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Abstract

Fine-grained parallel applications require all their pro-
cesses to run simultaneously on distinct processors to
achieve good efficiency. This is typically accomplished by
space slicing, wherein nodes are dedicated for the duration
of the run, or by gang scheduling, wherein time slicing is
coordinated across processors. Both schemes suffer from
fragmentation, where processors are left idle because jobs
cannot be packed with perfect efficiency. Obviously, this
leads to reduced utilization and sub-optimal performance.
Flexible coscheduling (FCS) solves this problem by moni-
toring each job’s granularity and communication activity,
and using gang scheduling only for those jobs that require
it. Processes from other jobs, which can be scheduled with-
out any constraints, are used as filler to reduce fragmenta-
tion. In addition, inefficiencies due to load imbalance and
hardware heterogeneity are also reduced because the clas-
sification is done on a per-process basis. FCS has been fully
implemented as part of the STORM resource manager, and
shown to be competitive with gang scheduling and implicit
coscheduling.

Keywords: Cluster computing, load balancing, job
scheduling, gang scheduling, parallel architectures, hetero-
geneous clusters, STORM

1. Introduction

Workstation clusters are steadily increasing in both size
and number. Although cluster hardware is improving in
terms of price and performance, cluster utilization remains
poor. Load imbalance is arguably one of the main factors
that limits resource utilization, in particular in large-scale
clusters [3]. Load imbalance can have a marked detrimen-
tal effect on many parallel programs. A large part of High�This work was supported by the U.S. Department of Energy through
Los Alamos National Laboratory contract W-7405-ENG-36.

Performance Computing (HPC) software can be modeled
using the bulk-synchronous parallel (BSP) model. In this
model a computation involves a number ofsupersteps, each
having several parallel computational threads that synchro-
nize at the end of the superstep [17, 5, 10]. A load imbal-
ance can harm the performance of the whole parallel appli-
cation because each thread of computation requires a dif-
ferent amount of time to complete, and the entire program
must wait for the slowest thread before it can synchronize.
Since these computation/synchronization cycles are poten-
tially executed many times throughout the lifetime of the
program, the cumulative effect on the application run time
and the system resource utilization can be quite high.

Load imbalance has two main sources: application im-
balance and heterogeneity of hardware resources. Applica-
tion load imbalance occurs when different parallel threads
of computation take varying times to complete the super-
step. This can occur either as a result of poor programming,
or more typically, by a data set that creates uneven loads on
the different threads.

Even when using well-balanced software load imbal-
ances can occur. This can happen, for instance, when the
compute nodes are not entirely dedicated to the parallel
computation because they are also being used for local user-
or system-level programs. This uneven taxing of resources
creates a situation where some parts of the parallel program
run slower than others, and a load imbalance occurs [7].

Load imbalance can also be generated by heterogeneous
architectures in which different nodes have different compu-
tational capabilities, different memory hierarchy properties,
or even a different number of processors per node. For ex-
ample, this may happen in computing centers that buy pro-
cessing nodes over a period of time, thus taking advantage
of technological improvements, or in grid computing.

The traditional approach to this problem is to tackle ap-
plication load imbalance at the application level: the pro-
grammer tries to balance the resources by changing the
structure of the parallel program. This approach is usu-



ally time consuming and yields diminishing returns after
an initial phase of code restructuring and optimizations; in
fact, there are problems that are inherently load-imbalanced.
This approach is also not economically feasible with legacy
codes. For example, the Accelerated Strategic Computing
Initiative (ASCI) program [2] invested more than a billion
dollars in the last few years in parallel software, with a
yearly increase of several hundreds of millions of dollars.

An alternative approach is to attack load imbalance at the
system level. Rather than optimizing a single parallel job,
we can coschedule (time-slice on the same set of proces-
sors) multiple parallel jobs and try to compensate for the
load imbalance within these jobs. Ideally, we would like to
transform a set of ill-behaved user applications into a single
load-balanced system-level workload. This approach has
the appealing advantage that it does not require any changes
to existing parallel software, and is therefore able to deal
with existing legacy codes. For example, coscheduling al-
gorithms such as Implicit Coscheduling (ICS) [1] can po-
tentially alleviate load imbalance and increase resource uti-
lization. However, ICS is not always able to handle all job
types because it cannot rely on global coordination.

