

The different algorithms’ performance in this workload shows less disparity than with
SWEEP3D, indicating that SAGE lends itself rather well to multiprogramming. When one
compares this workload to the previous one, the most obviousdifference is the relatively
coarser granularity of SAGE, which lowers the performance penalty for context switching.
Another mitigating factor is the occasional success of the dynamic algorithms (SB and
FCS) in overlapping some computation and communication of competing, load-imbalanced
processes.

Combined Workload: In the last part of this section, we analyze a workload composed
of both SAGE and SWEEP3D—somewhat similar to the workload ofthe fourth synthetic
scenario. This workload offers the opportunity to see how the two different types of jobs
interact when scheduled together, which is relevant for many supercomputing centers. Both
jobs ran for a similar amount of time in isolation (after adjusting SWEEP3D), and were
launched together. The results are presented in the following table:

Algorithm SAGE SWEEP3D Turnaround Mean Response
FCFS 126 238 238 182
GS 245 240 245 243
SB 240 272 272 256
FCS 235 224 235 230

Once more, this scenario demonstrates the adverse effect ofcontext-switch overhead
on gang scheduling (compared to batch scheduling), and the significant slowdown a fine-
grained application (SWEEP3D) can suffer from the lack of coordination in SB. FCS fares
somewhat better than both and slightly better than batch scheduling, since on the one hand,
it can coschedule SWEEP3D explicitly, and on the other, makeuse of the small amount
of load-imbalance in SAGE to fill the computational holes. Asnoted in the synthetic ex-
periments and on other hardware configurations, when the load imbalance is higher or the
context-switch overhead is lower, FCS can significantly outperform the other scheduling al-
gorithms. A situation in which load imbalances are constantly created and changed because
of a more realistic, dynamic workload is even more conduciveto improved utilization with
FCS. This scenario is discussed in the next section.

5. Dynamic Workloads

The workloads evaluated so far were relatively simple and static. Many if not most real
HPC centers run more complicated workloads, with differentjobs of different sizes and
run times arriving dynamically. With these machines, issues such as queue management,
scheduling algorithms and multiprogramming levels, interactions between jobs and specific
hardware configuration have significant implications. A detailed evaluation of these aspects
was reported in previous work [7]. In this section, we reproduce the main results, namely,
the effect of offered load on an actual cluster running a relatively long, dynamic workload
under the four scheduling algorithms.



5.1 Workload and Methodology

We used a workload of 1000 jobs, whose size, run time, and arrival times are modeled
using an accurate workload model [7, 15]. We use this workload as a mold for two sets of
experiments, with synthetic and real applications respectively. For each set, we created a
series of workloads with varying offered load by multiplying job-arrival times by a constant.

The first set ran the same synthetic application as the previous section, but with different
job sizes and run times as determined by the model, and with different granularity and
communication pattern, chosen randomly. The second set consisted of multiple instances of
SAGE and SWEEP3D with input files chosen randomly from a set ofscenarios representing
different physics problems. This choice meant that we couldnot control the run time of each
job, only its arrival time. Moreover, there was less varietyin run times in the second set. On
the other hand, the applications were real and produced representative calculations, making
the internal communication and computation patterns more realistic than those of the first
set. We ran both sets with four algorithms, FCFS with backfilling, GS, SB, and FCS. The
first set, having no real memory constraints, was run with a multiprogramming level (MPL)
of 6, while the second set was limited to an MPL of 2 to avoid physical memory overflow,
which would have required a memory-aware scheduling algorithm [18].

To estimate the offered load for each workload, we first measured the run time of each
job in isolation. The offered load was then calculated as theratio between the requested
resources (the sum of all jobs’ run time multiplied by their sizes) and the available resources
(the number of processors multiplied by the last arrival time). Accepted load could not be
measured precisely, but could be indirectly inferred from the accumulation of jobs in the
queue [8]. Additionally, we stopped the experiments at eachalgorithm’s saturation point,
as witnessed by a relatively constant accepted load.

We used EASY backfilling [22] for queue management, which wasshown to be very
effective in lowering the average response time, especially for short jobs and batch schedul-
ing [16]. Since it is also beneficial for multiprogramming schedulers, we used EASY for
them as well, multiplying the requested run time by the MPL toestimate run and reser-
vation times [7]. The first experiment set was executed out ona different LANL cluster
(Crescendo), using 32 Pentium-III processors (16 nodes), and the second set was executed
on 64 processors of Wolverine (16 nodes).

