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Abstract

Distinguishing transient blocks from frequently used
blocks enables servicing references to transient blocks from
a small fully-associative auxiliary cache structure. By in-
serting only frequently used blocks into the main cache
structure, we can reduce the number of conflict misses, thus
achieving higher performance and allowing the use of di-
rect mapped caches which offer lower power consumption
and lower access latencies. In this paper we use a sim-
ple probabilistic filtering mechanism that uses random sam-
pling to identify and select the frequently used blocks. Fur-
thermore, by using a small direct-mapped lookup table to
cache the most recently accessed blocks in the auxiliary
cache, we eliminate the vast majority of the costly fully-
associative lookups. Finally, we show that a 16K direct-
mapped L1 cache, augmented with a fully-associative 4K
filter, achieves on average 13% more instructions per cycle
than a regular 16K, 4-way set-associative cache, and even
∼7% more IPC than a 32K, 4-way cache, while consuming
70%-80% less dynamic power than either of them.

1 Introduction

The increasing gap between processor and memory
speeds witnessed in recent years has exacerbated the CPU’s
dependency on the memory system performance — and es-
pecially that of L1 caches with which the CPU interfaces
directly. One result of this ongoing trend is the increase
in the capacity of L1 and L2 caches, in an effort to bridge
the memory-processor gap and improve overall system per-
formance. This improvement, however, also increased the
power consumed by the caches — estimated at more than
10% of the overall power consumed by a general purpose
CPU [10], and up to 40% for embedded systems [3].

Today, as processor power consumption is also becom-
ing a major concern, the power-performance tradeoff is ever
more important [19]. This trend motivates researchers to
design more efficient caches, that can deliver the required
performance while maintaining the power budget.

In this paper, we claim that exploiting well-known work-
load characteristics may help alleviate this tradeoff. Specif-

ically, memory usage is known to be highly skewed, with
most references directed at a relatively small subset of the
address space. By identifying these references and servic-
ing them using power-efficient, direct-mapped L1 caches,
we can potentially increase CPU performance while at the
same time reducing the power consumption.

Direct-mapped caches are faster and consume less en-
ergy than set-associative caches typically used in L1 caches
[9]. However, they are more susceptible to conflict misses
than set-associative caches, thus suffering higher miss-rates
and achieving lower performance. This deficiency led
to abandoning direct-mapped L1 caches in favor of set-
associative ones in practically all but embedded processors.

The main contribution of this paper is based on analyz-
ing the memory reference workload and showing it can be
characterized using a statistical phenomenon calledmass-
count disparity[6]. Based on this observation, we design a
simple random sampling L1 filtered cache that uses a sim-
ple coin toss to preferentially insert frequently used blocks
into the cache proper, thus reducing the number of conflict
misses in the cache; the rest of the references are serviced
from the filter itself, which is a small fully-associative auxil-
iary structure. We show that this mechanism can harness the
speed and low power traits of direct-mapped caches to re-
duce the overall L1 power consumption, while still improv-
ing overall performance. While using an auxiliary structure
to filter memory references has been explored in the past
[11, 13, 14, 15, 16, 17, 20, 21, 25], as far as we know we
are the first to harness a simple statistical phenomenon to
filter both L1 reference streams efficiently enough to use a
direct-mapped structure for L1 caches, thus both reducing
power consumption and improving performance.

The remainder of this paper is organized as follows.
The next section describes the mass-count disparity phe-
nomenon and its application to characterizing L1 reference
streams. After introducing the concept of random sampling
of memory references (Sect. 3), we present our design for
a random sampling L1 cache in Sect. 4. Following the de-
scription of our methodology in Sect. 5, we explore the ef-
fects of random sampling on the reference stream (Sect. 6),
and the overall impact on power and performance (Sect. 7).
Finally, we review previous work related to this study (Sect.
8), and conclude in Sect. 9.
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Figure 1. Mass-count disparity plots for memory accesses in select SPEC2000 benchmarks (using theref input set),
superimposing the distributions of residency lengths and the number of references serviced by residencies of each
length, for 16K direct-mapped L1 caches. (data stream on thetop plots, instruction streams on the bottom). The
mass-count metrics are demonstrated on the vortex and facerec plots: the left arrow shows theW1/2 metric, the middle
double-arrow shows the joint-ratio point, and the right arrow shows the location of theN1/2 metric.

