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Abstract—Evaluating the performance of a computer system
requires the use of representative workloads. Therefore it is cus-
tomary to use recorded job traces in simulations to evaluate the
performance of proposed parallel job schedulers. We argue that
this practice retains unimportant attributes of the workload, at
the expense of other more important attributes. Specifically, using
traces in open-system simulations retains the exact timestamps
at which jobs are submitted. But in a real system these times
depend on how users react to the performance of previous jobs,
and it is more important to preserve the logical structure of
dependencies between jobs than the specific timestamps. Using
dependency information extracted from traces, we show how a
simulation can preserve these dependencies. To do so we also
extract user behavior, in terms of sessions and think times
between the termination of one batch of jobs and the submission
of a subsequent batch.

I. INTRODUCTION

When a new scheduler design is suggested, it is impractical
to experiment with it in production use. Instead it is first
evaluated in simulation, and only if it demonstrates significant
improvements in performance can it become a candidate for an
actual deployment. Reliable simulations are therefore critical
for the choices made in reality.

The simulations commonly used to evaluate schedulers are
trace driven, and use an open-system model to play back
the trace and generate the workload for the evaluation. This
means that new requests get issued during simulation solely
according to the timestamps from the trace, irrespective of
the logic behind the behavior of the users and of the system
state. Therefore, the workload may not be representative of the
behavior of real users. Moreover, the throughput of the system
being evaluated is also dictated by the timestamps, instead of
being affected by the actual performance of the scheduler.

The base assumption of such simulations is that if we
use recorded traces, the workload will be representative and
therefore the performance metrics will be reliable. However,
they don’t take into account that traces contain a signature
of the scheduler that was used on the traced system [18].
In other words, the users’ actions are not a universally true
workload, but rather reflect their reactions to the scheduler’s
decisions. This means that real users would react differently to
the decisions of the new scheduler. Therefore, when we want
to evaluate a new scheduling policy, and to use a representative
workload, the simulation should reflect user reactions to the
evaluated scheduler rather than to the original scheduler. It is
more important to preserve the logic of the users’ behavior
than to repeat the exact timestamps.

For example, assume that a user sends a job A and then
another job B which depends on the results of A. During a
simulation the first job may be handled at a different time,
which may lead to incorrect logic of the workload:

1)  Case 1: A is scheduled later than originally. However,
in the simulation B will arrive according its original
timestamp. The result is a possibly smaller difference
between A and B. Moreover, job B may even be
scheduled before job A.

2)  Case 2: A is scheduled earlier during the simulation.
We would expect the user to send B earlier too. But
instead job B will again arrive to the system solely
according to its timestamp.

This means that when we simulate a different scheduler,
the workload no longer represents the behavior of real users.
This may lead to unrepresentative simulations and unreliable
evaluations. For example, a consequence of blindly using the
timestamps is that when the system is saturated, it keeps on
receiving jobs according to the timestamps, causing unrealistic
load conditions. In reality, we would expect the users to sense
the load and the slow responses, and to send fewer new jobs.
The opposite case is also a serious problem — when the system
has available resources the simulation can’t exploit them by
submitting more jobs.

This leads us to the second main drawback of conventional
simulations. As long as the system is not saturated, the
throughput during the simulation is dictated by the timestamps,
instead of being affected by the actual performance of the
scheduler. However, the throughput is probably the best in-
dicator for user productivity, and testifies to the scheduler’s
capacity for keeping its users satisfied and motivating them
to submit more jobs. The common solution is to use metrics
like the response time or slowdown, that, on one hand, can
be affected by the scheduler, and, on the other hand, are
conjectured to correlate with user satisfaction. However, it is
not clear that they correlate with the throughput.

Instead, we propose a novel feedback-based simulation.
This is a trace driven simulation, but using a semi-closed
system model to play back the trace and generate the workload
for the evaluation. The feedback reproduces the fine-grained
interactions that naturally exist between the users and the
system in reality. In particular, the simulation retains the logical
structure of the workload — the users’ behavior, as reflected
by the think times, sessions, and dependencies between jobs.
Moreover, schedulers that are capable of motivating their users
to submit more jobs will actually cause the users to send



their jobs faster, and therefore lead to higher throughput. This
implies that schedulers will be evaluated with more realistic
workloads and that they can be designed to improve user
satisfaction directly, since their effect on productivity will be
reliably evaluated.

