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Abstract

Computer workloads have many attributes. When model-
ing these workloads it is often difficult to decide which at-
tributes are important, and which can be abstracted away.
In many cases, the modeler only includes attributes that
are believed to be important, and ignores the rest. We ar-
gue, however, that this can lead to impaired workloads and
unreliable system evaluations. Using parallel job schedul-
ing as a case study, and daily cycles of activity as the at-
tribute in dispute, we present two schedulers whose sim-
ulated performance seems identical without cycles, but
then becomes significantly different when daily cycles are
included in the workload. We trace this to the ability of
one scheduler to prioritize interactive jobs, which leads to
implicitly delaying less critical work to nighttime, when
it can utilize resources that otherwise would have been
left idle. Notably, this was not a design feature of this
scheduler, but rather an emergent property that was not
anticipated in advance.

1 Introduction

Computer workloads have many attributes of which some
are more important than others. When modeling these
workloads it is often impractical, and sometimes even in-
feasible, to represent each and every attribute accurately.
When this is case, the natural course of action is to fo-
cus on the seemingly important attributes which are ex-
pected to dominate system behavior, and vaguely repre-
sent or even ignore the rest.

Identifying which attributes are important and which
can be abstracted away is one of the most difficult prob-
lems facing workload modelers. While statistical tech-
niques such as principal component analysis have been
developed to assist in this task, they are limited by the fact
that they only consider the structure of the workload itself,
and not its interaction with the system. In many cases,

the modeler therefore relies on experience and intuition
to choose the attributes that are believed to be important.
However, as we argue and demonstrate in this paper, this
might not be enough, and could lead to impaired work-
loads and unreliable system evaluations.

Daily cycles of activity are a good example of a con-
troversial attribute that is often ignored. In many types of
systems there is a significant difference between the work-
load experienced during the day and the one experienced
during the night, mainly in the volume of activity, which
is much higher during the day. It might therefore seem
reasonable to ignore the daily cycle and model only the
daytime workload when evaluating new systems, since a
system that can handle the high-volume daytime work-
load can obviously handle the lower load requirements
during the night. This also better matches common simu-
lation methodology, which calls for stationary workloads
and steady-state conditions.

But ignoring the daily cycle may have unforeseen con-
sequences. In this paper we present a case study that
deals with recent developments in scheduling of parallel
jobs. A few years ago Shmueli and Feitelson suggested
a workload model that is based on users and sessions, in
which users arrive and depart, and sessions are started and
aborted dynamically, in reaction to the performance ob-
served from the system [16]. This model has inspired the
design of a new class ofuser-awareschedulers, which try
to reduce the chances for session aborts, with the goal of
improving user satisfaction and the overall throughput and
utilization of the system. The question is what is the ef-
fect of daily cycles on the evaluation of such schedulers,
which in particular seem to target mainly the daytime in-
teractive workload.

To answer this question, we consider a specific sched-
uler calledCREASY, which prioritizes interactive jobs that
are known to be important to the users, in order to extend
their sessions of activity with the system [18]. We com-
pare the performance of CREASY, in simulation, to the
performance of the well-known EASY scheduler, that pri-
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oritizes jobs solely according to their arrival order in the
interest of fairness. The comparison is done in two steps:
first without, and then with daily cycles included in the
workload.

We show that without daily cycles the performance of
CREASY and EASY is the same, which might lead one to
mistakenly conclude that there is no advantage for user-
aware scheduling over the traditional user-oblivious ap-
proach. However, things change when daily cycles are
added to the workload. First, the performance levels pre-
dicted by the simulation for both schedulers become much
more realistic. But more importantly, throughput and uti-
lization improve by up to 50% under CREASY relative
to EASY. The daily cycles of activity thus result in not
only a quantitative difference for CREASY, but also in a
qualitative one, preventing it from being dismissed as in-
effective.