2 On The Skewed Distributions of Memory
Access Patterns

Locality of reference is one of the best-known phenom-
ena in computer workloads [5]. Temporal locality in partic-
ular occurs because of two properties of reference streams:
that some addresses are much more popular than others, and
that accesses are batched rather than being random [12].
Importantly, references to blocks that are seldom accessed
are also grouped together; we call such blockstransient.

A good way to visualize skewed popularity is by using
mass-count disparity plots [6]. These plots superimpose
two distributions. The first, which is called thecountdis-
tribution, is a distribution on addresses, and specifies how
many times each address is referenced. ThusFc(x) will rep-
resent the probability that an address is referencedx times or
less. The second, called themassdistribution, is a distribu-
tion on references; it specifies the popularity of the address
to which the reference pertains. ThusFm(x) will represent
the probability that a reference is directed at an address that
is referencedx times or less.

A problem with the above definition is that it consid-
ersall the references to each address, throughout the du-
ration of the run. But the relative popularity of different
addresses may change in different phases of the computa-
tion, so the instantaneous popularity may be more impor-
tant for caching studies. A possible solution is to use a cer-
tain window size, and only consider references made within
this window. This in turn suffers from a dependence on the

window size. Our solution is thereforenot to count all the
references to each address, but to count only the number
of references made between a single insertion of a block
into the cache, and its corresponding eviction — denoted
as thecache residency length. Thus, if a certain block is
referenced 100 times when it is brought into the cache for
the first time, is then evicted, and finally is referenced again
for 200 times when brought into the cache for the second
time, we will consider this as two distinct cache residencies
spanning 100 and 200 references, respectively, rather thana
single block with 300 references.

Fig. 1, shows the distributions of residency lengths and
that of the references serviced by each residency length for
4 select SPEC2000 benchmarks using a 16K direct-mapped
cache. The figure shows the distributions of both data and
instruction streams.

The mass-count disparity refers to the fact that the distri-
butions of residency lengths (count) and the number ofref-
erencesserviced by each residency length (mass) are quite
distinct, as shown in Fig. 1. The divergence between the dis-
tributions can be quantified by the joint ratio [6], which is a
generalization of the proverbial 20/80 principle: This is the
unique point in the graphs where the sum of the two CDFs
is 1. In the case of the vortex data stream graph for exam-
ple, the joint ratio is approximately 13/87 (double-arrow at
middle of plot). This means that 13% of the residencies,
and more specifically the longest ones, get a full 87% of the
references, whereas the remaining 87% of the residencies
get only 13% of the references. Thus a typicalresidencyis
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only referenced a rather small number of times (up to about
10), whereas a typicalreferenceis directed at a long cache
residency (one that is accessed from 100 to 10,000 times).

More important for our work are theW1/2 andN1/2 met-
rics [6]. TheW1/2 metric assesses the combined weight of
the half of the residencies that receive few references. For
vortex, these 50% of the residencies together get only 3%
of the references (left down-pointing arrow). Thus these
are instances of blocks that are inserted into the cache but
hardly used, and should actually not be allowed to pollute
the cache. Rather, the cache should be used preferentially to
store longer residencies, such as those that together account
for 50% of the references. The number of highly-referenced
residencies servicing half the references is quantified by the
N1/2 metric; for vortex it is less than 1% of all residencies
(right up-pointing arrow).

The existence of significant mass-count disparity has im-
portant consequences regarding random sampling. Specif-
ically, if you pick a block (or caching instance) at random,
there is a good chance that it is seldom referenced. That is
why random replacement is a reasonable eviction policy, as
has been observed many times [22]. But if you pick aref-
erenceat random, there is a good chance that this reference
refers to a block that is referenced very many times. Thus
random sampling of references may be expected to identify
those blocks that are most deserving to be inserted into the
cache. Such an insertion policy for L1 caches is the focus
of this paper.

We focus our investigation on L1 caches, since this is
the level at which the mass-count disparity phenomenon is
prevalent in its simplest form. More distant caches see a
reference stream filtered down by the L1 level, thereby blur-
ring the mass-count disparity.

3 Random Sampling of Memory References

The mass-count disparity implies that a small fraction of
all L1 cache residencies service the majority of references,
as described in Sect. 2. Servicing these residencies from a
fast, low-power, direct-mapped cache, while using an aux-
iliary buffer for short, transient residencies, can potentially
yield both performance and power gains, as the small num-
ber of long residencies will minimize the number of conflict
misses — to which direct-mapped caches are so susceptible.