To achieve this we suggest to divide each user’s work
into sequence of dependent batches. Then we model all the
possible dependencies between batches. During the simulation
we preserve these dependencies. This is done by simulating the
submittal of a batch only when all its dependencies are satis-
fied. This creates the feedback affect described above, while
preserving the characteristics of the workload, for example the
order of the jobs per user and the job properties.

In order to use this feedback mechanism we need to model
how a user would react to different performance levels, and in
particular, when users will submit their jobs. For example, if a
job is delayed in the system, the user model decides whether
the user has the original think-time before the next job, or
maybe he takes a break of a few hours for lunch or even a
few days due to a weekend. Given the limited information
contained in traces, there is no way to verify that a user
model is correct. As a first step we therefore present alternative
models of user behavior, which reflect expected behaviors and
preserves different properties of the traces. We then compare
the generated workloads with the original, and check the users’
characteristics.

II. RELATED WORK

Traditionally, parallel system schedulers have been evalu-
ated using simulations driven by traces or synthetic workloads
based on statistical workload models (e.g. [9], [13], [4], [7],
[10], [25]). In either case, the simulations typically follow
an open systems model: the system receives jobs from some
external population of users and processes these jobs. The job
arrivals are independent of the system performance and state.

There have also been a small number of previous works,
in different domains, who noted that a closed system model
with feedback may be more realistic [5], [18], [17], [15],
[11]. According to Spink, “feedback involves a closed loop of
causal influences” [21]. In the context of systems performance
evaluation, the idea is that poor performance may discourage
users and cause them to submit fewer additional jobs; at
the very least, they will delay the submittal of additional
jobs until previous ones have terminated. Conversely, good
performance may cause them to submit additional jobs at a
more rapid pace. In either case the changes in user behavior
affect subsequent system performance. In particular, reduced
submittals when performance is poor contribute to system
stability [18]. Sentiments such as these have been echoed in
studies of networking and storage systems [6], [8].

In order to include feedback in evaluations one needs a
model of how users react to load. While direct experimental
evidence is rare [2], some works have considered user tolerance
of delays and bandwidth limitations [16], [1], [14], [22],
[23], [19]. And using such a model, Shmueli suggested a
scheduler design that is specifically targeted to interact with
user behavior [20]. The work closest to ours is that of Shmueli
and Feitelson [18], [19], and we consider their user model in
Section VII-B. The unique contributions of our work include

Fig. 1. Tllustration of batches and sessions.

a detailed analysis of job dependency structures, and new
suggestions of how user behavior models may be extracted
from workload traces. These lead to an improved match with
traced workloads.

III. BACKGROUND

There are different types of parallel systems. Without loss
in generality, we focus on the distributed-memory model, in
which every processor in the system is associated with a private
memory, and the processors are connected to each other using a
fast network. A parallel job in such a system is a unit of work
that is composed of multiple processes that need to execute
in parallel and communicate over the network. There is no
time-sharing or preemption support, so processors are allocated
to jobs using a one-to-one mapping: one processor for every
process of the job for the duration of the job’s execution. This
scheme is often referred to as space slicing.

The role of the scheduler in such a system is to accept
the jobs from the users, to allocate processors, and to exe-
cute the jobs on the selected processors. For simplicity, we
ignore issues like network contention and heterogeneous node
configurations.

The system’s users submit their jobs by providing job
descriptions to the scheduler. For our type of system, this
typically includes two important attributes: the number of
processors the job requires in order to execute, which is
often referred to as the job’s size, and an estimated up-
per bound on the runtime of the job, to enable the sched-
uler to plan ahead. In the evaluations we use jobs data
from traces available in the Parallel Workloads Archive
(www.cs.huji.ac.il/labs/parallel/workload).

IV. SESSIONS AND BATCHES

In order to create a feedback effect, we need to understand
the structure of each user’s work, and in particular the user’s
sessions. Intuitively, a session is a period of continuous work
by a user. This does not mean that the user was active 100% of
the session’s time. A user may run a job to completion, think
about the result, and then run another job, all within the same
session.

The above description seems to imply sequential work,
where jobs in a session never overlap. Empirical evidence from
traces shows that this is clearly not always the case. Following
Shmueli and our previous work [20], [24], we call a set of
such overlapping jobs a batch, and treat them as a unit. Thus
a session may contain several batches in sequence, and each
batch may contain a number of jobs. The interval between
batches is called the think-time (TT).