In this paper we show that it is possible to substantially
increase the resource utilization in a cluster of workstations
and to effectively perform system-level load balancing. We
introduce an innovative methodology that can dynamically
detect and compensate for load imbalance, called Flexi-
ble CoScheduling (FCS). Dynamic detection of load imbal-
ances is performed by (1) monitoring the communication
behavior of applications, (2) defining metrics for their com-
munication performance that try to detect possible load im-
balances, and (3) classification of the applications according
to these metrics. On top of this, we propose a coscheduling
mechanism that uses this application classification to make
scheduling decisions. The scheduler attempts to coschedule
processes that would most benefit from it, while schedul-
ing other processes to increase overall system utilizationand
throughput. A specific application that suffers from load im-
balances will not complete faster with this scheduler com-
pared to other schedulers. Obviously, any given application
gets the best service when running by itself on a dedicated
set of nodes, as when running in batch mode. But this can
block other jobs. The proposed scheduler will prevent each
job from wasting too many system resources, and the overall
system efficiency and responsiveness will be improved.

We demonstrate this methodology with a streamlined im-
plementation on a resource manager, called STORM [6].
The key innovation behind STORM is a software architec-
ture that enables resource management to exploit low-level
network features. As a consequence of this design, STORM
can enact scheduling decisions, such as a global context
switch or a heartbeat, in a few hundreds of microseconds
across thousands of nodes. An important innovation in FCS

is the combination of a set of local policies with the global
coordination mechanisms provided by STORM, in order to
coschedule processes that have a high degree of coupling.

Finally, we provide an extensive experimental evalu-
ation which ranges from simple workloads that provide
insights on several job scheduling algorithms to experi-
ments with real applications representative of the Acceler-
ated Strategic Computing Initiative (ASCI) workload. We
evaluate FCS by running different mixes of test programs
on a 32-node/64-processor cluster using different sched-
ulers. Specifically, we compare the performance achieved
by FCS with that of first-come-first-served batch schedul-
ing (FCFS), gang scheduling (GS), local scheduling with
busy waiting, and local scheduling with spin blocking (SB),
which is very similar to ICS [1] in this context. Different
schedulers provide the best performance for different job
mixes. However, in all the cases tested, FCS provided essen-
tially the same performance as the best other scheduler. This
testifies to its flexibility, its ability to identify the character-
istics of the workload applications, and its ability to make
good scheduling decisions based on this identification.

2. Flexible Coscheduling

To address the problems described above we propose
a novel scheduling mechanism called Flexible CoSchedul-
ing (FCS). The main motivation behind FCS is the im-
provement of overall system performance in the presence
of heterogeneous hardware or software, by using dynamic
measurement of applications’ communication patterns and
classification of applications into distinct types. FCS is
implemented on top of STORM [6], which allows both
for global synchronization through scalable global context
switch messages (heartbeats) and local scheduling by a dae-
mon run on every node, based on their locally-collected in-
formation.

2.1. Process Classification

FCS employs dynamic process classification and sched-
ules processes using this class information. Processes are
categorized into one of three classes (Figure 1):

1. CS(coscheduling): These processes communicate of-
ten, and must be coscheduled (gang-scheduled) across
the machine to run effectively, due to their demanding
synchronization requirements.

2. F (frustrated): These processes have enough synchro-
nization requirements to be coscheduled, but due to
load imbalance, they often cannot make full use of
their allotted CPU time. This load-imbalance can result
from any of the reasons detailed in the introduction.
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Figure 1. Decision tree for process classifica-
tion

3. DC (don’t-care): These processes rarely synchronize,
and can be scheduled independently of each other with-
out penalizing the system’s utilization or the job’s per-
formance. For example, a job using a coarse-grained
workpile model would be categorized asDC. We can
also define another class, calledRE (rate-equivalent),
for jobs that have little synchronization, but require
a similar amount of CPU time for all their processes.
However, detection ofREprocesses cannot be made in
run-time with local information only, so they are clas-
sified asDC instead, due to their low synchronization
needs.