We therefore need to design a residency length predic-
tor for identifying the longer residencies that should be in-
serted into the direct-mapped cache, distinguishing them
from shorter ones that should be serviced by an auxiliary
buffer, acting as a filter.

The naive approach to designing a residency predictor
would simply be to count the number of references made to
each block in the cache — i.e. the length of each residency
— and classify it aslong once it passes a certain threshold.
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Figure 2. The design of the random sampling filtered
cache.

However, this naive design is both susceptible to program
phases changes, as well as requires maintaining an access
counter for each cache line.

The alternative, based on the observations made in the
previous section, is to use random sampling. If we sample
references uniformly (a Bernoulli trial) with a relativelylow
probabilityP, short residencies will have a very low prob-
ability of being selected. But given that a single sample is
enough to classify a residency as a long one, the probability
that a residency is chosen aftern references is 1− (1−P)n.
This converges exponentially to 1 asn increases.

Importantly, implementing such a predictor does not re-
quire savinganystate information for the blocks, since ev-
ery random selection is independent of its predecessors.
The only hardware required is a random number generator
— a linear-feedback shift register [26], for example.

This random sampling mechanism serves as the base for
our cache design.

4 Designing a Random Sampling Cache

Based on the principles described in the previous section
we introduce an L1 cache design that uses Bernoulli trials
to distinguish frequently used blocks from transient ones.

The proposed design, based on the dual cache paradigm,
is depicted in Fig. 2. It consists of a direct-mapped cache
preceded by a small, fully-associative filter. When a mem-
ory access occurs, the data is first searched in the cache
proper, and only if that misses the filter is searched. If the
filter misses as well, the request is sent to the next level
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cache. In our experiments we have used 16K and 32K (com-
mon L1 sizes) for the direct-mapped cache, and a 4K fully-
associative filter (all structures use 64B lines).

Each memory reference that is serviced by the filter or by
the next level cache initiates a Bernoulli trial with a prede-
termined success probabilityP to decide whether in should
be promoted into the cache proper. Note that this enables
a block fetched from the next level cache to skip the filter
altogether and jump directly into the cache. This decision
is made by thememory reference sampling unit(MRSU)
which performs the Bernoulli trials, and writes the block
to the cache if selected. In case the block is not selected,
and was not already present in the filter, the MRSU inserts
it into the filter. The MRSU can in fact perform the sam-
pling itself even before the data is fetched, enabling it to per-
form any necessary eviction (either from the cache proper
of the filter) beforehand, thus overlapping the two opera-
tions. Sect. 6.1 explores the probabilistic design space for a
suitable Bernoulli success probability.

For a desired threshold probabilityP we pre-calculate a
constantCP such thatCP

2K ≃ P. Given a source of random
bits, the MRSU generates a random integerr in the range
[

1. . .2K
)

. Therefore, the result of the comparisonr ≤ CP

yieldstruewith probability∼ P.

Although such a mechanism is easy to implement (e.g.
using a linear-feedback shift register [26]) and consumes
negligible power, we also experimented with naive periodic
sampling, using a period proportional to1P . This achieved
results similar to those of random sampling. We therefore
only show the results for random sampling.

To reduce both time and power overheads associated
with accessing a fully-associative structure, we have aug-
mented the classic CAM / SRAM design [26] with aset
look-aside buffer(SLB). The SLB consists of a direct-
mapped structure, mapping tags of filter-resident blocks to
their location in the fully-associative buffer’s SRAM struc-
ture. The data contained in the SLB for each tag is a bitmap
whose width is similar to the number of lines in the filter —
64 lines for a 4K filter. This allows for each SLB output bit
to be directly connected to an SRAM word-line without a
decoder, offering a fast, low-power caching of CAM results.
In fact, the SLB structure is efficient enough to be accessed
in parallel with the cache on every access, eliminating the
need for a costly CAM lookup on most filter accesses. If
the SLB misses, the CAM is accessed, and the result is fed
back to the SLB during the ensuing SRAM access, hiding
the SLB update latency. Furthermore, the number of en-
tries in the SLB can be much smaller than the number of
filter lines, because temporal locality also exists in the fil-
ter. Sect. 6.3 offers an analysis of the SLB performance to
determine the number of entries it requires.

