
Deadlok Detetion Without Wait-For GraphsDror G. FeitelsonDepartment of Computer SieneThe Hebrew University of Jerusalem91904 Jerusalem, IsraelAbstratDeadlok detetion is an important servie that the run-time system of a parallel environmentshould provide. In parallel programs deadlok an our when the di�erent proesses are waitingfor various events, as opposed to onurrent systems, where deadlok ours when proesses waitfor resoures held by other proesses. Therefore lassial deadlok detetion tehniques suh asheking for yles in the wait-for graph are unappliable. An alternative algorithm that hekswhether all the proesses are bloked is presented. This algorithm deals with situations in whihthe state transition from bloked to unbloked is indiret, as may happen when busy-waiting isused.1 IntrodutionA major problem enountered by parallel programming novies, whih does not exist in sequentialprogramming, is that bugs may ause parallel programs to deadlok. It is therefore important forthe run-time system to identify deadlok situations and to report them to the user.Deadlok detetion has been studied extensively in the ontext of onurrent (time sharing)uniproessor systems. Deadlok an our in suh systems due to yli patterns of requests forexlusive aess to system resoures. Algorithms for deadlok prevention, detetion, and reoveryare standard material in operating systems textbooks (e.g. [8, 7℄). Suh algorithms have also beenextended to distributed systems, where ompeting proesses may exeute on di�erent proessors.The entral issue in these extensions is the distributed maintenane of the wait-for graph, thatshows whih proess is waiting for a resoure held by whih other proess [10, 9, 4℄. Deadlokdetetion is redued to �nding yles in this graph.The approah of maintaining a wait-for graph and searhing for yles in it does not generalizeto parallel programming. The reason is that in a parallel program it is possible for a proess towait for an event, without knowing whih other proess will ause that event to happen. Thus it isimpossible to maintain a wait-for graph in the �rst plae. However, there is also a bright side. Asall the proesses in a given appliation ooperate to ahieve the same goal, the appliation is onlyonsidered deadloked if all of them are waiting. Hene it is possible to detet deadlok by simplyheking if none of the proesses is in a runnable state.The only problem with this approah is that indiret state hanges do not neessarily take e�etimmediately. For example, this may happen if busy-waiting is used to delay the proess that iswaiting for an event. Thus when proess A wakes suspended proess B it is atually only settingthe value of a ertain shared variable. If proess A subsequently suspends itself, there may be aertain time when both are suspended beause proess B did not hek the variable yet. This ouldlead to false alarms. A global omputation is needed to asertain that indeed all the proesses are1

waiting and none are about to resume exeution. The idea is to do this independently of the atualshared variables used by the appliation to implement busy-waiting. In other words, the run-timesystem should not have to keep trak of all the di�erent events and what proess is waiting forwhih event.The rest of the paper is organized as follows. Setion 2 spei�es the ontext of our work bydetailing the system model and assumptions. The deadlok detetion algorithm is presented insetion 3. A ouple of examples of how this algorithm is inorporated in the implementation ofsynhronization primitives are given in setion 4. The onlusions are drawn in setion 5.2 System Model and AssumptionsThe system under onsideration is a tightly-oupled shared-memory multiproessor, that supports�ne-grain parallel omputations. Bus-based systems suh as the Sequent Balane and EnoreMultimax are possible examples. These systems enourage the use of shared memory to oordinatethe ativities of proesses. When one proess needs to wait for another, busy-waiting is often used[1℄. If more than one proess is mapped to eah proessor, the busy-waiting loop may inlude aninstrution to yield the proessor to another ready proess. This prevents omputation yles frombeing wasted without requiring extensive bookkeeping to keep trak of whih proess is waiting forwhat event. It is important to note that a proess that is waiting for an event is not suspendedfrom exeution | it an still be sheduled to run, but the run-time system knows that it is busywaiting.Shared memory mahines typially support some sort of atomi operations in hardware, thusenabling the users to devise various synhronization shemes. Our deadlok detetion algorithmrequires the ability to set and reset a bit in a shared memory word atomially. The implementationsdesribed in setion 4 require atomi lok and feth-and-add operations [6℄. Implementations basedon other primitives are also possible, but slightly more ompliated.To simplify the presentation, it is also assumed that proesses are mapped to proessors uponreation and do not migrate at run time. This assumption is reasonable in the ontext of parallelproessing, where load-balaning is less bene�ial than in distributed systems [5℄. However, thisassumption is not required and the algorithm is easily extended to deal with migration. In additionit is assumed that only one appliation is running at a time, and all the proesses belong to it. Thisassumption is also easily removed by performing the neessary bookkeeping for eah appliationindependently.Finally, it is assumed that the run time system is designed in a distributed style, with most ofthe data strutures maintained loally on eah proessor independently. This assumption is in linewith the assumption that proesses only exeute on one proessor. However, it does not preludethe use of shared memory by the run time system when neessary.3 Deadlok Detetion AlgorithmBy de�nition, deadlok ours if and only if all the appliation proesses are stuk. Thereforedeadlok may be deteted by maintaining a ount of the total number of proesses, and a ount ofthe stuk proesses, and omparing the two.As proesses always exeute on the same proessor, it is easy to maintain both of these ounters.The total ounter is inremented on proess reation and deremented on proess termination.2