We further analyze the behavior of the two schedulers
in order to uncover the underlying mechanism that pro-
duces this effect. We note that both schedulers use the ex-
act same algorithm to backfill1 jobs, and neither of them
explicitly accounts for the existence of daily cycles in
the workload. However, CREASY’s prioritization scheme
causes more jobs to be submitted during the day, leading
to the increase in throughput — and more interestingly,
to implicitly delaying less critical work to the nighttime.
These delayed jobs could then utilize resources that oth-
erwise would have been left idle, as happens with EASY.
This case study thus joins other work [3, 9] in demon-
strating that conservative workload modeling — in which
workload features of a-priori unknown importance are in-
cluded rather than being ignored — may lead to more re-
liable evaluations and have a significant effect on the out-
come.

The paper is organized as follows. Section 2 pro-
vides background on workload modeling for parallel job
scheduling, and reviews the user-aware CREASY sched-
uler. Section 3 describes our simulation environment and
CREASY’s performance results, with and without daily
cycles in the workload. Section 4 analyzes the results, and
uncovers the exact effect of the cycles on performance.
Section 5 concludes this study, and provides operational
recommendations for workload modeling applicable to
both parallel and general computer systems.

1Allowing small jobs from thebackof the queue to jump ahead and
fill holes in the schedule.

2 User-Based Workload Modeling
and Scheduling

The parallel jobs executed on large-scale parallel systems
arerigid : they require a certain number of processors for
a certain duration. To eliminate the detrimental effects
of paging, such jobs are conventionally run to completion
without preemption. When a job is submitted, the user
provides the desired number of processors and an estimate
of the runtime. The system’s parallel job scheduler uses
this information to pack queued jobs together and execute
them on the available processors.

Parallel job schedulers have traditionally been evalu-
ated using trace-driven simulations, in which traces of
real, production-use parallel systems are played-back to
generate the workload [20, 12, 19, 21, 7, 15]. This prac-
tice abstracts away the interactive system users who in re-
ality generate the workload for the scheduler. It produces
astaticstream of jobs whose arrival rate is predetermined
by the timestamps from the trace. As a result schedulers
were designed to focus solely on the packing of jobs, and
ignore the users. Likewise, evaluations were based on in-
direct performance metrics such as the mean job response
time and slowdown, that are conjectured to be correlated
with user satisfaction.

A few years ago Shmueli and Feitelson suggested a
workload model that is based on users and sessions [16].
In their model, the workload is generated by users-models
that arrive and depart, and whose sessions of activity with
the system are started and aborteddynamicallyduring the
simulation. Within each session, the activity is regulated
by a feedback loop, where system performance affects
subsequent submittals as in a closed system model [14].
But in addition, sessions may beabortedas a reaction to
the (bad) performance observed from the system. This
model has immediately inspired the design of a new class
of schedulers, which areuser-aware, and try to reduce the
chances for session aborts as a means to improve user sat-
isfaction. This is naturally expected to also improve the
overall throughput and utilization of the system.

A detailed study of the behavior of users in parallel sys-
tems, on which the above models were based, was pre-
sented in [17]. One of the important insights from this
study was that the decision of users to continue or abort
their sessions with the system depends on theresponse
times2 of their jobs: the shorter the response time, the
higher the probability for the users to continue their inter-
active sessions with the system. Empirical data about this
relationship, derived from several production-use parallel

2Response time is the total time the job spends in the system, from
submission to completion.
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Figure 1: The relationship between the response times
of jobs and the probability for the users to continue
their sessions is not linear. Data is derived from several
production-use parallel systems.

system, is shown in Figure 1 and may be approximated
using Equation 1. This relationship is not linear, which
indicates that jobs with short response times are much
morecritical to the users, in the sense that delaying them,
even by the smallest amounts, dramatically increases the
chances for session aborts.

prob(continue session) =
0.8

0.05 × job resp. time + 1
(1)

The CREASY scheduler, first introduced in [18], ex-
ploits this information in a most intuitive manner. It uses
the derivative of Equation 1 to assign high priorities to
critical jobs whoseexpected response time3 is short, and
lower priorities to those whose effect on user behavior is
already marginal. The rationale is to promote the execu-
tion of recently submitted short jobs whose owners are
still active and waiting for them to respond, which should
motivate them to continue the interaction and submit ad-
ditional jobs to the system, all within the same session.