Finding the batches and sessions of the users is a basic
requirement in order to understand and analyze their dynamics.
However, activity logs do not contain explicit information
about sessions. Thus our first goal is to estimate the batches
and sessions based on data such as job submit and end times.
We do not use a job’s start running time because it reflects
scheduling activity and not user activity. We define sessions
and batches as follows (see [24] for justifications):

Definition 1. A session is a maximal sequence of jobs of
the same user such that the inter-arrival time between two
successive jobs is up to one hour

Definition 2. For two jobs j1 and jo, such that j1.arrival <
j2.arrival, we say that j1 and jo overlap if ji.end >
j2.arrival.

Definition 3. Consider a graph with jobs as nodes and edges
connecting overlapping jobs provided they are in the same
session. A batch is a connected component of jobs in this
graph.

The algorithm to derive sessions and batches according
to these definitions is quite intuitive and simple. To produce
sessions we scan all the jobs of a user according to their arrival
time. If the inter-arrival time of the current job is longer than
an hour, this represents a session break, and therefore this job
starts a new session. Once the jobs are partitioned into sessions,
we partition each such session into batches. We scan all the
jobs in a session according to their arrival time and keep track
of the latest end time seen so far. If the current job arrived
after this time, the job starts a new batch.

An illustration of sessions and batches is presented in
Figure 1. There are several interesting observations relating
to overlapping sessions and batches:

Definition 4. For two batches by and by, we say that by and
bo overlap if there are two overlapping jobs j1 and ja, such
that j1 is in by and js is in bo.

Observation 5. Two batches in the same session can’t overlap.
Hence all the jobs in one of them terminate before the first
arrival of the second.

The proof is simple. If two batches overlap, they have at
least one pair of overlapping jobs, and therefore they will be
in the same connected component of overlapping jobs in the
session. By the batch definition, these batches should then
actually be one batch.

Observation 6. Tivo batches in different sessions may overlap.

In Figure 1 we can see an example of this. The second
session contains a batch with two long jobs. After sending
these jobs, the user leaves the system and comes back after
several hours. As a result, the next job he submit starts a
different session and therefore a different batch, despite the
fact that the previous jobs from the previous session are still
running on the system.

Observation 7. All the batches of a given user are in fact well

ordered in a single sequence by their arrival times.

By the definition of sessions, a session is a sequence of
successive jobs, and the inter-arrival time between different

Follows
|| .

B Sessions

L]

-\Dr\r—‘%:

Time

Batches

Fig. 2. Tllustration of the follows relation.

sessions is at least one hour. Therefore, the sessions can be
sorted according to the arrival time of their jobs, and this
is a well defined order. Batches in turn are constructed by
scanning the jobs in a session according to their arrival time,
and associating each job to the current batch or starting a
new batch. This implies that batches contain a sequence of
successive jobs. Therefore, sorting the batches in a session
according to the arrival time of the jobs is a well defined
order. Combining these two results, we can conclude that all
the batches of a user can be sorted according to the arrival
times.

Based on this we can index each user’s batches according to
their place in this order. This means that for each two batches
of a user b; and b;, 7 < j iff the jobs in b; were submitted
before those in b;. Using this order we can define a follows
relation between batches:

Definition 8. For each two batches b; and b; of the same user,
we say that b; follows b; if j =i+ 1.

An illustration of the follows relation appears in Figure 2,
where the batches are the nodes, and a directed edge from b;
to b; means that b; follows b;. Pay attention that the order is
defined according to the arrival times, and therefore the edge
are from the arrival of a batch to the last arrival of the previous
batch.

V. SHORTCOMINGS OF CONVENTIONAL SIMULATIONS

To understand the shortcomings of conventional simula-
tions, we use the example presented in Figure 3. The top plot
represents the trace. The Cyan user sent a job that couldn’t
run immediately, so it was delayed until enough processors
became available. Meanwhile, the Red user sent a job. This
job needed less processors and was scheduled immediately.
Therefore it finished quickly. The user was still there and sent
an additional job that depended on the results of the previous
one. We can see the scheduler’s signature on the workload: the
fact that the scheduler uses backfilling caused the Red user to
send the next jobs quickly.

