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Abstract

Many scientific and high-performance computing applicagi@onsist of multiple pro-
cesses running on different processors that communicatgiéntly. Because of their syn-
chronization needs, these applications can suffer sevafefmance penalties if their pro-
cesses are not all coscheduled to run together. Two commproaghes to coscheduling
jobs are batch scheduling, wherein nodes are dedicatedhierduration of the run, and
gang scheduling, wherein time slicing is coordinated asrpscessors. Both work well
when jobs are load-balanced and make use of the entire ghrathchine. However, these
conditions are rarely met and most realistic workloads @msently suffer from both in-
ternal and external fragmentation, in which resources aratpssors are left idle because
jobs cannot be packed with perfect efficiency. This sitndéads to reduced utilization and
suboptimal performance. Flexible CoScheduling (FCS) estsles this problem by monitor-
ing each job’s computation granularity and communicatiattern and scheduling jobs
based on their synchronization and load-balancing requeats. In particular, jobs that do
not require stringent synchronization are identified, amel @ot coscheduled; instead, these
processes are used to reduce fragmentation. FCS has bégmiplemented on top of the
STORM resource manager on a 256-processor Alpha clustecamgpared to batch, gang,
and implicit coscheduling algorithms. This paper descsilre detail the implementation
of FCS and its performance evaluation with a variety of woakls, including large-scale
benchmarks, scientific applications, and dynamic worksoddhe experimental results show
that FCS saturates at higher loads than other algorithmst@p4% higher in some cases),
and displays lower response times and slowdown than the atgerithms in nearly all
scenarios.

Keywords: Cluster computing, load balancing, job scheduling, gaoigesiuling, parallel
architectures, Flexible coscheduling

1. Introduction

Clusters of workstations are steadily growing larger andenpwevalent. Although clus-
ter hardware is improving in terms of price and performarutester utilization remains
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poor. Load imbalance is arguably one of the main factorslitmatis resource utilization, in
particular in large-scale clusters [5]. Load imbalanceltave a marked detrimental effect
on many parallel programs. A large subset of high perforraaoenputing (HPC) software
can be modeled using the bulk-synchronous parallel (BSR)emdn this model a compu-
tation involves a number fuperstepseach having several parallel computational threads
that synchronize at the end of the superstep [6, 13, 23]. A lo@alance can harm the
performance of the whole parallel application because #aelad of computation requires
a different amount of time to complete, and the entire pnrgnaust wait for the slowest
thread before it can synchronize. Since these computaginahronization cycles are po-
tentially executed many times throughout the lifetime @& pinogram, the cumulative effect
on the application run time and the system resource utitizatan be quite high [20].

Load imbalance has three main sources: application imbajavorkload imbalance, and
heterogeneity of hardware resources. Application loadalarice occurs when different
parallel threads of computation take varying times to catgplthe superstep. This can
occur either as a result of poor programming, or more tyjyiceecause of a data set that
creates uneven loads on the different threads.

Even when one is using well-balanced software, load imlegisucan occur. They occur,
for instance, when the compute nodes are not entirely diedic¢a the parallel computation
because they are also being used for local user- or sysighgegrams, or because the
resource management system cannot allocate an even wbrdoal processors. This
uneven taxing of resources creates a situation in which gaarts of the parallel program
run slower than others, and a load imbalance occurs [20].

Load imbalance can also be generated by heterogeneouteatates in which different
nodes have different computational capabilities, difiér@emory hierarchy properties, or
even a different number of processors per node. Two examoplkasch situations are grid
computing and HPC systems that accrue additional progpesides over a period of time,
thus taking advantage of technological improvements.

The traditional approach to tackling load imbalance is atapplication level: the pro-
grammer tries to balance the resources by changing thesteuaf the parallel program.
This approach is usually time-consuming and yields dirhimig returns after an initial
phase of code restructuring and optimizations. In factettee some problems that are
inherently load-imbalanced. This approach is also not ecocally feasible with legacy
codes. For example, the Accelerated Strategic Computiiigtime (ASCI) program [25]
invested more than a billion dollars in recent years in palrabftware.

An alternative approach is to attack load imbalance at tinetirae level. Rather than
optimizing a single parallel job, we can coschedule (tileeson the same set of proces-
sors) multiple parallel jobs and try to compensate for tlallmmbalance within these jobs.
This approach is also better suited to handling complex lwads and/or heterogeneous
architectures. Ideally, we would like to transform a setlebéhaved user applications into
a single load-balanced, system-level workload. This aggirdas the appealing advantage
that it does not require any changes to existing paralldlvso€, and it is therefore able
to deal with existing legacy codes. For example, coschedulgorithms such as Implicit
CoScheduling (ICS) [3], Dynamic CoScheduling (DCS) [21{aordinated CoScheduling
(CC) [4] can potentially alleviate load imbalance and ilmseresource utilizatior. How-
ever, they are not always able to handle all job types bectgesedo not rely on global

These algorithms are distinguished by the location at wttiencoordination is inferred: at sender side,
receiver, or both, respectively.



coordination. On the other hand, global resource coordinand job preemption can have
a significant cost, if they are implemented using only soferaechanisms [12, 17].