Figure 1 shows the decision tree for process classifica-
tion. Each process is evaluated at the end of its timeslice.1 If
a process communicates at relatively coarse granularity, it is
either aDC or REprocess and classified asDC. Otherwise,
the process is classified according to how effectively it com-
municates when coscheduled: if effective, it is aCSprocess.
Otherwise, some load imbalance prevents the process from
communicating effectively, and it is consideredF. To esti-
mate the granularity and effectiveness of a process’s com-
munication operations, we modified the MPI library so that
blocking communication calls take time measurements and
store them in a shared-memory area, where the scheduling
layer can read them. Only synchronous (blocking) commu-
nication calls are monitored, since non-blocking communi-
cations do not require tight synchronization and should not
affect scheduling (thus a call to MPI_Isend(), for example,
is non-blocking, but MPI_Wait() is considered blocking).

Processes of the same job will not always belong to the
same class. For example, load imbalances or system het-
erogeneity can lead to situations in which one process needs
to wait more than another. To allow for these cases while

1In strict gang scheduling each job is assigned a dedicated timeslot, and
can only be run in that slot. FCS also assigns a timeslot to each job, but
local scheduling decisions might cause the job to run in other timeslots as
well, possibly sharing them with other jobs. We call the original timeslot
to which a process is mapped the “assigned timeslot”.

avoiding global exchange of information, processes are cat-
egorized on a per-process basis, rather than per-job.

This classification differs in two important ways from
the one suggested by Lee et al. [11]. First, we differenti-
ate between theCS andF classes, so that even processes
that require gang scheduling would not tax the system too
much if heterogeneity prevents them from fully exploiting
coscheduling. Second, there is no separate class forRE
applications. These are indistinguishable (from the sched-
uler’s point of view) fromDC processes, and are scheduled
in the same manner. The classification also differs from the
one suggested by Wiseman [18], which is based on CPU uti-
lization and is done at the job rather than the process level.

2.2. Scheduling

The principles behind scheduling in FCS are as follows:� CSprocesses should be coscheduled and should not be
preempted.� F processes should be coscheduled but can be pre-
empted when synchronization is not effective.� DC processes impose no restrictions on scheduling.

The infrastructure used to implement this scheduling al-
gorithm is based on the implementation of conventional
gang scheduling. A single system-wide manager, the
machine manager daemon (MM), packs the jobs into an
Ousterhout matrix. It periodically sends multi-context-
switch messages to the node managers (NM) instructing
them to switch from one slot to another. A crucial char-
acteristic is that the node managers do not have to comply:
they are free to overrule the MM’s directives based on their
local measurements and classifications.

Algorithm 1 shows the behavior of the node manager
upon receipt of a multi-context-switch message (note that
this is done independently on each node, without global co-
ordination). The basic idea is to allow the local operating
system the freedom to scheduleDC processes according to
its usual criteria (fairness, I/O considerations, etc.), as well
as to useDC processes to fill in the gaps thatF processes
create because of their synchronization problems. AnF pro-
cess that waits for pending communication should not block
immediately, but rather spin for some time to avoid unnec-
essary context switch penalties, as in ICS [1].

This scheduling algorithm represents a new approach to
dynamic coscheduling methods, since it can benefit both
from scalable global scheduling decisions and local deci-
sion based on detailed process statistics. Furthermore, it
differs from previous dynamic coscheduling methods like
DCS [16] and ICS in that:

1. A CSprocess in FCS cannot be preempted before the
time slot expires even if an incoming message arrives



Algorithm 1: Context switch algorithm for FCS

// context_switch: switch from one process to another process
// Invoked on each processing node by a global multi-context-switch
procedure context_switch (current_process, next_process)
begin

if current_process == next_process then return
if type of next_process is CS then

suspend whatever is running on this PE
run next_process for its entire time slot
use polling for synchronous communications

else
resume all processes belonging to this PE
let local OS scheduler schedule all processes
use spin-blocking in synchronous communications
if next_process is of type F, make sure it has

high enough priority over all other processes to
ensure that it will run uninterrupted.

end
end

for another process (processes classified asCS have
shown that it is not worthwhile to deschedule them in
their time slot, due to their fine-grain synchronization).
It should not yield the processor on blocking events un-
til its timeslice expires.