In the middle graph we show a conventional simulation of a
system with a different scheduler — FCFS without backfilling.
All the jobs arrive according to their timestamps. But due to
the scheduler policy, Red’s jobs wait in the queue until Cyan’s
job starts to run. Then, they all start to run together, because
they already arrived and there are enough processors available.

In contrast, we suggest that it is important to retain the
dependency between Red’s jobs. Each of Red’s jobs depends
on the previous job. Therefore the second job shouldn’t arrive
to the system until after the first one ends. The exact arrival
time of the jobs is a difficult question we discuss in the next
section. The simplest approach is to preserve the same think-
times between the jobs. This leads to a simulation as presented
in the third graph.
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Fig. 3.  Top: example schedule on a system that uses backfilling. This

workload is then used to simulate a FCFS scheduler in a conventional
simulation (middle) and a feedback based simulation (bottom).

This example demonstrates many problems of conventional
simulations. Such simulations use the recorded trace without
any change in order to preserve the properties of the workload.
But in fact they preserve only a subset of properties, and
sacrifice others. In particular, sticking to the original arrival
times destroys the dependency structure and the think-times.
We argue that it is more important to preserve the logical
structure of the workload, as embodied by dependencies and
think times, and adjust the arrival times accordingly. This is
done by a feedback model that leads to changes to the arrival
times of new jobs according to the terminations of previous
jobs.

Second, using the workload trace as is may produce unre-
alistic performance measurements. In the conventional simula-
tion, most of Red’s jobs suffer from poor performances. This
is because they arrived according to the original timestamps,
without taking into account the state of the system. The jobs
keep arriving despite the fact that the previous jobs haven’t
been finished yet. This causes the FCFS scheduler to have
extremely poor performance. However, in reality users won’t
use a system with a problematic scheduler as they use a
system with better scheduler. Rather, the users will slow down
according to the performances and the system state. This is
exactly what happens in the feedback simulation: the first of
Red’s jobs will indeed have poor performance, but the next job
will arrive after this job finished, and therefore won’t suffer
from poor performance too. FCFES is still worse than EASY,
but the difference is more realistic.

Third, we can see here that conventional simulations can’t
effect the throughput — despite using a worse scheduler in
the simulation, all the users start at the same time and finish
at the same time, which depends mostly on the timestamps.
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Fig. 4. Tllustration of the depends on relation.

However, in our simulation, Red sensed the slow response (for
his first job), and as a result, sent the rest of the jobs later. This
caused him to finished later and his throughput to be lower.

It is worth to also consider the opposite situation — a trace
created by a FCFS-based scheduler being used to simulate a
scheduler that uses backfilling. If we assume the same user
behavior, we would expect the recorded workload to be similar
to the third graph. If we run a backfilling simulation using
this workload, the first job would be scheduled immediately
upon its arrival, and hence will finish much sooner. But if this
is a conventional simulation, the rest of the jobs will arrive
at the same times, and be scheduled at the same times as
they were originally. This is again wrong, because the big
gap between the first and the second jobs was due to the
dependency between them and the delay in scheduling the first
job. If it is not delayed, the following jobs should arrive earlier.

Moreover, we would expect that in a system with a
better scheduler, the users will send more jobs. However, in
conventional simulations, the users send jobs solely according
to the timestamps. Therefore, using a workload from a poor
scheduler in a conventional simulation of a better scheduler
may lead to periods that the system is idle because there are
not enough jobs to take advantage of the better scheduler. This
may lead to unrealistically low wait times, response times, and
slowdowns.

All these problems arise due to preferring timestamps over
preserving the logical structure of the workload as reflected
in job dependencies. The solution to these deficiencies is
simulations that include internal feedback per user.

VI. MECHANISM OF FEEDBACK

Intuitively, when a user begins his interaction with the
system, he sends several jobs (call them batch A). After a
while he may send another batch of jobs (call them B). The
jobs in B might depend on the results of A (we say B depends
on A) and might not (they are independent). Our goal is to
preserve this structure if it exists. In this section we describe
how we do this, and in the next one we address the issue of
setting arrival times.

Above we mentioned the definition of direct-dependency.
One main property of general-dependency is the following:

Observation 9. Dependency is a transitive relation. Meaning,
if we have three batches by, by and bz such that by depends
on by and by depends on by, than bs depends (indirectly) on
b1.