time

?

pro A?waitstuk++ppppppppppppwakestuk--unstuk--?

pro B
?event��������� unstuk++
?Figure 1: Maintaining the stuk and unstuk ounters.The stuk ounter is inremented when a proess enters a busy waiting loop and derementedwhen it exits from the loop. If the ounters are equal, the run time system knows that all the loalproesses are stuk. As the proessor annot do useful work when all the proesses are stuk, therun time system an initiate a hek for deadlok without ompromising the overall performane.The hek onsists of verifying that all the proesses on the other proessors are also stuk.Regrettably, the algorithm as presented so far is inorret in that it may ause false alarms,reporting a deadlok situation when atually there is no deadlok. The problem arises from thefat that proesses beome \unstuk" impliitly when some shared variable is set to some value,but the stuk ounter is only updated when the proess is sheduled and heks the variable. Thusa situation in whih the ounters show that all the proesses are stuk does not neessarily implydeadlok, beause the ounters may hange when proesses are sheduled.The problem is solved by adding a third ounter, alled unstuk. This ounter is used by eahproessor to maintain its net ontribution to system-wide releasing of proesses from the stukstate. It is inremented whenever an event that releases some proess ours, and derementedwhenever a proess noties that an event ourred. This protool is shown shematially in �g. 1.Note that the proess that auses the event may exeute on a di�erent proessor than the proessthat is waiting for it. In this ase the unstuk ounter on one proessor is inremented, and theounter on another proessor is deremented.The algorithm may be summarized as follows:1. The run time system maintains three loal ounters on eah proessor:(a) total is inremented on proess reation and deremented on proess termination,(b) stuk is inremented when a proess begins to wait and deremented when it notiesthat the awaited event ourred, and() unstuk is inremented when an event is aused and deremented together with stuk.3

2. Whenever total = stuk, a shared bit indiating that this proessor has nothing to do is set.If the ounters hange, the bit is reset. EÆieny and stability may be improved by periodiheking for equality, rather than every time that the ounters are hanged. However, this isjust an implementation detail.3. A proessor that �nds all the bits set initiates a synhronous alulation of global state bysumming all the loal values of unstuk. If the number of proessors is small enough so thatall the bits are in one word, they an all be read together. Otherwise it is neessary to reada number of words. In either ase, eah proessor veri�es that total = stuk when it addsits loal value of unstuk to the global sum. If some proessor �nds that total 6= stuk, thealgorithm is aborted. If the sum is zero, deadlok is announed.Corretness of this algorithm is established by the following sequene of laims. P denotes thenumber of proessors in the system, and the ounter values on the ith proessor are denoted bytotali, stuki, and unstuki.Claim 1 When deadlok is suspeted, i.e. 8i : stuki = totali, the following inequality holds:PXi=1 unstuki � 0:This is so beause when eah event ours it �rst auses the ounter on the proessor where itourred to inrement, and only later when it is notied it auses the ounter on another proessorto derement. It is true that in general the derement may take e�et before the inrement.However, as long as the proess that aused the event does not inrement unstuk, it is itselfative. Therefore on its proessor stuk < total, and we do not suspet deadlok.The sum of the unstuk ounters represents the number of proesses that should be onsideredas unstuk, but are not reeted yet in derementing the stuk ounters. Therefore we haveClaim 2 The number of proesses that are really stuk isPXi=1(stuki � unstuki):Deadlok ours if and only if all the proesses are really stuk, whih is expressed asPXi=1 totali = PXi=1(stuki � unstuki):As it is obvious that 8i : stuki � totali, and in fat when deadlok is suspeted we know that8i : stuki = totali, equality an hold only if the sum of the unstuk ounters is zero. Thus wehaveClaim 3 A neessary and suÆient ondition for deadlok is8i : stuki = totali and PXi=1 unstuki = 0:4