In this paper, we show that it is possible to increase theuresoutilization in a cluster
of workstations substantially and to perform system-ldéwatl balancing effectively. We
introduce an innovative methodology called Flexible Caltling (FCS), that can dynam-
ically detect and compensate for load imbalance. Dynantieatien of load imbalances is
performed by (1) monitoring the communication behaviorggdlecations, (2) defining met-
rics for their communication performance that attempt emiify possible load imbalances,
and (3) classifying applications according to these m&tri©n top of this, we propose
a coscheduling mechanism that uses this application fizggin to execute scheduling
decisions. The scheduler strives to coschedule those ggesehat require coscheduling,
while scheduling other processes to increase overallsystiéization and throughput. This
approach does not alleviate the specific situation of ani@gjn that suffers from load im-
balances. Obviously, any given application receives tis¢ $&rvice when running by itself
on a dedicated set of nodes. However, the proposed appraigrevent each job from
wasting too many system resources, and the overall systiierfy and responsiveness
will be improved, which, in turn, lowers the single applicats waiting time.

We demonstrate this methodology with a streamlined impteat®n on top of STORM
(Scalable TOol for Resource Management) [9]. The key intiomeébehind STORM is a
software architecture that enables resource managemenrploit low-level network fea-
tures. As a consequence of this design, STORM can enactdoigedecisions, such as a
global context switch or a heartbeat, in a few hundreds ofes&Econds across thousands of
nodes. Thus, STORM avoids much of the nonscalable overrs=satiated with software-
only versions of gang scheduling. An important innovatiofCS is the combination of a
set of local policies with the global coordination mechamsgrovided by STORM in order
to coschedule processes that have a high degree of coupling.

In preliminary work, we presented initial benchmark resiéitr FCS running on a cluster
of Pentium-IIl machines [8]. This paper extends that workhwiew experiments on a
larger experimental platform and with new metrics, and gisivore realistic applications
and workloads. Additionally, FCS was further tuned and gifiepl and provides better
performance results. In the experimental section, we geoan empirical evaluation, which
ranges from simple workloads that provide insights on sdyeb scheduling algorithms to
experiments with real applications representative of t&€RAworkload.

2. Flexible CoScheduling

To address the problems described above, we propose a ruhezliding mechanism
called Flexible CoScheduling (FCS). The main motivatiohibd FCS is the improve-
ment of overall system performance in the presence of lodmhliamce, gained by using
dynamic measurement of applications’ communication padtand classification of ap-
plications into distinct types. Some applications styicthere to the BSP model with
balanced, fine-grained communications. Others deviate tftos model because of little
communication or inherent load imbalances. We can thezefestate FCS’ goal as iden-
tifying the proper synchronization needs of each applcatind process and trying to op-
timize the entire system'’s performance while addressiegémeeds. FCS is implemented
on top of STORM [9], a tool that allows for both global synchization through scalable
global context-switch messages (heartbeats) and locabsting by a dsemon run on ev-
ery node (based on its locally-collected information). tdsgel as opposed to kernel-level
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Figure 1. Decision tree for process classification

scheduling incurs some additional overhead but elimindtesieed to communicate fre-
guent scheduling information to the kernel [2].

2.1. Process Classification

FCS employs dynamic process classification and schedubeegses using this class
information. Processes are categorized into one of thesses (Figure 1):

1. CS(coscheduling): These processes communicate often, astllveucoscheduled
(gang-scheduled) across the machine to run effectivebause of their demanding
synchronization requirements.

2. F (frustrated): These processes have enough synchromzagguirements to be
coscheduled, but because of load imbalance, they ofterotamake full use of their
allotted CPU time. This load imbalance can result from anhefreasons detailed in
the introduction.

3. DC (don't-care): These processes rarely synchronize andeacteduled indepen-
dently without penalizing the system’s utilization or tlods performance. For ex-
ample, a job using a coarse-grained workpile model woulddiegorized a®C.
We include inDC also the processes of a fourth claB& (rate-equivalent).RE is
characterized by jobs that have little synchronizatiomyequire a similar (balanced)
amount of CPU time for all their processes. Since detectfdREprocesses cannot
be made in run-time with local information only, they aresslified aDC instead,
due to their low synchronization needs.

Figure 1 shows the decision tree for process classificati@th process is evaluated at
the end of its time slot. If a process communicates at relatively coarse granujatity
either aDC or RE process and classified BE. Otherwise, the process is classified accord-
ing to how effectively it communicates when coscheduleckfféctive, it is aCSprocess.
Otherwise, some load imbalance prevents the process franmeomicating effectively, and
itis consideredr. To estimate the granularity and effectiveness of a the comication of a
process, we modified the MPI library so that blocking commation calls take time mea-
surements and store them in a shared-memory area, wherehibduding layer can access
them. Only synchronous (blocking) communication callsraomitored, since nonblocking

2In strict gang scheduling, each job is assigned a dedicatedsiot and can only be run in that slot. FCS
also assigns a time slot to each job, but local schedulingides can cause the job to run in other time slots
as well, possibly sharing them with other jobs. We call thgioal time slot to which a process is mapped the
“assigned time slot.”



communications do not require tight synchronization aretinet affect scheduling. (Thus
a call to MPI_Isend() is nonblocking, but MP1_Wait() is catexred blocking.)

Processes of the same job will not always belong to the saass.cFor example, load
imbalance or system heterogeneity can lead to situationkich one process needs to wait
more than another. To allow for these cases and to avoid lgéoichange of information,
processes are categorized on an individual basis rathep#ragjob.

This classification differs in two important ways from a danione suggested by Lee et
al. [14]. First, we differentiate between tigSandF classes, so that even processes that
require gang scheduling do not tax the system too much ifbgémeity prevents them from
fully exploiting coscheduling. Second, there is no segactdss folRE applications.RE
applications are indistinguishable (from the scheduleoiit of view) fromDC processes,
and they are scheduled in the same manner. The classifiatordiffers from the one
suggested by Wiseman [24], which is based on CPU utilizatrahis done at the job rather
than the process level.