This exists because if b3 needs to wait for the results of bs,
and b, for by, then of course b3 effectively waits for the results
of b;. In the future, what we say “dependency’” we mean direct-
dependency, and explicitly say “indirect dependency” when it
is caused due to the transitive relation.



Definition 10. The Dependency Graph is a directed graph,
where the nodes are the batches, and there is an edge from bs
to by if by depends on by.

Observation 11. The Dependency Graph doesn’t contain
cycles.

Now we will see how to handle dependencies in a simu-
lation. For each batch we create a list of batches on which
it depends. To preserve all the dependencies, we use the
most conservative definition of dependencies. This means that
the dependencies list of a batch will contain all the possible
batches that this batch may depend on. The formal rule for
dependency is the following:

Definition 12. For each two batches b; and b; of the same
user, we say that b; depends on b; if one of the following
exists:

1)  b; and b; belong to the same session, and b; follows
b;.

2)  b; and b; belong to different sessions (sp, and sy,
respectively), b; is the first batch in sy,, b; is the last
batch in sy;, and all the jobs in sy, finished before
the arrival of the first job in sp,.

Both rules for dependency are logical according to the
definition of batches and sessions. An illustration of the
Dependency Graph appears in Figure 4. Here we add an
intuitive explanation:

1)  The first rule means that in a session, except the
first batch, each batch depends on the previous one.
This reflects the assumption that the user sends the
batch, waits for it to finish, and then sends the next
batch. Due to the fact that dependency is transitive
(Observation 9), it means that each batch depends
indirectly on all the previous batches in the same
session.

2)  The second rule means that the first batch in each
session depends on all the last batches in sessions
that had finished before the arrival time of this batch.
In order to explain when does batch B depends on
A, when they’re in different sessions, we expand the
definition of dependence to sessions. Intuitively, s;
may depend on s; (j > ¢) only if all the jobs in
s; have finished before the beginning of s;. Such a
dependency between sessions will be preserved if the
first batch in s; depends on the last batch of s;.

Note that we have defined two distinct relations on batches:
“follows” and “depends on”. In many cases these relations
overlap, for example with the sequence of batches in a session.
But there are differences. To see this, compare Figure 4 and
8. Each has an edge marked with a * that doesn’t appear in
the other.

The goal of the feedback mechanism is not only to preserve
both the depends on and the follows relations, in order to
preserve both the dependencies and the unique jobs order
created by each user [25]. The idea is to simulate the submittal
of batches in the order defined by the follows relationship,
subject to satisfying all the dependencies.

Definition 13. The “next batch” is the batch that is next in
line according to the follows order, meaning that all previous
batches have been submitted already.

At the beginning of the simulation, the user’s first batch
is initialized to be the next batch. Thereafter, when a batch
is submitted the following batch becomes the next batch.
However, the next batch should be delayed until all the batches
it depends on finish. To maintain this information, we have
a dependencies-list for each batch.

Definition 14. A batch is called “available” if it is the next
batch and its dependencies list is empty.

Therefore, only the next batch may be available. When a
batch is finished (after the termination of its last job), we delete
it from the dependency lists of all the batches that depend
on it. This may cause the next batch to become available, in
which case it will be transmitted to the user behavior model
to determine when it will be submitted. This is described in
the next section.

The next batch mechanism preserves the follows relation
by sending the next batch to the system (and deciding on
its arrival time) only after the last arrival of the current
batch. Therefore each user may have up to one batch in the
simulation’s queue of jobs that need to arrive in the future
(meaning, its arrival time is decided, but the simulation didn’t
reach it yet). However, after the arrival of a batch, the next
batch may be transmitted (if it is independent). That means
that several batches of the same user may run in the simulation
simultaneously.

As an example, consider the scenario presented in Figure
4, where we use the names f;, s;, t;, to refer to the i-batch
in the first, second and third session respectively. If we use
only dependencies, after the end of f3, two batches become
independent: s; and ¢;. Therefore, it is not clear that s; will
be sent first. Moreover, to keep the original order, so should be
sent before ¢1. But after f3 the next batch is s1, so the order
is resolved as it was originally.

In summary, our mechanism has three main advantages:

1)  The simulation never destroys a dependency between
batches that existed in reality. That’s because we use
a very conservative definition of dependencies.