/* barrier is initialized to the number of proesses n *//* flag is initialized to zero */if (F&A(barrier, -1) == 1) f /* last to arrive */flag = 1;F&A(unstuk, n� 1);gelse f /* wait for someone to set the ag */F&A(stuk, 1);while (!flag)yield proessor;F&A(stuk, �1);F&A(unstuk, �1);gFigure 2: Implementation of barrier synhronization in C-like ode. barrier and flag are shared.F&A is an atomi feth-and-add operation.Note that this ondition has a loal part and a global part. For eÆieny reasons, the algorithmheks the global sum only when the loal ondition stuki = totali is satis�ed on all the proes-sors.The ost of the algorithm is negligible. During normal operation, all the bookkeeping is donein a distributed and asynhronous manner, with no interation between the proessors. As longas there is any ative proess on the proessor, the bookkeeping only onsists of inrementing andderementing loal ounters when events our, so the overhead is low. The omputation of globalstate is also simple | all that is needed is to sum a set of ounters, one per proessor. Even thisis only done when all the proessors have reason to believe that all their proesses are not doinguseful work, but rather busy waiting.4 Implementation of Synhronization PrimitivesTo illustrate the algorithm, onsider the following implementations of barrier synhronization andsemaphores. These examples show how the ounters are maintained | the global summation isnot inluded. As the ounters are used by all the proesses that time-share on the same proessor,they are updated using an atomi feth-and-add operation (denoted F&A).The ode for barrier synhronization is given in �g. 2. This is a straightforward use of busy-waiting on a shared ag until all the proesses arrive. The last proess to arrive releases n � 1waiting proesses, so it inrements the unstuk ounter by this amount. The instrutions addedfor deadlok detetion are emphasized by bold type.Semaphores are interesting beause they are used both for mutual exlusion and for eventsynhronization [3℄. The implementation is given in �g. 3. This ode is somewhat triky, as ituses two distint internal variables for the semaphore value: one is the value as it is seen by newlyarriving proesses that perform a P operation (sem->val in the �gure), and the other is the value5

strut fint val; /* semaphore value */int waiting; /* initially zero */int released; /* initially zero */lok t lok; /* initially unloked */g semaphore;P(sem)semaphore *sem;f lok(sem->lok);if (sem->val > 0) f /* get in on �rst try */sem->val--;unlok(sem->lok);return;gelse f /* fail: mark that I'm stuk */sem->waiting++;unlok(sem->lok);F&A(stuk, 1);yield proessor;g/* here on seond try and later */while (TRUE) fif (sem->released == 0) f /* no luk yet */yield proessor;ontinue;glok(sem->lok);if (sem->released > 0) f /* got in �nally */sem->released--;unlok(sem->lok);F&A(stuk, �1); /* mark that I'm OK again */F&A(unstuk, �1);return;gelse f /* missed this hane... */unlok(sem->lok);yield proessor;ontinue;gggFigure 3: Implementation of semaphores: de�nition and P operation.6