CREASY stands for “CRiticality-based EASY”, which
suggests that it is based on the well-known EASY sched-
uler, originally developed for the IBM parallel SP system
[10]. In fact, CREASY inherits its backfilling algorithm
from EASY. The only actual difference between the two
schedulers is in the way they prioritize the jobs: while the
user-oblivious EASY only accounts for the jobs’ arrival

3Expected response is the sum of the time the job has already spent
in the scheduler’s queue, and the time it is expected run, which is based
on a user estimate.

order in the interest of fairness, CREASY assigns it prior-
ities to improve user satisfaction, as described above.

The complete prioritization scheme of CREASY com-
prises two factors:

priority(j) = α · criticality(j) + seniority(j) (2)

Thecriticality factor is the derivative of Equation 1 which
assigns high priorities to the critical jobs, while thesenior-
ity factor is the job’s waiting time in the scheduler’s queue,
in minutes. The role of the seniority factor is to prevent
the starvation of old jobs whose criticality, by definition,
is already low, by making sure their priority steadily in-
creases with time, until it exceeds the priority any newly
submitted critical job.

Finally, the weightα is used to set the relative impor-
tance of the two factors in the calculation, and at the same
time to adjust the different units used. Withα = 0 only
seniority takes effect, and CREASY effectively reverts
to the original EASY behavior. Withα = 6000 there
is a strong preference for the critical short jobs, which
should boost the performance of CREASY. Experiments
show that beyond6000, improvements in performance for
CREASY are marginal.

3 Daily Cycles Effect on
Performance

The CREASY scheduler described above prioritizes jobs
whose expected response time is short, in order to pro-
mote their execution and have them respond while their
owners are still active in the system. Intuitively, this
should reduce the chances for session aborts, motivate the
users to submit more jobs, and result in higher overall sys-
tem throughput and utilization.

To evaluate this hypothesis we used theSiteSimsimu-
lator, which is a C++ framework designed to accurately
emulate the interaction between the users and their sys-
tem, in order to produce reliable simulation results [16].
The users in SiteSim generate the workload by submitting
jobs to the scheduler, and the scheduler in turn schedules
the jobs and notifies the users when they complete. This
interaction between the users and the scheduler continues
throughout the entire course of the simulation, which re-
sults in a workload that is generated dynamically and ad-
justs to the temporal load conditions in the simulated sys-
tem. An interesting result of this approach is that compar-
ing different schedulers “under the same conditions” does
not mean that they will be required to schedule exactly
the same sequence of jobs. Instead, it means that they
will serve the same workload generation process. This is
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essential in order to enable the use of different schedulers
to lead to different throughput and utilization levels.

Modeling the scheduler actions upon job arrival in
SiteSim is relatively straightforward; it requires the useof
an internal wait queue to hold the jobs, and the implemen-
tation of a processor allocation algorithm, to process the
queue and select jobs for execution, every time a new job
arrives or a running job terminates. The scheduler model
assumes that jobs are run to completion without preemp-
tion on a dedicated set of processors — a common usage
pattern typically found in large-scale parallel supercom-
puters.

Modeling the users, on the other hand, is of course
much more involved, and requires a preliminary study of
user behavior, like the one by Zilber et al. presented in
[22]. This specific study has established the notion ofuser
sessionsin parallel systems, and defined sessions to be
periods of continuous activity by the users, during which
they submit one or more jobs to the scheduler. Sessions
end when the think time between the completion of a job
and the submission of the next exceeds a certain thresh-
old, which the study has identified to be twenty minutes,
by analyzing various parallel systems traces.

As described above in Section 2, Shmueli and Feitel-
son complemented Zilber’s study by identifying the rela-
tionship between the response times of the jobs, and the
decision of users to continue or abort their interactive ses-
sions with the system. Together, the two studies provide
enough data to allow the development of simple models
of the users, which we found to be sufficient for our pur-
pose. More detailed models require the conduction of live
experiments with real users, which is beyond the scope of
this paper. Actual model parameters, such as the charac-
teristics of the jobs, or the think times in-between jobs, are
based on empirical data drawn from five different parallel
system traces4 that are available from the Parallel Work-
loads Archive [13].