2)  The simulation preserves the user’s subtrace, due to
the follows relation.

3)  We grant importance to each job (except a few last
jobs). If the job is a part of a batch that has at least
one other batch depending on it, the performance of
the job influences the arrival of at least one other
batch (and most times of many batches). As a result,
all the jobs, batches, and sessions are critical for the
performance of a user.

VII. THE USER BEHAVIOR MODEL

Up until now we described the mechanism for conducting a
simulation with feedback. This is based on identifying batches
and pacing them according to the behavior of each user. This
is done by releasing a batch only when it becomes available,
using the follows and depend on relations.



But there is another major open question before achieving
a complete simulation: When a batch is released, what arrival
times should be assigned to its jobs? This question in fact
asks how the user responds to different delays. Does he take a
break? Does he quit for the day? Of course, it is impossible to
know the “correct” answer. We can only speculate how each
user would react by using the data from the trace. We therefore
suggest several different models for the user behavior. Each
model preserves different characteristics of the real data. In
the next subsections we will explain each model and show its
results. Before that, we will give a little introduction here about
the motivation of using think-times (TT) and inter-arrival times
(IAT). We will also describe the presentation of our results.

In this section we will speak about times of a batch. The
arrival of a batch is the arrival of the first job in this batch, and
the termination of a batch is the termination of all the jobs in
this batch. When we say that a batch is delayed by D or will
arrive at T, we means that the first job will arrive at the current
time + D or at T (respectively). The rest of the jobs in this
batch have arrival times that preserve the original inter-arrival
times between jobs belonging to the same batch.

When we speak about the arrival time of a batch, we refer
to a batch that was affected by feedback. This means that the
first batch of each user arrives at exactly the same time as
in the original trace. This in addition to the fact that we use
the same users, means that our simulation doesn’t affect the
throughput considerably. However, it can affect the throughput
per user.

There are two main types of data that we use in all the user
behavior models in order to set the arrival time of a batch.

e  Think-time (TT) of a batch. This is the time during

which the user thinks before sending off this batch.
Therefore, this time is equal to the time from the
termination of the batches that this batch depends
on until the arrival of the first job in this batch. The
reason for this definition of TT is that a user starts the
TT only after the end of all the jobs that this batch is
depended on.
TT is used mainly when the next batch is this batch
(the previous batch has arrived already), but the batch
waited for the termination of the batches it depends
on. In this case, the reason for the transmission of
the batch at this time is the termination of all the
dependencies of this batch. Therefore, the logical
delay is to send off this batch after the original TT.

e Inter-arrival time (IAT). This is the time from the
arrival of a batch to the last arrival of the previous
batch. This is mainly used when the batch first became
independent, and only after that the previous batch
from the previous session has arrived to the system.
Therefore the reason for the transmission of the batch
at this time is the follows relation. In this case, the
user doesn’t need to think before sending the batch
because it did not become available immediate after
the fulfilling of the dependency. However, the batch
should have a certain delay. Therefore, the intuitive
step is using the original IAT as the delay.

An important observation is that if we simulate exactly the
same scheduler, and we use the delays of the original TT and

IAT, then all the jobs will arrive exactly at the same times.
But with a different scheduler things may change. In the next
subsections we present alternative user models, and compare
simulations using these models with conventional simulations.
This is done by recording the workloads as they unfold during
each simulation and comparing them with each other. We also
use graphs that present the distribution of some properties (e.g.
average session length, number of sessions, etc.) across users,
and the weekly and daily cycles by plotting the number of
jobs that arrive in each hour during a week. To compare the
throughput of different simulations, we present the distribution
of the activity length per user. Due to the fact that each user
sends the same jobs in all the simulations that use the same
workload log, a longer activity length means that the user
sends these jobs over a longer period, thus achieving a lower
throughput, and vice versa. Unless stated otherwise, we use
the EASY scheduler, which is probably the most commonly
used backfilling scheduler [12], [3].

A. Adjusted User Model

This basic model, which we have mentioned already,
preserves the original TT and IAT of the batches. For example,
if a batch finished later than originally by two hours and
its termination caused another batch to be released, then the
released batch will arrive two hours later too.