2. The local scheduler’s decision in choosing among pro-
cesses in theDC time slots andF gaps is affected by the
communication characterization of processes, which
could lead to less-blocking processes and higher uti-
lization of resources.

2.3. FCS Parameters

There are three types of parameters used in FCS:

1. Process characteristics measured by the MPI layer,
summarized in Table 1. The “reset” mentioned in the
table is typically a class change, but can also be trig-
gered by process age.

2. Parameters measured or determined by the scheduling
layer, also detailed in Table 1.

3. Algorithm constants, shown in Table 2, together with
the values we used for the experiments.

Measurements are taken whenever a process is scheduled
to run. For highly synchronized processes, we have ver-
ified that they typically make progress only in their as-
signed slots, so the measurements indeed reflect their be-
havior when coscheduled. For other processes the assigned
slot does not have a large effect on their progress, except
possibly forF processes that get a higher priority in their
slot. In these cases, it is used mainly to track the age of a
process using theslots andtslots counters.

Name Description
M
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Tpu CPU time since last reset (sec)Tomm Total time waiting for blocking commun.
to complete since last reset (sec)Comm Count of blocking commun. operations
since last resetTpu Average CPU time per commun.:TpuCommTomm Average wait per commun.:TommComm

S
ch

ed
u

lin
g lass EitherCS, F, or DCslots Assigned timeslots in current classtslots Total assigned timeslots since startg Granularity (sec):Tpu + Tomm

Table 1. FCS parameters

The following are some of the considerations that led us
to choose the values in Table 2:� Tslie was chosen to be low enough to enable interac-

tive responsiveness, and high enough to have no notice-
able overhead on the applications.25ms was shown to
be a good choice for these considerations in [6].� Tspin was chosen to be high enough to accommo-
date most communication operations (with the network
used in our experimental evaluation, these typically
complete in few tens of microseconds [13]), and low
enough so that resources are not wasted unnecessarily.� slotsMIN should allow enough time for some initial-



Name Description ValueTslie Timeslice quantum 25msTspin Spin time for spin-block communications 100�sslotsMIN Minimum value ofslots for process to be evaluated for a class change10DCthresh DC granularity threshold: above this value process isDC 1sCSthresh CSgranularity threshold: below this value process isCS 10msFthresh threshold of computation granularity to identify processes waiting for 0:75� CSthres
communication asFtslotsMAX Maximum value oftslots, after which a reset to classCS is forced 16384

Table 2. FCS constants and values used in experiments.
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Figure 2. Phase diagram of classification al-
gorithm

izations to occur, but without overly delaying proper
classification.� CSthresh: It was found that proper classification has
the most effect for processes with a granularity finer
than10ms or so (see below in Section 3).

2.4. Characterization Heuristic

Algorithm 2 shows how a process is reclassified. This
algorithm is invoked for every process that has just finished
running in its assigned timeslice, so this happens at deter-
ministic, predictable times throughout the machine. In this
way, if the time has arrived to reset a process to classCS, it
is guaranteed that all the processes of the same job will be
reset together (otherwise they might not really be cosched-
uled).

The algorithm can be explained with the aid of the phase
diagram shown in Figure 2. Recall that the granularityg is
defined as the average time per iteration, which is the sum
of the average computation time and the average commu-
nication time. Therefore constant granularity is represented

by diagonals from upper left to lower right.CSprocesses
are those that occupy the corner near the origin, whereas
DC processes are those that are far from this corner.F pro-
cesses are those that should be in the corner because of their
low Tpu, but suffer from a relatively highTomm.

2.5. Implementation Framework

We have implemented FCS and several other scheduling
algorithms in STORM [6], a scalable, flexible resource man-
agement system for clusters, implemented on top of various
Intel- and Alpha-based architectures. STORM exploits low-
level collective communication mechanisms to offer high-
performance job launching and management. The basic
software architecture is a set of daemons, one for the whole
machine (machine manager, or MM), and an additional one
for each node (node manager, or NM). This architecture
allows the implementation of many scheduling algorithms
by “plugging-in” appropriate modules in the MM and NM.
Thus, FCS was added to STORM with two relatively simple
enhancements: an addition to MPI to measure and export in-
formation on processes’ synchronous communication to the
NM, and a module in the NM that can translate this infor-
mation into a classification, and schedule processes based
on their class.