V(sem)semaphore *sem;f lok(sem->lok);if (sem->waiting > 0) f /* need to release someone */sem->released++;sem->waiting--;unlok(sem->lok);F&A(unstuk, 1); /* mark that someone is free */gelse f /* nobody is waiting */sem->val++;unlok(sem->lok);ggFigure 3 (ont.): Implementation of semaphores: V operation.seen by proesses that are waiting for it to beome positive (sem->released). This distintion isneeded to keep the ounters used for deadlok detetion onsistent.If only one variable is used, a proess performing a V operation when some other proess iswaiting would inrement the semaphore value and also inrement the unstuk ounter, expetingthe waiting proess to enter the semaphore. But if a new proess now performs a P operation itmay \steal" the semaphore without waiting, thus preventing the waiting proess from registeringthe event and derementing the unstuk ounter. As a result the sum of the unstuk ounterswould always be positive, ausing the deadlok detetion algorithm to fail. To prevent this senario,proesses that busy-wait in the P operation indiate this be inrementing the sem->waiting ounter.A proess that performs a V operation and �nds sem->waiting to be non-zero, releases one of thewaiting proesses by inrementing sem->released rather than sem->val.5 ConlusionsThe synhronization requirements of parallel programming are di�erent from those whih are typialin onurrent and distributed systems. For example, parallel programs often use event synhroniza-tion where is is unknown whih proess will ause the event. When the use of suh synhronizationleads to deadlok, it is impossible to attribute the deadlok to a yle in a wait-for graph beausethere is no wait-for relation among proesses. Therefore new deadlok detetion algorithms areneeded.If events are used to hange the state of a waiting proess from bloked to ready diretly, thereis a simple solution; All that is needed is to hek if all the proesses are bloked at any givenmoment. If events e�et proesses indiretly, e.g. by setting the value of a shared variable that issubsequently heked by a busy-waiting proess, the situation is somewhat more ompliated. Adouble bookkeeping sheme was devised to deal with suh behavior, where the run time system on7

eah proessor ounts the number of loal bloked proesses, and also ounts its net ontributionto the global number of bloked proesses. This allows for a global state to be omputed whendeadlok is suspeted.The algorithm works if and only if it is guaranteed that the waiting proesses will eventuallynotie that the event has ourred. This ondition an typially be satis�ed through areful oding.However, situations in whih it annot be satis�ed do exist. For example this might happen if itis possible for one proess to kill other proesses. If a killed proess was waiting for an event thathad already ourred, but it had not notied the event before being killed, the algorithm may failto report a real deadlok situation. Thus deadlok detetion is not possible if the system ombinesindiret transitions between bloked and unbloked states with the ability to kill other proesses.The only solution to this situation is to use event-spei� suspend and resume instrutions, thatexpliitly tell the run-time system what event eah proess is waiting for. The run-time systemmust then perform its bookkeeping on a per-event basis.The deadlok detetion sheme reported in this paper was developed as part of the run timelibrary for the ParC parallel language [2℄ implementation on the Makbilan researh multiproessor.Referenes[1℄ T. E. Anderson, The performane of spin lok alternatives for shared-memory multiproessors,IEEE Trans. Parallel & Distributed Syst. 1 (1990) 6{16.[2℄ Y. Ben-Asher, D. G. Feitelson, and L. Rudolph, ParC | an extension of C for shared memoryparallel proessing, The Hebrew University of Jerusalem, submitted for publiation (1990).[3℄ E. W. Dijkstra, Co-operating sequential proesses, in: F.Genuys, ed., Programming Languages(Aademi Press, New-York, 1968) 43{112.[4℄ A. K. Elmagarmid and A. K. Datta, Two-phase deadlok detetion algorithm, IEEE Trans.Comput. 37 (1988) 1454{1458.[5℄ D. G. Feitelson and L. Rudolph, Mapping and sheduling in a shared parallel environmentusing distributed hierarhial ontrol, in: Intl. Conf. Parallel Proessing (1990) I-1{I-8.[6℄ A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. MAuli�e, L. Rudolph, and M. Snir, TheNYU Ultraomputer | designing an MIMD shared memory parallel omputer, IEEE Trans.Comput. C-32 (1983) 175{189.[7℄ S. Krakowiak, Priniples of Operating Systems (MIT Press, Cambridge, 1988).[8℄ J. Peterson and A. Silbershatz, Operating System Conepts (Addison-Wesley, Reading, 1983).[9℄ M. Roesler and W. A. Burkhard, Resolution of deadloks in objet-oriented distributed sys-tems, IEEE Trans. Comput. 38 (1989) 1212{1224.[10℄ M. Singhal, Deadlok detetion in distributed systems, Computer 22 (Nov 1989) 37{48.
8