5 Methodology

To evaluate the concepts presented in this paper we have
used a modified version of theSimpleScalartoolset [1]. The
modifications include replacing SimpleScalar’s cache mod-
ule, as well as fixing the code of its out-of-order simulator
(sim-outorder) to accommodate a non-random-access L1
cache model, where a hit latency is not constant but rather
depends on whether the target block was found in the filter
or the cache proper.

We have used theSPEC2000benchmarks suite [23]
compiled for theAlpha AXP architecture. All bench-
marks were executed with theref input set and were fast-
forwarded 15 billion instructions to skip any initialization
code (except forvpr whose full run is shorter), and were
then executed for another 2 billion instructions.

Power estimates were compiled usingCACTI4.1 [24].

6 The Effects of Random Sampling

The number of references to frequently used blocks are
numerous, but involve only a relatively small number of dis-
tinct blocks. This reduces the number of conflict misses, en-
abling the use of a low-latency, low-energy, direct-mapped
cache structure. On the other hand, transient residencies
compose the majority of residencies, but naturally have a
shorter cache lifetime. Therefore, they can be served by a
smaller, fully-associative (and expensive) structure.

However, aggressive filtering might be counter-
productive: if too many blocks are serviced from the filter
and not promoted to the cache proper, the filter can become
a bottleneck and degrade performance.

This section is therefore dedicated to evaluate the effec-
tiveness of probabilistic filtering, while exploring the statis-
tical design space. The selected parameters are then used to
evaluate performance and power consumption in Sect. 7.

6.1 Impact on Miss-Rate

First, we address the effects of filtering on the over-
all miss-rate in order to determine the Bernoulli probabil-
ities that yields best cache performance. Fig. 3 shows the
distributions of the miss-rate achieved by a filtered 16K,
DM cache (both cacheand filter misses) compared to that
achieved by a regular 16K direct-mapped cache, for various
Bernoulli success probabilities. Lower values are better,in-
dicating decreased miss rate. The data shown for each com-
bination are a summary of the observed change in miss rate
over all benchmarks simulated: the distribution’s middle
range (25%–75%), average, median and min/max values.
An ideal combination would yield maximal overall miss-
rate reduction with a dense distribution, i.e. a small differ-
ences between the 25%–75% percentiles and min–max val-
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Figure 3. Comparison of SPEC2000 instruction and
data miss-rate distributions, using various sampling
probabilities, for a 16K-DM cache. The boxes repre-
sent the 25%–75% percentile range, and the whiskers
indicate the min/max values. Inside the box are the
average (circle) and median (horizontal line).

ues, as a denser distribution indicates more consistent re-
sults over all benchmarks.

The figure shows that the best average reduction in data
miss-rate is∼30%, and is achieved forP values of 0.05 to
0.2. Moreover, this average improvement is not the result
of a single benchmark skewing the distribution: when com-
paring the center of these distributions — the 25%–75% box
— we can see the entire distribution is moved downwards.
The same can be said about the miss-rate reduction in the in-
struction stream, for which selection probabilities of 0.001
to 0.01 all achieve an average improvement of∼75%. In
this case as well the best averages are achieved for proba-
bilities that shift the entire distribution downwards.

The fact that the a similar improvement is achieved over
a range of probabilities, for both data and instruction, indi-
cate that using a static selection probability is a reasonable
choice, especially as it eliminates the need to add a dynamic
tuning mechanism.

We therefore chose sampling probabilities of 0.2 and
0.01 for data and instruction stream, respectively, for the
16K cache configuration. In a similar manner, probabilities
of 0.3 and 0.005 were selected for the data and instruction
streams, respectively, for the 32K configuration.

Interestingly, the data and instruction stream require dif-
ferent Bernoulli success probabilities — with an order of
magnitude difference! The reason for this is the fact that
the instruction memory blocks are usually accessed over an
order of magnitude more times compared to data blocks. In
the benchmarks shown in Fig. 1, 50% of the data memory
blocks are accessed 1–2 times while in the cache, whereas
the same percentile of instruction blocks are accessed 10–
15 times. This difference is mainly attributed to the fact the
instruction memory blocks are mostly read sequentially as
blocks of instructions.

6.2 Impact on Reference Distribution

As noted above, random sampling is aimed at splitting
the references stream into two components — one consist-
ing of long cache residencies, and another consisting of
short transient ones. In this section we conduct a qualitative
analysis of the effectiveness of random sampling in splitting
the distribution of memory references.