2.2. Scheduling

The scheduling principles in FCS are as follows:

e CSprocesses are always coscheduled and should not be preempte
e F processes need coscheduling but are preempted if synzhtiomi is ineffective.
e DC processes impose no restrictions on scheduling.

The infrastructure used to implement this scheduling algor (STORM) is based on an
implementation of conventional gang scheduling [9]. A &ngystemwide manager, the
machine manager deemon (MM), packs the jobs into an Oustenmawix. It periodically
sends multi-context-switch messages to the node manageonisg€NM), instructing them
to switch from one time slot to another. A crucial charastériis that the node managers
are not obligated to comply. They are free to make their ovnedualing decisions based on
their local measurements and classifications.

Algorithm 1 shows the behavior of the node manager upon pecéia multi-context-
switch message. The basic idea is to allow the local opeyatiatem the freedom to sched-
ule DC processes according to its usual criteria (fairness, I/icerations, etc.), as well
as to useDC processes to fill in the gaps thatprocesses create because of their synchro-
nization problems. ArF process that waits for pending communication does not block
immediately, but rather spins for some time to avoid unngsgscontext-switch penalties,
asinICS [3].

This scheduling algorithm represents a new approach tordineoscheduling methods,
since it can benefit both from scalable global schedulingsitats and local decisions based
on detailed process statistics. Furthermore, it diffepsnfprevious dynamic coscheduling
methods like DCS [21] and ICS in that:

1. A CSprocess in FCS cannot be preempted before the time slotesxpuen if a
message arrives for another process. (Processes classftlhave shown that it
is not worthwhile to deschedule them in their time slot, hesesof their fine-grained
synchronization.) Blocking events therefore do not causkliyng of the CPU.

2. The local scheduler’s decision in choosing among pra@sess theDC time slots
andF gaps is affected by the communication characterizationroégsses, which



Algorithm 1: Context switch algorithm for FCS

/] context _switch: switch fromone process to another process
/'l I nvoked for each processor by a global multi-context-swtch
procedure context_switch (current _process, next_process)
begi n
if current_process == next_process then return
if type of next_process is CS then
suspend whatever is running on this PE
run next _process for its entire tine slot
use polling for synchronous comruni cations
el se
resume DC and F processes belonging to this PE
| et | ocal OS schedul er schedule all processes
use spin-blocking in synchronous conmuni cati ons
if next_process is of type F
prioritize it over all other processes.
end
end

could lead to less-blocking processes and higher utibmatif resources. Another
improvement over the work presented in [8] is t@&processes are no longer allowed
to run in theF slots. Empirical evaluation has shown that this sharingcglfy results

in worse overall performance. This is probably because tmthpeting processes are
essentially fine-grained and cannot run both well at the sames while on the other
hand, context-switch and cache-flushing issues degradetréormance.

2.3. FCS Parameters

There are three types of parameters used in FCS:

e Process characteristics measured by the MPI layer, surpeadan Table 1. (The “re-
set” mentioned in the table is either a class change or a fedmed age expiration.)

e Parameters measured or determined by the scheduling #dsedetailed in Table 1.
e Algorithm and run-time constants, shown in Table 2.

Measurements are taken whenever a process is running. ¢fdy lsynchronized pro-
cesses, we have verified that processes typically makegs®gnly in their assigned slots,
so the measurements indeed reflect their behavior whenedsigdd. For other processes,
the assigned slot does not have a large effect on progresspteossibly folF processes
that get a higher priority in their slot. F&C andF processes, the assigned time slot is
used mainly to track the age of a process using:th& s andtslots counters.

Following are some of the considerations that led us to ahtos values in Table 2:

e T... Was chosen to be low enough to enable interactive resparesgeand high
enough to have no noticeable overhead on the applicatiomgasured in [7].

e Ty, Was chosen to be high enough to accommodate twice the averagaunica-
tion operation (in our setupy 60 us [19]) and low enough so that resources are not
wasted unnecessarily.



| | Name | Description |

Tepu, CPU time since last reset (sec)

o | T Total time waiting for blocking commury.

£ | 7™ | to complete since last reset (sec)

.% c Count of blocking commun. operations

g comm 1 since last reset

o | T,. | Average CPU time per communs

2 comm

Teomm | Average wait per commungezs

2 | class EitherCS F, orDC

S | cslots | Assigned times slots in current class

§ tslots | Total assigned time slots since start

O . —_ —_—

nlyg Granularity (sec)Ipu + Teomm

Table 1. FCS parameters
| Name | Description | Value
Tlice Time slice quantum 100 ms
Tspin Spin time for spin-block communications 120 ps
cslotsyry | Minimum value ofeslots for process to be evaluated for a class changé
DCipresh DC granularity threshold: above this value procesB & 1s
CSthresh CSgranularity threshold: below this value proces€8 2 ms
I threshold of computation granularity to identify processaiting for | 0.85 x C'Sipres
thresh communication af

tslotsyrax | Maximum value oftslots, after which a reset to clagss is forced 32768

Table 2. FCS constants and values used in experiments.

e cslotsyry should allow enough time for some initializations to ocdaut without
overly delaying proper classification.

e For CSy,,.s, it was found that proper classification has the most effecpfocesses
with a granularity finer thar: 5 ms on this architecture.

All constants, and the last two in particular, were found agetul tuning and testing on
all our hardware and software combinations to offer goodaye performance across the
board [7, 9].