2.6. Implementation Issues

Measuring process statistics can be both intrusive and
imprecise if not done carefully. It is important to perform
the measurements with as little overhead as possible, with-
out significantly affecting or modifying the code. To re-
alize this goal, we implemented a lightweight monitoring
layer that is integrated with MPI. Synchronous communica-
tion primitives in MPI call one of four low-latency functions
to note when the process starts/ends a synchronous opera-
tion and when it enters and exits blocking mode. Applica-
tions only need to be re-linked with the modified MPI li-
brary, without any change. The accuracy of this monitoring
has been verified using synthetic applications for which the



Algorithm 2: Classification function for FCS

// re-evaluate, and possibly re-classify the process
// using FCS parameters and measurements
procedure FCS_reclassify
begin

if tslots mod tslotsMAX == 0 // Time for a reset:
reset_process and return // Changes class back to CS

if slots < slotsMIN
return // Not running long enough in current class

if g > DCthreshlass = DC // Coarse granularity
else if g < CSthreshlass = CS // Fine granularity
else if Tpu < Fthreshlass = F // Communication too slow
elselass = DC // Communicates well but infrequently

end

measured parameters are known in advance, and found to be
precise within0:1%.

The monitoring layer updates the MPI-level variables
shown in Table 1. These variables reside in shared memory,
so that the scheduler, which is a different process, can access
them without issuing a system call. While this mechanism
is asynchronous and there could be a lag between the actual
communication event and the time the scheduler gathers the
information, these parameters converge quickly to provide
an accurate picture of the process characteristics.

For counting communication events (Comm), we em-
ployed the following heuristic: multiple communication
events with no intervening computation are considered to
be a single communication event. This heuristic works very
accurately as long as the granularity of the process is greater
than that of the local operating system — otherwise the
computation intervals are too short to be registered by the
operating system. In our implementation, the finest granu-
larity that can be detected is� 2ms, although this value can
be changed by modifying the Linux HZ constant.

Another measurement issue is the time the process
spends spinning while waiting for communication to termi-
nate. This time is accounted for and subtracted fromTpu,
since it can effect the precision for fine-grained jobs.

3. Experimental Results

This section presents the experimental results compar-
ing the performance of FCS to that of four other scheduling
algorithms. Two baseline algorithms are first-come-first-
served (FCFS) and local scheduling, which represent two
extremes: a completely dedicated job assignment versus a
completely shared, uncoordinated one. We also compare
to gang scheduling (GS) and spin-block (SB). SB is very

similar to implicit coscheduling (ICS) [1], and representsan
effective way to time-share a machine without global co-
ordination as in gang scheduling. With SB, processes that
wait for synchronous communication poll for a given in-
terval, and only if the communication has not completed by
this time they block (in contrast, gang and locally-scheduled
processes always busy-wait). In this way, processes tend to
self-synchronize across the job, so relatively good coordi-
nation is achieved without the need for a global mechanism.
In ICS the spin time can be adaptive, thus decreasing ineffi-
ciencies resulting from spinning too long. In our implemen-
tation of SB we chose a small constant time for spinning
(100�s), so that very little time is wasted. Note that typical
communication operations with the Quadrics interconnect
complete in far less than this time (� 10� 50�s), so if two
communicating processes are coscheduled, they are almost
guaranteed to complete the communication within this time
interval.

3.1 Experimental Setup

The hardware used for the experimental evaluation was
the “crescendo” cluster at LANL/CCS-3. This cluster con-
sists of32 compute nodes (Dell 1550), one management
node (Dell 2550), and a128-port Quadrics switch [13] (us-
ing only 32 of the128 ports). Each compute node has two1 GHz Pentium-III processors,1 GB of ECC RAM, two
independent66MHz/64-bit PCI buses, a Quadrics QM-400
Elan3 NIC [13, 14, 15] for the data network, and a 100 Mbit
Ethernet network adapter for the management network. All
the nodes run Red Hat Linux 7.3 with Quadrics kernel mod-
ifications and user-level libraries. We further modified the
kernel by changing the default HZ value from100 to 2048.
This has a negligible effect on operating system overhead,



but makes the Linux scheduler re-evaluate process schedul-
ing every� 500�s. As a result scheduling algorithms (in
particular SB and Local) become more responsive [4].