Fig. 4 compares distributions of reference masses — the
fraction of references serviced by each residency length
— of the filtered 16K cache and the original 16K direct-
mapped cache. Results are shown for select SPEC bench-
marks with Bernoulli success probabilities of 0.20 for data
streams and 0.01 for instruction streams. These probabili-
ties were chosen based on the results described in Sect. 6.1.

Each plot shows three lines: the distributions for the
cache and filter for the filtered design, and the distribu-
tion for a conventional direct-mapped cache — which is the
combination of the first two (this is the same distribution as
the one shown in Fig. 1). The median value of each distribu-
tion is marked with a down pointing arrow. Invariably, the
distributions show that the majority of references directed
at the filter, are serviced by residencies much shorter than
those serving the majority of the references directed at the
cache proper.

To estimate the difference between the two resulting
distributions we used two intuitive metrics: median ratio
(marked with a horizontal double arrow) and false-∗ equi-
librium (marked with a vertical double arrow).

The first metric is the ratio between the median values
of the cache and the filter:ratio = medianc

medianf
. This metric is

used to quantify the distinction between the two distribu-
tions, thereby evaluating the effectiveness of random selec-
tion to distinguish shorter residencies — which should stay
in the filter — from longer ones that should be promoted
into the cache proper.

In the benchmarks shown, the median ratios range from
100 to 10000, with the only exception offacerec’s instruc-
tion stream where the ratio is 2.5. In fact, the average medi-
ans ratio for all data streams is∼440, with a ratio of∼1440
for the instruction streams — indicating a clear distinction
between residency lengths in the cache and the filter.

The second metric is denoted as thefalse-∗ equilibrium,
and is an estimate of false predictions: Any given residency
length threshold we choose in hindsight will show up on
the plot as a vertical line, with a fraction of the cache’s dis-
tribution to its left indicating the false-positives (short resi-
dencies promoted to the cache), and a fraction of the filter’s
distribution to its right indicating the false-negatives (long
residencies remaining in the filter). Obviously, choosing
another threshold will either increases the fraction of false-
positivesand decrease the fraction of false-negatives (or
vice versa). The false-∗ equilibrium is a unique threshold
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Figure 4. Comparison of the data references’ mass distributions in the filtered cache structure and the regular cache
structure for select SPEC benchmarks using the ref input, for both data (top) and instruction (bottom). The horizontal
double arrows show the median-to-median range, and the vertical double arrows show the false-∗ equilibrium point.

that if chosen, generates equal percentages of false-positives
and false-negatives, thereby serving as an upper bound for
overall percentage of false predictions.

For example, if we examinevortex’s data stream we
see that the false-* equilibrium point stands at a residency
length of∼50 and generates∼8% false predictions (∼10%
for the instruction stream). The false prediction rate for
facerec’s data stream was found to be∼15%, with a very
poor∼40% false prediction for the instruction stream. The
overall average percentage of false predictions for the data
streams was found to be∼14%, with∼17% for the instruc-
tion streams — a fairly good upper bound considering it is
based on true random sampling.

Another aspect of the reference distributions is the num-
ber of references accounting each distribution, compared
with the number of residencies served by the cache and
the filter. Fig. 5 shows the percentage of references ser-
viced by the cache, compared with the percentage of blocks
promoted into the cache, for various probabilities. Con-
sidering the mass-count disparity we expect that promot-
ing frequently accessedblocksinto the cache will result in
a substantial increase in the number ofreferencesit will
service, and that promoting not-so-frequently used blocks
have a smaller impact on the number references serviced by
the cache. This is indeed evident in Fig. 5: when increas-
ing the success probabilities we see a distinctive increasein
the number of references serviced by the cache, until some
level — indicated by the horizontal line — where this in-
crease slows dramatically and promoting more blocks into
the cache hardly increases the cache’s hit-rate. In our case
this saturation occurs atP= 0.6 for the data andP= 0.4 for

the instructions. Beyond these probabilities the promoted
blocks are mostly transient blocks and we start experienc-
ing diminishing returns.

In summary, we see that random sampling is very ef-
fective in splitting the distribution of references into two
distinct components — one composed mainly of frequently
used blocks, and the other composed mainly of transient
blocks.