2.4. Characterization Heuristic

Algorithm 2 shows how a process is reclassified. This aljorits invoked for every
process that has just finished running in its assigned tiotesb this happens at determin-
istic, predictable times throughout the machine. Thus,the time to reset a process to
classCSarrives, it is guaranteed that all the processes of the salneijl be reset together.
(Otherwise they might not actually be coscheduled.)

The algorithm can be illustrated with the phase diagram shiowigure 2. Recall that
the granularity is defined as the average time per iteration, which is the §uhe@verage



Algorithm 2: Classification function for FCS

[l re-evaluate, and possibly re-classify the process
/1 using FCS paraneters and neasurenents
procedure FCS reclassify
begi n
old_class = class
i f cslots < cslotsyrin

return /1 Not running |ong enough in current class
i f tslots mod tslotspyrax == 0 OR g < CSipresh
class = CS /!l Reset or change class back to CS
else if g < DCthresh AND Tcpu < Fthresh
class = F /1 Conmuni cation too slow
el se class= DC /'l Coarse granularity
i f class ! =old_class
cslots = 0
end
% %7 Dcthresh
5 <
E DC
E
= thresh
g CSthresh
£ 3| cs
5 .

low high

computation granularity'lg

Figure 2. Phase diagram of classification algorithm

computation and communication times. Therefore, congeartularity is represented by
diagonals from upper left to lower righCS processes occupy the corner near the origin,
whereasDC processes are those that are far from this corfeprocesses are those that
should be in the corner because of their [b“g—% but suffer from a relatively higff’..,.,..

2.5. Implementation Framework

We have implemented FCS and several other scheduling tdgwiin STORM [9], a
scalable, flexible resource management system for clystgpemented on top of various
Intel- and Alpha-based architectures. STORM exploits level collective communica-
tion mechanisms to offer high-performance job launching)management. As mentioned
above, the basic software architecture is a set of deemoadpothe entire machine (ma-
chine manager, or MM), and an additional one for each nodeégmeanager, or NM). This
architecture allows the implementation of many scheduélgprithms by “plugging-in”
appropriate modules in the MM and NM. Thus, FCS was added ©RM with two rel-
atively simple enhancements: an MPI hook to measure andtexpormation on process



synchronous communication to the NM, and a module in the Nl tfanslates this infor-
mation into classification, and schedule processes bas#teorclass. Note that the MM
was not modified relative to GS.

2.6. Implementation Issues

Measuring process statistics can be both intrusive andeom® if not performed care-
fully. Itis important to take measurements with as littledwead as possible, without signif-
icantly affecting or modifying the code. To realize this gage implemented a lightweight
monitoring layer that is integrated with MPI. Synchronowsnenunication primitives in
MPI call one of four low-latency functions to note when thegess starts/ends a syn-
chronous operation and when it enters and exits blockingemdgplications only need
to be relinked with the modified MPI library, without any clggn The accuracy of this
monitoring layer has been verified using synthetic appbeatfor which the measured pa-
rameters are known in advance and found to be precise within.

The monitoring layer updates the MPI-level variables showrable 1. These variables
reside in shared memory to allow the NM to read them with@utiisgy a system call. While
this transfer is asynchronous and a lag could exist betweeadtual communication event
and the time the NM gathers the information, these parametawverge quickly to an ac-
curate picture of the process characteristics.

To count communication event§'(,...,), we employed the following guideline: multi-
ple communication events with no intervening computatim@nsidered to be a single
communication event. This heuristic works very accuratsylong as the granularity of
the process is greater than that of the local operating sys@therwise, the computation
intervals are too short to be registered by the operatingsysWe found this value to typ-
ically be around twice the Linux 1/HZ value (the timer intgst frequency), which defaults
to~ 1 ms on our cluster. To detect finer granularities, we increaiedHZ value to1096.

3. Synthetic Scenarios

In this section we analyze the characteristics of FCS urmlar lhasic synthetic bench-
marks and compare it to three scheduling algorithms: batbleduling (first-come-first-
serve, or FCFS), gang scheduling (GS), and spin-block (SB)is an instance of implicit
coscheduling (ICS) [3] and has been shown to perform on a flrother implicit algo-
rithms without global coordination as in gang scheduling4JL With SB, processes that
wait for a synchronous communication poll for a given insdr+and only if the communi-
cation has not completed by this time they do block (in catirgang-scheduled processes
always busy-wait). Thus, processes tend to self-syncheoscross the job, so relatively
good coordination is achieved without the need for a eXptioscheduling. In ICS, the
spin time can be adaptive [3], thus decreasing inefficiencésulting from spinning too
long. In our implementation of SB we chose a small constamé tior spinning (20 us),
so that very little time is wasted. Note that typical comnoation operations with this
hardware and software setup complete in far less than this (a few tens ofss), so if
two communicating processes are coscheduled, they arestfnaranteed to complete the
communication within this time interval.

We use two metrics to compare the performance of differdmtcaling algorithms [6]:

e turnaround time—the total running time (in seconds) of thigre workload; and
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Figure 3. One iteration of two “building-block” jobs

e average response time—the mean time it takes a job to coenplehing from the
time of submittal (enqueuing), which is not necessarilydbeial execution time.

Turnaround time is considered a system-centric metricesindescribes the reciprocal of
the system’s throughput. Response time on the other handris of interest to users who

would like to minimize the time they wait for their individljabs to complete. In practice, it

is difficult to discuss these metrics in isolation, sincehwial dynamic workloads, various
factors and feedback effects create interactions betweemetrics [6, 7]. However, the

four scenarios we describe in this section are simple endoigillow a comprehensive

understanding of the factors involved. We believe that sleisof synthetic tests covers a
wide spectrum of basic workload combinations.