Load in SiteSim is governed by the size of the user
population, and is configured at simulation start. We be-
gin by simulating 50 users to experiment with low loads,
and gradually added 50 users each time, up to a total of
250 users, to simulate a truly loaded system. For each
of five simulated loads, we compared 5 different ver-
sions of CREASY, usingα values that grow from 0 to
6000 in jumps of 1500. As explained above, whenα =
0 CREASY behaves identically to EASY, whereas for
higherα values, its behavior becomes increasingly user-
oriented, which should result in a higher overall through-

4The trace files used are SDSC-Par-1995-2.1-cln, CTC-SP2-1996-
2.1-cln, KTH-SP2-1996-2, SDSC-SP2-1998-3.1-cln, and SDSC-BLUE-
2000-3.1-cln.
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Figure 2: Average throughput and utilizationwithout
daily cycles: Increasingα does not seem to produce any
improvement for CREASY.

put. The simulations continue for 4320 simulated hours,
equivalent to 180 days — about half a year.

3.1 CREASY without Daily Cycles

Figure 2(a) shows the throughput of CREASY for the
different α values and load conditions describe above,
without having daily cycles in the workload. As can be
seen, there is virtually no difference in throughput asα

increases; for the entire load scale, CREASY withα = 0
performs similarly to CREASY withα = 6000. Figure
2(b) further complements the above results, showing that
there is no difference in system utilization as well.

Given these results one might mistakenly conclude
that there is no advantage for user-aware scheduling
over the traditional user-oblivious approach, and dis-
miss CREASY for having no advantage whatsoever over
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EASY. All this however will be reversed, when daily cy-
cles are included in the workload, as described next.

3.2 Including Cycles in the Workload

Daily cycles are an obvious and well-known phenomenon,
occurring in contexts that range from stock trading [1] to
on-line gaming [5]. They are also observed in practically
all computer workloads, and are in fact one of the main
reasons that such workloads are not stationary. In partic-
ular, daily cycles in parallel system workloads have been
observed and reported many times [4, 2, 11, 8]. Exam-
ples are shown in Figure 3 using data from the Parallel
Workloads Archive [13].

We include daily cycles in the workload by partitioning
the day into two parts. Users are active and submit jobs
only during the daytime, which we define, based on this
figure, to be from 8:00 AM to 18:00 PM. During the rest
of the time no new jobs are submitted. Thus if the time
at which the next job should be submitted is after 18:00
PM in simulated time, this job is delayed to the next day.
To make the transition from night to day somewhat less
abrupt, users arrive randomly between 8:00 AM and 10:00
AM rather than all arriving at 8:00 AM sharp.

This plain model is similar to the model used by
Downey [2], who partitioned the day into two equal parts
of 12 hours each. The main difference is that Downey
assumed Poisson arrivals during the day, whereas in our
model the arrivals are governed by user sessions and dy-
namics as described above. Furthermore, the model used
here is much simpler than the one used in [18], which first
introduced CREASY. The latter had four user classes, to
support combinations of users who are active during the
days and nights, weekdays and weekends. As discussed
below, for the purpose of demonstrating the importance of
the cycles, the simpler model suffices.
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Figure 3:Examples of daily cycles observed on large par-
allel systems.
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Figure 4: Average throughput and utilizationwith daily
cycles: forα = 6000, CREASY outperforms EASY by
more than 50%.

Figure 4 shows the throughput and utilization of
CREASY under the workload with the cycles. As
clearly seen, both throughput and utilization improve for
CREASY asα increases. Under the highest simulated
load of 250 users, and forα = 6000, the improvement
over EASY surpasses 50%. Thus the introduction of daily
cycles not only produces quantitative improvement for
CREASY, but also a qualitative one, clearly demonstrat-
ing the benefits of user-aware scheduling for the system.