3.2 Verification Tests

In this section we analyze the behavior of FCS under var-
ious synthetic benchmarks, and compare it to the other four
scheduling algorithms. For each scenario, we describe its
setup, show the run time of each job in the workload and
the total turnaround time, and analyze the results. The best
turnaround time (from the launch of the first job to the end
of the last) in each table is shown in boldface.

All scenarios use a simple workload of 2-4 jobs with
the same arrival time, using only 2 of the cluster’s nodes.
The basic “building-block” job has four processes (running
on two nodes), communicating in a ring pattern every5ms,
which was chosen to be a granularity fine enough to be rep-
resentative of scientific applications [8]. Running such a
job in isolation takes approximatively60s, but could vary
by up to0:1% due to noise. The benchmarks were run sev-
eral times and produced relatively small variations in results
(typically less than1s in total runtime).

3.2.1 Fine-grained jobs

In the first scenario, we run two identical jobs concurrently.
Both jobs are fine-grained, requiring to be coscheduled to
communicate effectively. The following table presents the
results for running this workload, giving the termination
time in seconds for each job and for the complete set:

Algorithm Job 0 Job 1 Max
FCFS 60.00 119.95 119.95
Local 234.79 230.95 234.79
GS 118.08 118.06 118.08
SB 125.36 125.38 125.38
FCS 118.34 118.39 118.39

Since fine-grained, balanced jobs require a dedicated en-
vironment to proceed effectively, FCFS scheduling and GS
offer the best performance. Remarkably, GS even outper-
forms FCFS by a small margin. This is the result of a lim-
ited amount of overlap between the computation of one job
and the communication of the other, which happens right
after a context switch, as communication is handled by the
Elan NIC independent of what the CPU is doing. Both local
and SB scheduling perform poorly in this scenario, due to
the lack of global coordination (SB actually performs much
worse in relative terms as the granularity becomes finer).
FCS exhibits performance comparable to that of GS, since
all processes are classified asCS, and are therefore gang-
scheduled. Still, total turnaround time is slightly higherthan
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Figure 3. Test scenario of two load-
imbalanced jobs

that of GS, due to the added overhead of process classifica-
tion.

3.2.2 Load-imbalanced jobs

This scenario represent a simple load-imbalance case with
two complementing jobs, as seen in Figure 3. Processes 0
and 1 (using 0-based counting) of job 0 compute twice as
much per iteration as processes 2 and 3, while for job 1 the
situation is reversed. The faster processes compute the same
amount as in the previous scenario.

Algorithm Job 0 Job 1 Max

FCFS 116.57 233.61 233.61
Local 301.82 300.79 301.82
GS 231.36 231.91 231.91
SB 177.86 179.49 179.49
FCS 176.26 177.64 177.64

This scenario exposes the inefficiency in running load-
imbalanced jobs in dedicated mode. Both FCFS and GS
take almost twice as much time to run each job (compared
to the previous scenario), whereas the total amount of com-
putation per job is only increased by 50% (the ratio of to-
tal runtime is not exactly 2:1, since the computation rep-
resents only a part of the total runtime. Communication
time remains largely unchanged). Local scheduling per-
forms poorly, because the jobs are fine-grained. SB does
a much better job at load-balancing, since the short polling
interval allows the algorithm to yield the CPU when pro-
cesses are not coscheduled, giving the other job a chance
to complete its communication and wasting little CPU time.
FCS classifies the first job’s processes asDC, DC, F andF
respectively, and the second job’s asF, F, DC, andDC. The
resulting scheduling is effectively the same as SB’s, with
the exception thatF processes are prioritized when their as-
signed slot is the active one. The total turnaround time is
similar to SB’s, and represents maximum resource utiliza-
tion: both jobs complete after running for 150% of the time
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it took the previous scenario, which corresponds to the new
amount of work.