For all four scenarios, we use a simple synthetic applioati® the “building-block” of
the workload. This job is modeled after the BSP model [23htaming a simple loop with
some computation followed by a communication phase in agséaeighbor, ring pattern.
The computation granularity (per iteration) in the basmecaas chosen to dens, which is
considered to be a relatively fine granularity when compé&edal scientific applications’
performance in the given hardware environment [10]. Wheming in isolation, the basic
“building block” job takes approximatel§0 s to complete.

The hardware used for the experimental evaluation was tledv&kine” cluster at LANL.
This cluster consists af4 HP Alpha compute nodes and a dual-rail QsNet network [19].
Each compute node contains fok83 MHz EV6 processorsy GB of ECC RAM, two
independens2 MHz/64-bit PCI buses, two Quadrics QM-400 Elan3 NIC [19] for theadat
network, and a 100 Mbit Ethernet network adapter for the mgament network. All the
nodes run Red Hat Linux 7.3 with Quadrics kernel modificatiand user-level libraries.
Our tests used a simple workload of up to three jobs arrivocarrently using half the
cluster, 128 processors on 32 nodes. This cluster architeand size combined with the
very fine granularity, is a good stress test for scheduliggrhms. This configuration
is not conducive for good performance with fine-grain ailans and/or global context
switching because of the machine’s high sensitivity to @areated by system deemons
and our own scheduling system [20]. To mitigate this problem used a context-switch
interval of 100 ms, which is high enough to reduce most of the overhead and edfisets
while still being responsive enough to be considered iotara Every experiment was
repeated five times, and the best result was taken for eachthly.

3.1 Balanced Jobs

Many HPC applications are latency-bound in the sense tlegtsiinchronize often with
short messages. These synchronous applications reqair@lttheir processes be cosched-
uled to communicate effectively. If another applicationsgstem daemon interrupts their
synchronization, large skews can develop that signifigdr@mper their performance [20].
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In the first scenario, we emulate such situations by runnigitlentical, fine-grained
jobs concurrently. Figure 3 depicts the run tiper iteration which is balanced and equal
for both jobs® The following table presents the results for running thiskk@ad, giving
the termination time in seconds for each job and for the cetepet. It also shows the total
turnaround and mean response times, all in seconds.

| Algorithm | Job 1| Job 2 | Turnaround | Mean Responsd

FCFS 60| 120 120 90
GS 124 124 124 124
SB 126| 134 134 130
FCS 125| 126 126 126

Since synchronous, balanced jobs require a dedicatedoanvant to run effectively,
FCFS scheduling and GS offer the best performance. SB skhgdihows noticeable
slowdown when compared to the others, because of the laclobélgcoordination. FCS
exhibits performance comparable to that of GS, since attgsses are classified @Sand
are therefore gang-scheduled. Still, total turnaroune tisrslightly higher than that of GS
because of the added overhead of process classificatiom Wieeis considering response
time, batch scheduling is the only algorithm that has a figamnt advantage over the other
algorithms, since job 1 that runs in isolation terminateiskjy and lowers the average.

3.2 Load-Imbalanced Jobs

This scenario represents a simple load-imbalanced caketwit complementing jobs,
as depicted in Figure 4. Every alternating node (four preegksin the first job computes
twice as muclper iterationas the other node, while the situation is reversed for fbb 2
The faster processes compute for the same amount of timetls previous scenario. In
a sense, this workload represents the exact opposite ofréwops one, in which jobs
need a dedicated partition to communicate effectively. dntast, these unbalanced jobs
are guaranteed to waste compute resources when runninglatias. The following table
shows the performance of each scheduling algorithm.

3In this and the following figures, the compute and communriphiases are shown per iteration. Schedul-
ing determines which processes run together and for how ritenagions.

“In reality, the speed ratio is slightly over 2:1, bringing tiotal run time of each job t20 s. The gap is
produced by the communication time, which is unchangedjirieg additional computation to increase the
run time.
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| Algorithm | Job 1| Job 2 | Turnaround | Mean Responsd

FCFS 120| 240 240 180
GS 244 245 245 245
SB 193| 194 194 194
FCS 197| 197 197 197

It can be seen from the data that both FCFS and GS take almiostagsrmuch time to run
each job (compared to the previous scenario), whereas tleatoount of computation per
job is only increased by 50%. SB does a much better job atlb@daiicing, since the short
polling interval allows the algorithm to yield the CPU whempesses are not coscheduled,
giving the other job a chance to complete its communicatmhwasting little CPU time.
FCS is also successful in exploiting these computationkshoAfter a brief interval, it
classifies the first job’s processes in alternating nodésrISF,DC,DC,DC,DC,.,.and the
second job’s a®C,DC,DC,DC,FFFF,... The resulting scheduling is effectively the same
as SB’s, with the exception th&tprocesses are prioritized when their assigned slot is the
active one. The total turnaround time is similar to SB’s, aspresents close to optimum
resource utilization: both jobs complete after running4on59% of the time it took the
previous scenario, which corresponds+6% more than the total amount of compute work.

The response-time metric again shows some preference tcn baheduling, although
FCS and SB are not far behind, because of their lower turmartimme. GS exhibits ap-
proximately the same turnaround time as FCFS, but sincaalbtocesses terminate con-
currently, the mean response time is actually higher.