6.3 The Set Look-aside Buffer

A fully-associative filter introduces longer access laten-
cies and increased power consumption. We therefore sug-
gest aset look-aside buffer(SLB) to cache recent lookup
results. The SLB is a small direct-mapped cache struc-
ture mapping block tags directly to the filter’s SRAM based
data store, thus avoiding the majority of the costly CAM
lookups, while still maintain fully-associative semantics.
This section explores the SLB design space.

Fig. 6 shows the stack depths distributions of filter ac-
cesses, for the different SPEC benchmarks, as well as
the average distribution over all benchmarks (the various
benchmarks are not individually marked as only the clus-
tering of distributions matters in this context). Clearly,the
vast majority of accesses are to recently used blocks — in
fact, on average over 90% of accesses are to stack depths of
8 or less, out of a total of 64 lines in the filter. In our exper-
iments, we have found that using an 8 entry SLB achieves
an average of∼78% hit-rate for the data stream (∼82% me-
dian) and over 98% for the instruction stream (∼99% me-
dian) for a 4K filter. Doubling the SLB size to 16 entries
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16K, with a 4K filter.

only improved the average data hit-rate to∼84% (∼88%
median) and∼99% for the instruction stream, but increased
the dynamic power consumption by∼10% and the leakage
by∼50% (with similar results for the 32K configuration).

We have therefore used an 8 entry SLB in our power
and performance evaluation, eliminating almost 80% of the
costly filter CAM lookups.

7 Impact on Power and Performance

The reduced miss-rate achieved by the random sam-
pling design, combined with a low-latency, low-power,
direct-mapped cache potentially offers both improved per-
formance and reduced power consumption. Augmenting
the fully-associative filter with an SLB can reduce the over-
heads incurred by the filter, further improving efficiency.

Using the SimpleScalar toolset [1] for out-of-order
simulations we have compared the performance achieved
by direct-mapped filtered caches against various set-
associative caches. Our micro-architecture consisted of a
4-wide superscalar design, whose parameters are listed in
Table 1. The hit latency incurred by the direct-mapped L1
cache was set to 1 cycle for a cache hit and 3 cycles for
a filter hit. If the request block is found in the SLB then
no CAM lookup is necessary — enabling direct SRAM ac-
cess and a total 2 cycles filter latency. The hit latency in-
curred by set-associative caches was set to 2 cycles. For
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Figure 7. IPC improvement for DM random sam-
pling caches (4K filt.) over similar size 4-way caches.

fully-associative caches we used an unrealistically fast 2cy-
cle latency — same as set-associative — placing both on
a similar baseline thus focusing on the reduced miss-rates
achieved by fully-associative caches.

Fig. 7 shows the IPC improvement achieved by a random
sampling cache over a similar size 4-way associative cache,
for the SPEC benchmarks. The figure shows consistent im-
provements (up to∼40% for a 16K random sampling cache
and∼28% for 32K one), with an average overall IPC im-
provement of∼13% for a 16K random sampling cache and
∼12% for a 32K cache). While the results are consistent, it
is clear that benchmarks suffering from conflict misses en-
joy better performance gains. This is most pronounced for
craftyandapsithat include a large portion of short residen-
cies (Fig. 1). Supporting this is the fact that doubling the
cache size to 32K — thus reducing conflicts by increasing
the number of sets — decreases the performance gains for
these benchmarks, while other benchmarks remain largely
unaffected.

Fig. 8 compares the average performance achieved with
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IL1/DL1 cache micro-architecture
size 16/32 K fetch / issue / decode 4
line size 64 B functional units 4
assoc. DM window size 128
latency 1 cy.∗ Load/Store queue 64

filter branch predictor
entries 64 meta-predictor with
assoc. full 64K-entry bimodal and
latency 3 cy. gshare, and a similar
CAM lat. 2 cy. size meta table. 4K BTB
SRAM lat. 1 cy. L2 cache
SLB lat. 1 cy. design unified
SLB entries 8 size 512K
SLB line 64 b line size 64B

memory assoc. 8
latency 350 cy. latency 16cy.

Bernoulli probabilities
Size Data Instruction
16K P = 0.2 P = 0.01
32K P = 0.3 P = 0.005
∗ L1 latency is 2 cycles forset-associative and fully-associative caches

Table 1. micro-architecture and cache configurations
used in the out-of-order simulations.