5.2 Results and Discussion

Figures 7(a) and 7(b) show the average response time and slowdown respectively, for
different offered loads and scheduling algorithms for the first set. The near-linear growth
in response times with load is the result of our method of varying load, by multiplying run
times of jobs by a load factor. Both metrics suggest that FCS performs consistently better
than the other algorithms, and FCFS seems to perform consistently worse than the others.
Also, FCFS saturates at a load of≈ 78%, while FCS supports a load of up to88% in this
set.

To understand the source of these differences, we looked at the median response time and
slowdown in Figures 7(c) and 7(d) respectively. A low medianresponse time suggests good
handling of short jobs, since most jobs are comparatively short. On the other hand, a small
median slowdown indicates preferential handling of long jobs, since the lowest-slowdown
jobs are mostly long jobs that are less affected by wait time than short jobs. FCFS shows
a high average slowdown and a small median slowdown. This result indicates that while
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Figure 7. Performance as a function of offered load—synthet ic applications

long jobs benefit from shorter waiting times (driving the median slowdown lower), short
jobs suffer enough to raise the average response time and slowdown significantly.

To verify these biases, we looked at the cumulative distribution function (CDF) of re-
sponse times for the shorter 500 jobs and longer 500 jobs separately, as defined by their
run time in isolation (Fig. 8). The higher distribution of short jobs with FCS attests to the
scheduler’s ability to “push” more jobs toward the shorter response times. Similarly, FCFS’
preferential treatment of long jobs is reflected in Fig. 8(b).

Figure 9 shows the response time and bounded slowdown results for the second set,
running SAGE and SWEEP3D. The differences between the threetime-sharing algorithms
is not as dramatic as in the first set, mostly because the lowerMPL allows less room to
express the differences between the algorithms. Still, FCSperforms a little better than
the other algorithms, particularly in the higher loads. FCSalso saturates at an offered load
higher than that of the other algorithms, while FCFS saturates at a very early point compared
to the other algorithms and previous set.

We believe the reason for FCS’ good performance is its ability to adapt to various sce-
narios that occur during the execution of the dynamic workload. In particular, FCS always
coschedules a job in its first few seconds of running (unlike SB), and then classifies it
according to its communication requirements (unlike GS). If a job is long and does not syn-
chronize frequently or effectively, FCS will allow other jobs to compete with it for machine
resources. Thus, FCS shows a bias toward short jobs, allowing them to clear the system
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early. Since short jobs dominate the first workload, this bias actually reduces the overall
system load and allows long jobs to complete earlier than with GS or SB. The opposite can
be said of the FCFS scheme, which shows a bias toward long jobs, since they do not have
to compete with other jobs.

6. Conclusions

An important problem with traditional parallel job-scheduling algorithms is their spe-
cialization for specific types of workloads, which results in poor performance when the
workload characteristics do not fit the model for which they were designed. For exam-
ple, batch and gang scheduling perform poorly under dynamicor load-imbalanced work-
loads, whereas implicit coscheduling suffers from performance penalties for fine-grained
synchronous jobs. Most job schedulers offer little adaptation to externally and internally
fragmented workloads. The result is reduced machine utilization and response times.

We designed Flexible CoScheduling (FCS) to alleviate theseproblems specifically by dy-
namically adjusting scheduling to varying workload and application requirements. FCS was
fully implemented on top of STORM and tested on three clusterarchitectures using both
synthetic and real applications, static and dynamic workloads. The results clearly show that
FCS deals well with both internal and external resource fragmentation, and is competitive
with batch scheduling, gang scheduling, and implicit coscheduling. The performance ad-
vantages of FCS over other algorithms in the more realistic,dynamic workloads is rather
significant: FCS saturates at an offered load approximately16% higher than that of back-
filling for synthetic applications, and 54% higher for scientific applications. The difference
in saturation compared to gang scheduling and implicit coscheduling is less dramatic but
still favors FCS. In all the dynamic scenarios but one, FCS performs equally well or better
than the other algorithms in terms of response time and bounded slowdown.
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