3.3 Complementing Jobs

The third scenario exposes the ability of various algorghmpack jobs efficiently in a
more imbalanced workload. It consists of two nhoncommumggaiO s jobs and one com-
municating180 s job that are arranged so that alternating nodes run forrdifteamounts
of time, taking a total ofi80 s per processor when aggregated over all processors. (See
Figure 5.) An optimal scheduler should pack all these jolhabthe total turnaround time
does not exceed that of the third job when run in isolatiosasng zero context-switch
overhead). The following table again shows the perform&miceach algorithm.
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Figure 6. Balanced and imbalanced job combination

| Algorithm | Job 1| Job 2| Job 3 | Turnaround | Mean Responsd

FCFS 60| 121| 301 301 161
GS 185| 186| 308 308 226
SB 144 | 142| 244 244 177
FCS 192| 193] 197 197 194

Once more, FCFS and GS exhibit similar turnaround time—timetiined run time of all
the jobs run in isolation. SB shows some ability to load-beésthe jobs, reducing the over-
all turnaround and response times, but since it lacks alddtianowledge of the processes’
requirements, it can only go so far. Job 3 still shows a sicgnifi slowdown 4 36%) when
compared to FCFS. With FCS, the situation is even better.stheduler classifies all the
processes d3C, except for the faster processes of job 3, which are cladsiBE. As such,
they receive priority in their time slot, and thus, the tatah time of job 3 suffers a slow-
down of =~ 9% from the interference of the other jobs, which pack neattyp ihe other
time slices. This approach not only reduces the turnarodirtbi® workload to~ 9% of
the optimal packing value (paying some price to overheaat) also minimizes the mean
response time, which is competitive with that of FCFS. A deoing of the jobs would not
affect FCS’ metrics, while it would worsen FCFS’ responseets. Time-sharing algorithms
are not as sensitive to job order, which becomes an advantagie the order is not known
in advance.

3.4 Balanced and Imbalanced Job Combination

The last synthetic scenario is designed to expose the ati@nabetween synchronous
balanced and imbalanced jobs in a mixed workload. This tsimanight occur when a
machine is running more than one type of application or witfesknt data sets that have
different load-balancing properties. Even if the workl@da parallel machine is composed
of only balanced applications, this situation can occurmever job arrivals and sizes are
dynamic. For example, in a time-sharing system, differextas might run different num-
bers of jobs, thus creating a dynamic imbalance.

We encapsulate some of this complexity in a set of three jdlbe first two are com-
plementary imbalanced and identical to jobs 1 and 2 of thergkscenario (Section 3.2).
The third job is the basic, load-balanced job used in the $eshario (Section 3.1). The
following table shows the run time results for the four alons.



| Algorithm | Job 1| Job 2 | Job 3 | Turnaround | Mean Responsd

FCFS 120| 241| 302 302 221
GS 185| 185| 305 305 225
SB 213| 214 276 276 234
FCS 252 | 253| 155 253 220

Once more, batch and gang scheduling demonstrate simit@rpance. Shuffling the
job order so that job 3 is actually first would have improved thsponse time for FCFS
even further, to arountB1 s.

Another weakness of SB scheduling is exposed in this seen&@mce it gives an equal
treatment to all processes, fine-grained jobs suffer froemitbise generated by other jobs.
This effect is clearly shown in the performance of job 3 un8Br which is much worse
than that under FCS. Since FCS identifies the special regaines of job 3, it classifies it
asCS As such, it receives dedicated time slots that allow it tmownicate effectively,
hindered only by context-switch overhead. The overall ltasita decrease in turnaround
time and mean response time when compared to the othertalgasri

Summary

These basic benchmarks demonstrate the inherent stremgtheeaknesses of multi-
programming vs. batch schedulers and dynamic vs. rigiddidbes. In all cases, FCS’
performance was close to or better than that of the schegalgorithm most suited to
each scenario, attesting to its flexibility. The next sectgplores how these properties are
translated to two actual scientific applications.

4. Application Tests

For a more realistic experimental evaluation, we compaf&8 te the other three schedul-
ing algorithms when running two real MPI applications. Thsults presented in this sec-
tion describe three scenarios based on different job mivesfine-grain applications, two
medium-grain applications, and a combination of both. Tg@ieations used in this section
are SWEEP3D and SAGE, both running on 128 process@s.used a multiprogramming
level of 2 for these experiments to reflect the fact that tiheskapplications have significant
memory footprints, preventing the accommodation of masyeinces of these applications
entirely in physical memory. In addition, because of theliappons’ large working set and
the cluster’s susceptibility to noise when using four peswgs per node [20], these experi-
ments were run with a time slice 260 ms to amortize some of the context-switching cost.
Still, some overhead was noticeable for all the scheduliggrathms—and especially with
the explicit algorithms (GS and FCS).

SWEEP3D: SWEEP3D [10] is atime-independent, Cartesian-grid, shggbup, discrete
ordinates, deterministic, particle transport code takemfthe ASCI workload. SWEEP3D
represents the core of a widely used method of solving th&Balnn transport equation.
Estimates are that deterministic particle transport actsofor 50% to 80% of the execution
time of many realistic simulations on current DOE systenWEEP3D is characterized by
very fine granularity (averaging 1 ms in the configuration tested) and a nearest-neighbor

SThese two applications are representative of the ASCI voakl



communication stencil. We used a realistic input file cosipg 10,000 cells per processor
and takinga~ 270 M B of memory per process. We increased the number of iterations
from 12 to 600 so that a single run toek 111 s®. The combination of this data set and
architecture represents a rather extreme case of a loaddeal, fine-grained application,
as different configurations and architectures typicalgutein coarser granularities [8, 9].