16K and 32K random sampling caches to that of common
cache structures. It shows that a direct-mapped random
sampling filtered cache achieves significantly better perfor-
mance than a similar size set-associative cache. Moreover,a
random sampling cache can even gain better overall perfor-
mance than larger, more expensive caches. For example, the
IPC of a 16K-DM random sampling cache is more than 7%
higher than that of a 32K-4way cache, and more than 5%
higher than a 32K fully associative cache; a 32K-DM ran-
dom sampling cache is more than 9% and 7% higher than
64K-4way and 64K-FA caches, respectively. Likewise, us-
ing the extra 4K for a filter yields better performance than
using them as a victim buffer, indicating that even such a
relatively large victim buffer may be swamped by transient
blocks.

Interestingly, the IPC improvement is similar when com-
paring the 16K-DM random sampling cache to both a reg-
ular 16K-DM cache and a 16K-4way set-associative cache,
indicating similar performance achieved by the latter two.
The reason for this similarity is that while the direct-mapped
cache suffers from a higher miss-rate compared to the 4-
way set-associative cache, it compensates with its lower ac-
cess latency. This is even more evident when considering
the larger 32K and 64K caches, where the direct-mapped
configuration takes the lead. When doubling the cache size
from the 32K to 64K the number of cache sets doubles, thus
reducing the number of conflicts and allowing the direct-
mapped cache’s lower latency to prevail.
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Figure 9. Relative power consumption of the ran-
dom sampling cache, compared to common cache de-
signs (lower is better), for a 70nm process.

Next, we compare the power consumption of the ran-
dom sampling cache with that of the other configurations.
Using independent random sampling eliminates the need
to maintain any previous reuse information, reducing the
power consumption calculation to averaging the energies
consumed by the combination of a direct-mapped cache, a
fully-associative filter, and a small, direct-mapped SLB. All
power consumption estimates are based on the CACTI 4.1
power model [24].

The average dynamic energy consumption is simply
aggregate energy — the sum ofnumbero f accesses×
accessenergyfor each component — divided by the overall
number of hits. Even simpler, the leakage power consumed
by the random sampling cache is the sum of leakage power
consumed by all components.

Fig. 9 shows both dynamic read energy and leakage
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power consumed by the random sampling cache, compared
to common cache configurations (same as those in Fig.
8). Obviously, the power consumed by the random sam-
pling cache is higher than that of a simple direct-mapped
cache, because of the fully-associative filter:∼20%-40%
more dynamic energy and∼25% more leakage power for a
16K random sampling cache (and just over half that for a
32K cache). However, when comparing a random sampling
cache to a more common 4-way associative cache of a sim-
ilar size, the 16K random sampling cache design consumes
almost 80% less dynamic energy, with only 15% more leak-
age power. The 32K configuration yields 60%-70% reduc-
tion in dynamic energy, at only 5% increase in leakage.

However, the main contribution of a random sampling
cache is apparent when compared to a set-associative cache
double its size: both the 16K and 32K random sampling
caches consume 60%-70% less dynamic energy, and 40%-
50% less leakage than 32K and 64K 4-way set-associative
caches, respectively — while yielding better performance
as shown in Fig. 8.

In summary, this section shows that a random sampling
direct-mapped cache offers performance superior to that of
a double sized set-associative cache, while consuming con-
siderably less power — both dynamic and static.

8 Related Work

Early auxiliary structures designed to improve L1 cache
performance are the victim cache and stream buffers sug-
gested by Jouppi [14]. A similar structure has even been
included in a commercial microprocessor: the assist cache
of the HP PA 7220 CPU [4]. The function of this assist
cache is to compensate for the fact that the main cache is
direct mapped, thus making it vulnerable to address con-
flicts. Its size (64 lines of 32 bytes, fully associative) serves
as a guideline for what can be implemented in practice.

The observation that memory access patterns may dis-
play different types of locality, possibly warranting differ-
ent types of caching policies, has already motivated studies
that tried to identify the frequently used blocks.

Tyson et al. show that a small fraction of memory ac-
cess instructions generate the majority of misses [25]. They
therefore propose to avoid caching memory locations when
accessed by these instructions.

González at al. suggest that the cache be partitioned into
two parts, one each for handling data that exhibit spatial and
temporal locality [7]. Based on previous reuse information,
their predictor classifies memory accesses to either scalars
(temporal locality) or vectors (spatial locality).

The work of Sahuquillo and Pont involves a filter used to
optimize the hit ratio of the cache [21]. The authors asso-
ciate a reference counter with each cache line promoting the
most heavily accessed lines into a small L0 cache. A similar

mechanism is proposed by Rivers and Davidson, who also
base the caching on a reference count [18].