The biggest advantage of this model is that we use only the
data from the trace. However, this leads to unrealistic behavior
of the users — they will take the same break if the jobs finished
during their normal working hours, at night, or on the weekend.
As the simulated scheduler can make scheduling decisions that
are completely different from the original one, this leads to a
total destruction of the daily and weekly cycles, as shown in
Figure 5. Moreover, due to the fact that the jobs distribute
approximately equally during all the day and the hours, the
performance is much improved as can be seen in Table 1.

B. Distribution Based User Model

This model is essentially the model of Shmueli and Feitel-
son in [20]. The idea is to categorize the users into four groups
with different work patterns that are combinations of daytime
vs. nightly work and weekdays vs. weekends work. Users are
active only in their designated periods, and have dynamic
session lengths that depends on the system’s performance.
However, due to several differences (for example, the definition
of sessions and the fact that we retain the sequence of jobs for
each user) several adaptations are required.

In the initialization, the model randomly gives each user
several attributes. The first is whether the user is a daytime user
(active between 7:30+RAND to 17:30+RAND) or nighttime
user (17:30+RAND to 7:30+RAND) with probabilities of
0.7 and 0.3 respectively, where RAND is a random number
between -1 hour to +1 hour that is chosen independently for
each user. The second is whether the user is active during
weekdays (Monday to Friday) or weekends (Saturday and
Sunday) with probabilities of 0.8 and 0.2 respectively.

When a batch becomes available, we check if the current
time is during the activity time of the user (working days
and working hours). If it is not, the batch is delayed to
the next active-time of this user. Otherwise, we apply the
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Trace SDSC-DS | CEA | SDSC-SP2 | BLUE | Intrepid KTH | HPC2N CM5
Conventional 8353 | 6989 37363 8487 1242 8755 12591 | 20966
Adjusted 5005 | 5073 24731 7199 2307 8364 8167 3702
Dist. based 12976 | 6141 40579 47219 1369 11717 13347 3503
Fluid 5972 | 4395 18748 6826 1958 6389 10092 2614

TABLE L

THE AVERAGE WAIT TIME (IN SECONDS) OF THE DIFFERENT USER MODELS COMPARED TO CONVENTIONAL SIMULATIONS OF SEVERAL

TRACES.

model of the probability to continue with the current session:
Peoone = mmgsm, which was defined in [19] based on
data extracted from logs. If we continue the session, we choose
a random TT or IAT between batches in the same session of
this user, and the batch arrives at this time. Otherwise, this
batch is delayed by a break. The break’s length is a random
TT or IAT between batches in different sessions that is smaller

than eight hours. If after the break the batch starts after the
working days/hours of this user, the batch will be delayed to
the next activity of this user.

This model is based on empirical distributions, which has
advantages and disadvantages. The main disadvantage is that
we lose the connection with the real workload by having many
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assumptions. For example, assumptions include that the users
don’t take any long break (they work in each working-day),
that night-time user don’t send any job during the day, and that
all users operate according to the same statistical model. For
most of the workloads, this leads to high throughput per user
(Figure 7) and long wait times (Table I). An apparent problem
with the model is that all users arrive each day during two
2-hour slots, a large one in the morning and a smaller one in
the evening. This creates sharp peaks of activity that do not
exist in the original data, as seen in Figure 6.

An interesting artifact of this model is that the distributions
of activity length in Figure 7 show that some few users are
active for excessively long periods in the simulations. These
were found to be hyperactive users (probably scripts) that
submit many thousands of jobs in succession. The model
blindly assigns them a user type, e.g. mandating that they
only be active on weekdays at night. As a result they are
forced to stop submitting jobs when their active time ends,
so it takes them much longer to finish all their jobs. This is
another example where departing from the original data leads
to unwanted effects.

This model suggests that the probability to continue a
session depends on the performance of the last job. This idea
is central to our assumption, that feedback has an important
effect, and therefore we will use it also in the next model.

C. Fluid User Model

The idea of this model is to maintain the session times
of the users. To do that, we keep the sessions’ start and end
points from the original workloads, and let the batches flow
between the sessions according to the feedback effects. We
will describe the algorithm assuming that the release reason
is dependency. First we check if the current time is during
a session of the user. If it is, the delay is chosen at random
from the TT-distribution between batches in the same session
of this user. Otherwise, the current batch can’t continue the
current session. Therefore we delay the batch to the beginning
of the next session of this user. If the release reason is the
follows relation, we do exactly the same, but we choose the
delay from this user’s [AT-distribution between batches in the
same session.