We ran a simple workload consisting of two identical SWEER@DS (similar to the first
synthetic scenario of the previous section). We presentethdts in the same format.

| Algorithm | SWEEP3D 1| SWEEP3D 2| Turnaround | Mean Responsd

FCFS 111 222 222 167
GS 232 232 232 232
SB 275 275 275 275
FCS 244 244 244 244

All the multiprogramming algorithms are hindered by therad associated with multi-
tasking between highly synchronous jobs with an active wgyket. Context-switch over-
head, interruptions to synchronous communication, caclshifig, and skew caused by
noise (and exacerbated by the fine granularity of SWEEP3D3asaa per-job slowdown
of ~ 2.25% and= 4.95% for GS and FCS respectively, compared to batch scheduling.
FCS suffers from relatively high reclassification overhdaetause of the high number of
communication events. In the case of GS and FCS, there istesuccasional interruption
by the NM, which is awakened to perform the context switch.il&/8B has the potential
for less overhead, since the NM does not intervene with thedding, the lack of ex-
plicit coscheduling is shown to have a significant effect WiEEP3D’s performance, with
a per-job slowdown 0f1.93% compared to FCFS.

SAGE: SAGE (SAIC’s Adaptive Grid Eulerian hydrocode) is a multiginsional (1D,
2D, and 3D), multimaterial, Eulerian hydrodynamics codéweidaptive mesh refinement
(AMR) [11]. SAGE comes from the LANL Crestone project, whgeal is the investigation
of continuous adaptive Eulerian techniques to Stockpibevatdship problems. SAGE has
also been applied to a variety of problems in many areas ehseiand engineering includ-
ing water shock, stemming and containment, early time fdasign, and hydrodynamics
instability problems.

SAGE is more load imbalanced than SWEEP3D, which implies #&E does not al-
ways follow the classic BSP model as the granularity varoesss processes and over time.
The effective granularity is thus much coarser than the egatpn granularity. While most
processes reach a synchronization point ebery or less, because of unequal partitioning
of the input data, they are often waiting for their peers féevwa morems, so the average
granularity over all processes is closetars. Most such "computational” fragments are
not large enough to fill effectively with another processg, & still large enough to clas-
sify =~ 75% of the processes as claBs Once more, we ran two concurrent copies of SAGE
with the "timing_h" input file, (using35 M B/process) and we present the results in the
following table:

This does not change the application behavior, but mereleseo increase its run time artificially to
more than a few seconds.



| Algorithm | SAGE 1 | SAGE 2 | Turnaround | Mean Responsd

FCFS 126 252 252 189
GS 260 261 261 261
SB 274 276 276 275
FCS 264 264 264 264

The different algorithms’ performance in this workload wisdess disparity than with
SWEEP3D, indicating that SAGE lends itself rather well taltipuogramming. When one
compares this workload to the previous one, the most obulifterence is the relatively
coarser granularity of SAGE, which lowers the performaneegity for context switching.
Another mitigating factor is the occasional success of theadic algorithms (SB and
FCS) in overlapping some computation and communicatioowfeting, load-imbalanced
processes.

Combined Workload: In the last part of this section, we analyze a workload coragos
of both SAGE and SWEEP3D—somewhat similar to the workloatheffourth synthetic
scenario. This workload offers the opportunity to see hosvttiio different types of jobs
interact when scheduled together, which is relevant forynsaipercomputing centers. Both
jobs ran for a similar amount of time in isolation (after astjopg SWEEP3D), and were
launched together. The results are presented in the faltpteible:

| Algorithm | SAGE | SWEEP3D | Turnaround | Mean Responsé

FCFS 126 238 238 182
GS 245 240 245 243
SB 240 272 272 256
FCS 235 224 235 230

Once more, this scenario demonstrates the adverse effexindéxt-switch overhead
on gang scheduling (compared to batch scheduling), anddghéisant slowdown a fine-
grained application (SWEEP3D) can suffer from the lack afrdmnation in SB. FCS fares
somewhat better than both and slightly better than batcbdsdimg, since on the one hand,
it can coschedule SWEEP3D explicitly, and on the other, medes of the small amount
of load-imbalance in SAGE to fill the computational holes. mgded in the synthetic ex-
periments and on other hardware configurations, when tlteitobalance is higher or the
context-switch overhead is lower, FCS can significantlyetfbrm the other scheduling al-
gorithms. A situation in which load imbalances are congyameated and changed because
of a more realistic, dynamic workload is even more condutvienproved utilization with
FCS. This scenario is discussed in the next section.

5. Dynamic Workloads

The workloads evaluated so far were relatively simple aaticstMany if not most real
HPC centers run more complicated workloads, with diffejebs of different sizes and
run times arriving dynamically. With these machines, isssiech as queue management,
scheduling algorithms and multiprogramming levels, iat#ions between jobs and specific
hardware configuration have significant implications. Aaglet! evaluation of these aspects
was reported in previous work [7]. In this section, we repi@the main results, namely,
the effect of offered load on an actual cluster running atiredly long, dynamic workload
under the four scheduling algorithms.



5.1 Workload and Methodology

We used a workload of 1000 jobs, whose size, run time, andahatimes are modeled
using an accurate workload model [7, 15]. We use this work®ma mold for two sets of
experiments, with synthetic and real applications resypelgt For each set, we created a
series of workloads with varying offered load by multiplgijob-arrival times by a constant.