3.2.3 Complementing jobs

This scenario demonstrates the ability of various algorithms
to pack jobs efficiently in an extremely imbalanced work-
load. It consists of one four-process job and three two-
process jobs running on PEs 2 and 3 (see Figure 4). All
the jobs running on PEs 2 and 3 compute the same basic
amount as in the previous scenarios, but processes 0 and 1
of the first job compute four times as much per iteration. An
optimal scheduler should pack all these jobs so that the total
turnaround time does not exceed that of the first job when
run in isolation. This packing is shown in the figure.

Alg. Job 0 Job 1 Job 2 Job 3 Max

FCFS 231.25 58.99 59.60 58.97 408.26
Local 356.14 233.13 233.58 233.73 356.14
GS 404.72 232.11 232.21 232.19 404.72
SB 261.15 229.20 229.22 229.22 261.15
FCS 236.33 233.44 233.54 231.96 236.33

Once more, FCFS and GS exhibits similar turnaround
time — the combined time of all the jobs run in isolation.
Local scheduling does slightly better, since the large ’holes’
created by job 0 on PEs 2 and 3 are partially filled with
the other jobs, at the expense of job 0’s turnaround time.
SB shows some ability to load-balance the jobs, but since it
lacks a detailed knowledge of the processes requirements, it
can only go so far — Job 0 still takes about 13% more time
to run than it should under an optimal scheduler (decreasing
further in performance as the load-imbalance grows). FCS
classifies all the processes asDC, except for the processes
2 and 3 of job 0 which are classified asF. As such, they
receive priority in their time slot, and thus the total runtime
of job 0 is hardly affected by the existence of other jobs,
which pack neatly into the other timeslices. In fact, the total

turnaround time of this workload with FCS is within 2% of
the optimal value of 231s.

From this point on, local scheduling will no longer be
considered since it does not provide any advantage over the
other algorithms.

3.3 Exploring the Parameter Space

In another set of experiments we performed a compre-
hensive survey of the relevant parameter space, defined by� Computation granularity from4ms to1:024s.� Variability from 0 to�100%, measured relative to the

granularity.� Scheduling algorithm (GS, FCFS, FCS, and SB).� Communication pattern: nearest neighbor grid (NN)
and all-to-all, represented by a barrier.

In all cases, 4 identical jobs were executed on all 32
nodes/64 processors. The results are shown in Figure 5. The
main points can be summarized as follows:� GS and FCFS exhibit similar performance, with linear

degradation as variability grows, because idle time is
simply wasted. To reduce clutter, FCFS results are not
shown in the graphs.� SB and FCS can make use of idle time by scheduling
other processes. Therefore their degradation with vari-
ability is much less pronounced. Both also improve as
the granularity grows.� FCS converges to GS and FCFS for the very fine gran-
ularity, regardless of variability. This is probably be-
cause it classifies all processes as CS, and thus degener-
ates to GS. Additional measurements in which the vari-
ability was increased up to 200% indeed showed that
FCS begins to perform better than GS and FCFS when
the total granularity surpasses theCSthresh threshold.� For very fine granularity, SB is better than the other
schemes when the variability is high, but worse when it
is low. The reason that it performs better than FCS for
low granularity and high variability is that FCS insists
on gang scheduling unnecessarily as explained above.
This implies that our threshold for classifying asCS
may be too high, as it is possible to benefit from the
variability for finer granularities. The reason why SB is
not so good with fine granularity and low variability is
that it wastes time spinning for unscheduled processes;
in the other schemes, jobs are coscheduled so this does
not happen. At high granularity and variability FCS
manages to use idle resources better than SB.� For 0 variability, SB converges to FCFS, and FCS con-
verges to GS, which is marginally better.
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Figure 5. Results for exploration of the parameter space

3.4 Applications Testing

This section presents results for two scenarios based on
real applications: one composed of fine-grained and bal-
anced jobs and another with load-imbalanced jobs. The ap-
plications used in this section are SWEEP3D and SAGE.
They were run on the entire cluster, using all 32 nodes/64
processors.