Kin et al. also used an L0 design and maintained the L1
in low-power mode thus reducing energy consumption [16].
The power reduction is in fact traded off for performance as
the L1 has to be re-powered on every access. In a followup
work by Memik and Mangione-Smith, the filter is placed in
front of the L2 cache [17].

Karlsson and Hagersten use a filter to audit whether a
block would have been replaced before its next access [15].
If the reuse distance is short enough, the block is pro-
moted to the cache. This mechanism requires keeping a
last-accessed-timestamp for every block in the cache, and
comparing it on every replacement.

The same principle has also been applied to trace caches,
either to filter out infrequently used traces, or to avoid gen-
erating them in the first place. Rosner et al. explored several
trace filtering techniques which rely on past block usage to
predict whether it would be beneficial to promote a trace
from a fully-associative filter into the trace cache proper
[20]. Behar et al. reduced power spent on trace generation
by using periodic trace sampling [2]. This was based on the
observation that the majority of execution time is spent ex-
ecuting a small number of traces (the proverbial 90/10 rule
for instructions traces [8]). The 90/10 effect described by
the authors only demonstrates that the mass-count disparity
is also common in trace generation.

Johnson and Hwu used a bypass buffer for all blocks
only allowing most frequently used blocks into the cache
proper [13]. A Memory Access Table (MAT) is used
to group contiguous memory blocks experiencing similar
cache behavior. This is quite costly in hardware as it
requires maintaining access frequency information for all
macro-blocks. Jalminger and Stenström used a two level
branch predictor design to achieve similar goals [11].

All the structures described above require maintaining
reuse information, thus complicating the filtering hardware.
Furthermore, none except victim demonstrate an effective
enough filtering technique enabling the use of a direct-
mapped cache as the main structure. In contradistinction,
the random sampling cache is purely probabilistic and does
not require any per-block information other than its mere
presence in either the cache or the filter. It demonstrates an
efficient use of a fast, low-power, direct-mapped structure
in the L1 caches enabling both performance improvement
and reduction of power consumed.

9 Conclusions

In this paper we have explored the skewed nature of
memory references, in which the vast majority of memory
referencesare serviced by a very small fraction of mem-
ory blocks, and the vast majority of memoryblocksservice
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only a small fraction of thereferences— a phenomenon
called mass-count disparity. Based on this phenomenon
we present a random sampling design, that uses therefer-
encedistribution to split theblock distribution into its two
components — frequently used blocks that should be served
from a fast, low-power, direct-mapped cache, and transient
blocks that should be served by a fully-associative filter,
thus preventing them from polluting the cache and causing
conflict misses.

Filtering is done by performing a simple Bernoulli trial
on each memory reference, and promoting the accessed
block into the cache proper if the trial succeeds. The prob-
ability for a block to be selected for promotion therefore
grows exponentially with each access.

After examining the design space we have found that us-
ing a constant Bernoulli success probabilityP per specific
cache configuration is very effective for most benchmarks,
with no need for adaptive tuning. For example, when us-
ing a 16K direct-mapped cache and a 4K filter, the values
P = 0.2 andP = 0.01 are found to be best choices for the
data and instruction streams, respectively.

To reduce the added overheads of using a fully-
associative buffer, we show that most fully-associative
CAM lookups can be avoided by using a direct mappedset
look-aside buffer(SLB) that caches recent fully-associative
lookups. An SLB consisting of only 8 entries was sufficient
to avoid∼80% of the lookups for a 64 entry CAM.

Using the Bernoulli filter we were able to effectively uti-
lize a 16K direct-mapped structure for both L1 caches yield-
ing up to∼46% improvement in IPC, with an average of
∼12% over all benchmarks — better than a double size, 4-
way set-associative conventional cache. Moreover, our L1
design dramatically reduce the overall power consumption
— both 16K and 32K shown to perform better than 32K and
64K caches, respectively, while reducing the dynamic con-
sumption by∼60%–70% with over 40% reduction in leak-
age power. With the ubiquitous use of set-associative L1
caches in modern processors we believe these results can
contribute to future processor design and implementation.

In future work, we intend to explore the effectiveness of
probabilistic filtering for L2 caches, for which the filter can-
not be used as-is since the L2 caches are oblivious to most
of the reference stream preventing them from experiencing
the mass-count disparity to the same degree.
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