One issue that this model needs to handle is what to do
if the user’s sessions are finished before all the user’s batches
have been simulated. Our solution to this situation is to recycle
the sessions starting from the next week after the last session,
maintaining the same days of the week and hours of the day.

The fluid model preserves the daily and weekly cycles,
as can be seen in Figure 8. Also the throughput per user is
close to the original workload in most of the traces (Figure
9). However, a few users have very long activity periods. The
reason is that sessions may be skipped, but sessions are not
added until the last session is finished. Therefore an user is
likely to send less jobs during the same activity period. This
also causes the wait time to be shorter (Table I).

VIII. COMPARING FEEDBACK AND CONVENTIONAL

SIMULATIONS

In the last section we described the feedback models in
detail. Previously, we mentioned several motivations for using
feedback. Here we compare the feedback based simulations
to the conventional ones, and demonstrate briefly that our
simulation really has the advantages mentioned there.

In order to compare the simulations, we used the conven-
tional simulation and our simulation with the fluid user model
to simulate the EASY scheduler, which is based on backfilling
and may be expected to be better than the original scheduler,
and FIFO which is much worse than the original scheduler.
The results for the queue length distribution are presented
in Figure 10. In our simulation, the queue when simulating
FIFO tends to be a bit longer on average than when simulating
EASY, but the difference is very small. The reason is that users
adapt themselves to the lack of available resources, and skip
sessions when their jobs haven’t been handled yet. However,
in the conventional simulations with FIFO, the simulation
continues to receive jobs according to the original tempo, and
the users don’t adapt their behavior to the simulated system.
As a result, for a very large fraction of the simulation, there
are unreasonably huge queue lengths. In our simulations such
long queues occurred only for Intrepid, and also that only for
2% of the time. Another interesting effect which is common to
all the logs is that our simulation with EASY also has shorter
queue lengths on average relative to conventional simulations.
The reason is that in our simulations the users finish their jobs
earlier on average than they did originally, and therefore they
may submit the next jobs earlier.
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IX. CONCLUSIONS

To evaluate the performance of parallel system schedulers
analysts typically use open-system trace-driven simulations.
The reason for using traces is to be as close to real work-
loads as possible. However, this doesn’t take into account

the influence of the scheduler on the workload, effectively
implying the assumption that users behave in exactly the same
manner regardless of the scheduling policy. This contradicts
the more reasonable assumption that users behave differently
under different circumstances.

We argue that striving to preserve the details of traced
workloads, and in particular the precise timestamps at which
events occur, is misguided. In particular, it has the unintended
consequence of breaking the logical structure of the workload.



Instead, we suggest that the logical structure of dependencies
should be preserved, and the timestamps adjusted as needed.
Using this approach also has two additional benefits. First, the
feedback effect prevents excessive buildup of load when the
system scheduler cannot keep up with the users. Second, it be-
comes possible to measure throughput, which is an important
metric of performance.

The way to include feedback in trace-driven simulations
is to first extract dependency information from the trace. The
simulation then unfolds by simulating the submittal of only
independent batches of jobs. When each batch finishes, and
depending on its performances, the user model decides when
to submit the next batch of this user. In fact we identify
two types of dependency: one where batches depend on the
termination of jobs in previous batches (the depends on
relation), and another that maintains each user’s sequence of
jobs (the follows relation).

However, the question of how users react to different
performance levels is extremely complicated. The goal is to
understand user behavior and try to simulate it. We considered
two simple models, and then suggested the fluid model which
uses the sessions data from the trace instead of trying to
simulate user session dynamics. Additional research on the
behaviors of users and how it can be decoded from the
workload data is necessary to improve the feedback model.
Our goal in this paper is to supply the basic mechanism of
feedback and to promote a new understanding of what it means
to “be close to the original workload”.

The proposed simulation simulates the feedback effect per
user and uses the same jobs as in a recorded trace. Therefore,
it may lead to different throughput of each user, but the global
throughput will be approximately the same. An interesting
future work is to develop a feedback based simulation where
the feedback also affects the user population. For example, a
user may leave the system due to poor performance or send
more jobs if the performance is good. In such a simulation,
the overall throughput may be expected to reflect the quality
of the system.
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