SWEEP3D [8] is a time-independent, Cartesian-grid,
single-group, discrete ordinates, deterministic, particle
transport code taken from the ASCI workload. SWEEP3D
represents the core of a widely used method of solving the
Boltzmann transport equation. Estimates are that determin-
istic particle transport accounts for50 � 80% of the exe-
cution time of many realistic simulations on current DOE
systems. SWEEP3D is characterized by a fine granularity
and a nearest-neighbor communication stencil. In the con-
figuration tested each compute step takes� 3:5ms, and the
total runtime of the application is� 48s. Our workload con-
sists of four concurrent copies of SWEEP3D with the same
input data set. Since results can vary by a few percents, we
ran each workload several times and computed the median
of those. The total turnaround time for this workload and
different scheduling algorithms is shown in the following
table:

Algorithm Max
FCFS 193.03
GS 194.57
SB 208.47
FCS 197.49

Just as for the synthetic application of Section 3.2.1, we
can see that FCFS and GS perform similarly, providing op-
timal performance for fine-granularity jobs. FCS performs

within 2% of these algorithms, paying a slight performance
hit for the classification overhead. SB is the slowest of the
lot, since it has no global coordination for such jobs. While
the performance difference in not very large in this case,
we may expect the gap to grow as granularity decreases for
other configurations.

SAGE (SAIC’s Adaptive Grid Eulerian hydrocode) is a
multidimensional (1D, 2D, and 3D), multimaterial, Eulerian
hydrodynamics code with adaptive mesh refinement (AMR)
[9]. The code uses second order accurate numerical tech-
niques. SAGE comes from the Los Alamos National Lab-
oratory Crestone project, whose goal is the investigation of
continuous adaptive Eulerian techniques to stockpile stew-
ardship problems. SAGE has also been applied to a variety
of problems in many areas of science and engineering in-
cluding water shock, stemming and containment, early time
front design, and hydrodynamics instability problems.

The test workload consisted of three copies of the pro-
gram, but with three different input files, representing dif-
ferent run times and load-imbalances. The following ta-
ble shows the runtime of each job under the different al-
gorithms:

Algorithm Job 0 Job 1 Job 2 Max
FCFS 39.24 125.36 220.16 220.16
GS 120.41 222.03 227.02 227.02
SB 124.22 189.95 200.46 200.46
FCS 112.9 194.95 205.81 205.81

Once more we can observe FCS’s ability to interleave load-
imbalanced jobs to improve system utilization and overall
job run time. It performs nearly as well as SB, and notice-
ably better than FCFS and GS, which cannot use the CPU-
time gaps created by the imbalanced jobs.

In general, we can see that FCS’s advantage for real



workloads is that it adapts well to different applications’
requirements and idiosyncrasies. FCS performs at near-
optimal performance and utilization in various kinds of sce-
narios, whereas existing algorithms are mostly tuned for
specific types of applications.

4. Conclusions and Future Work

Flexible coscheduling is designed to alleviate the inef-
ficiencies of gang scheduling. These include problems of
fragmentation, when jobs do not pack together to utilize all
processors, problems of load imbalance, where processes in
the same job place different loads on the processors, and
problems of heterogeneity, where processors do not provide
the same level of support to different processes. The solu-
tion is based on a classification of the processes according
to their needs and behavior, and dynamic scheduling based
on this classification. In particular, processes that do not
need or benefit from gang scheduling are simply not gang
scheduled, enabling more flexible and efficient use of the
processors.

FCS has been fully implemented on top of STORM, and
tested on a 32-node/64-processor system using both syn-
thetic and real applications. The results indicate that it is
competitive with FCFS scheduling, gang scheduling, local
scheduling, and local scheduling with spin-block synchro-
nization (similar to implicit coscheduling). In particular,
different test scenarios expose different strengths and vul-
nerabilities of the other schedulers. FCS was always either
the best performer or very close to the best.

In future work we intend to continue the development
and testing of FCS. One idea that has not yet been imple-
mented is to use dynamic spinning times for synchroniza-
tion. We are also planning to implement BCS [12] on top of
STORM, and compare the performance and benefits of FCS
relative to BCS. In addition, we plan to execute more tests
with more varied workloads.
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