The first set ran the same synthetic application as the preaection, but with different
job sizes and run times as determined by the model, and witreit granularity and
communication pattern, chosen randomly. The second seisted of multiple instances of
SAGE and SWEEP3D with input files chosen randomly from a ssteharios representing
different physics problems. This choice meant that we coatatontrol the run time of each
job, only its arrival time. Moreover, there was less variatyun times in the second set. On
the other hand, the applications were real and producedseptative calculations, making
the internal communication and computation patterns meméstic than those of the first
set. We ran both sets with four algorithms, FCFS with baak{jll GS, SB, and FCS. The
first set, having no real memory constraints, was run with ipragramming level (MPL)
of 6, while the second set was limited to an MPL of 2 to avoidgitgl memory overflow,
which would have required a memory-aware scheduling atgor[18].

To estimate the offered load for each workload, we first meskthe run time of each
job in isolation. The offered load was then calculated asr#iti® between the requested
resources (the sum of all jobs’ run time multiplied by thézes) and the available resources
(the number of processors multiplied by the last arrivaklimAccepted load could not be
measured precisely, but could be indirectly inferred fréva &ccumulation of jobs in the
queue [8]. Additionally, we stopped the experiments at eghbrithm’s saturation point,
as witnessed by a relatively constant accepted load.

We used EASY backfilling [22] for queue management, which sla®wvn to be very
effective in lowering the average response time, espgd@ilshort jobs and batch schedul-
ing [16]. Since it is also beneficial for multiprogrammindhsdulers, we used EASY for
them as well, multiplying the requested run time by the MPlestimate run and reser-
vation times [7]. The first experiment set was executed oua alifferent LANL cluster
(Crescendy using 32 Pentium-IIl processors (16 nodes), and the sksenhwas executed
on 64 processors of Wolverine (16 nodes).

5.2 Results and Discussion

Figures 7(a) and 7(b) show the average response time and®lowrespectively, for
different offered loads and scheduling algorithms for tihgt §et. The near-linear growth
in response times with load is the result of our method of v@ryoad, by multiplying run
times of jobs by a load factor. Both metrics suggest that F&%pms consistently better
than the other algorithms, and FCFS seems to perform censlisivorse than the others.
Also, FCFS saturates at a load=f78%, while FCS supports a load of up &% in this
set.

To understand the source of these differences, we lookée atédian response time and
slowdown in Figures 7(c) and 7(d) respectively. A low medsponse time suggests good
handling of short jobs, since most jobs are comparativetytsi©n the other hand, a small
median slowdown indicates preferential handling of longsjosince the lowest-slowdown
jobs are mostly long jobs that are less affected by wait tinaa tshort jobs. FCFS shows
a high average slowdown and a small median slowdown. Thidtreslicates that while
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Figure 7. Performance as a function of offered load—synthet ic applications

long jobs benefit from shorter waiting times (driving the naedslowdown lower), short
jobs suffer enough to raise the average response time and@hn significantly.

To verify these biases, we looked at the cumulative distigipufunction (CDF) of re-
sponse times for the shorter 500 jobs and longer 500 jobgaeha as defined by their
run time in isolation (Fig. 8). The higher distribution ofshjobs with FCS attests to the
scheduler’s ability to “push” more jobs toward the shoresponse times. Similarly, FCFS’
preferential treatment of long jobs is reflected in Fig. 8(b)

Figure 9 shows the response time and bounded slowdown sdsulthe second set,
running SAGE and SWEEPS3D. The differences between the thmeesharing algorithms
is not as dramatic as in the first set, mostly because the IbRir allows less room to
express the differences between the algorithms. Still, B&$orms a little better than
the other algorithms, particularly in the higher loads. Fl® saturates at an offered load
higher than that of the other algorithms, while FCFS saéigrat a very early point compared
to the other algorithms and previous set.

We believe the reason for FCS’ good performance is its ghihtadapt to various sce-
narios that occur during the execution of the dynamic wa#ldn particular, FCS always
coschedules a job in its first few seconds of running (unliBg, &nd then classifies it
according to its communication requirements (unlike Gi5.jbb is long and does not syn-
chronize frequently or effectively, FCS will allow othely®to compete with it for machine
resources. Thus, FCS shows a bias toward short jobs, atiotivem to clear the system
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early. Since short jobs dominate the first workload, this l@etually reduces the overall
system load and allows long jobs to complete earlier thah &% or SB. The opposite can
be said of the FCFS scheme, which shows a bias toward longgotze they do not have
to compete with other jobs.

6. Conclusions

An important problem with traditional parallel job-schdéidg algorithms is their spe-
cialization for specific types of workloads, which resulispgoor performance when the
workload characteristics do not fit the model for which thegrevdesigned. For exam-
ple, batch and gang scheduling perform poorly under dynamioad-imbalanced work-
loads, whereas implicit coscheduling suffers from perfamge penalties for fine-grained
synchronous jobs. Most job schedulers offer little adamtato externally and internally
fragmented workloads. The result is reduced machine atibm and response times.

We designed Flexible CoScheduling (FCS) to alleviate tpeskblems specifically by dy-
namically adjusting scheduling to varying workload andlegpion requirements. FCS was
fully implemented on top of STORM and tested on three cluatehitectures using both
synthetic and real applications, static and dynamic wadt$o The results clearly show that
FCS deals well with both internal and external resourcenfigfation, and is competitive
with batch scheduling, gang scheduling, and implicit cesitting. The performance ad-
vantages of FCS over other algorithms in the more realidiinamic workloads is rather
significant: FCS saturates at an offered load approximdi®¥s higher than that of back-
filling for synthetic applications, and 54% higher for sdiGa applications. The difference
in saturation compared to gang scheduling and implicit kkedaling is less dramatic but
still favors FCS. In all the dynamic scenarios but one, FCSopas equally well or better
than the other algorithms in terms of response time and beiskbwdown.
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