Note that the simulations with the daily cycles are also
much more realistic in terms of the predicted throughput
and utilization. The results of Figure 2, using the sim-
plistic cycle-less workload model, are unrealistically high
and would never be achieved in reality. The values pre-
dicted with the cycles are much more realistic, and fur-
thermore, match the observed utilization on production
machines [6].
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4 Detailed Performance Analysis

Given the above results, the natural question is what ex-
actly is the underlying mechanism that produces the ob-
served differences, or in other words,why is the daily cy-
cle so important for the prioritization of critical jobs to
cause such an effect?

We answer this question by presenting a detailed mon-
itoring of the simulated system as the simulations unfold.
We first analyze the system queue behavior, and then we
present a detailed characterization of the system’s state.

4.1 System Queue Behavior

Figure 5 shows one specific system element: the queue
of waiting jobs. Sub-figure (a) shows the average queue
length for the EASY scheduler as a function of simulated
time of day, where the average is taken over the 180 simu-
lated days. If daily cycles arenot included in the workload
model, this is essentially constant — as may be expected,
because the workload arrives in a continuous manner with
no specific meaning to events happening at 24-hour in-
tervals. But when a cycle is included, the queue length
quickly converges to the above steady-state value during
the period when jobs are submitted, and quickly converges
to zero when submittals are stopped.

The CREASY scheduler, shown in sub-figure (b), be-
haves somewhat differently. Again, when there is no daily
cycle, the queue length is constant, as explained above.
But when a daily cycle is present, the queue length builds
up continuously during the day as more jobs are submit-
ted. Then, at night, when submittals stop, it takes a long
time to drain and execute all the queued jobs. In effect,
CREASY is constantly in a transient state5, building up
load during the day and draining it at night, but never
reaching equilibrium. The difference from EASY indi-
cates that CREASY is not queueing jobs randomly. In-
stead, by virtue of preferring critical jobs during the day,
it tends to queue longer jobs that cannot be expected to re-
spond quickly. These jobs accumulate during the day, and
are then executed during the night, when the processors
would otherwise be left idle, thus increasing the system
utilization as we saw in Figure 4(b).

The fact that CREASY is so effective in delaying work
for the night creates an interaction between the workload
characteristics and the load level. In the simulations de-
picted here, job runtimes are limited to 1 hour, and the
population of users is 250 strong; under these conditions,
the queue finally drains around 7 AM, just in time for the

5This inherent non-stationarity also implies that conventional ap-
proaches to computing confidence intervals are invalid, butthis is be-
yond the scope of the present paper.
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Figure 5:Daily cycle and average queue length in heavy-
load simulations of 250 users. The average at each point is
based on 180 samples, from the 180 days of simulated ac-
tivity. (a) EASY scheduler, with no prioritization of criti-
cal jobs. (b) CREASY scheduler, which prioritizes critical
jobs.

new day’s work which starts at 8:00. If jobs running for
up to 2 hours are allowed, the queue does not drain com-
pletely, but the daily cycle still has a significant effect.
If jobs up to 4 hours long are allowed, the spillover to
the next day is so great that the simulation essentially be-
comes similar to a simulation without a daily cycle. This
implies that with longer jobs sometimes seen in produc-
tion parallel supercomputers, the maximal supported user
base would actually be much smaller than 250, in order
to take advantage of overcommitting the resources during
the day.

Furthermore, the fact that the queue length increases
during the day under CREASY doesnot imply that the
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system is unstable. Given the dynamic nature of the work-
load generation process, the system as a whole is inher-
ently stable, as users will eventually cease to submit more
work if their jobs get delayed in the queue. However,
due to the selective nature of CREASY’s job prioritiza-
tion schema, CREASY does not converge to the long-term
steady state within one day, and we see it only in its tran-
sient state, as opposed to EASY, which converges rela-
tively quickly.

4.2 Characteristics of Running and Waiting
Jobs

In order to understand the choices made by the two sched-
ulers, we focus on the characteristics of the running and
waiting jobs at different times during the day. Figure
6 uses color maps to show the distribution of jobs in
size×runtimecoordinates. The axes are discretized, with
each combination of a certain range of sizes and a cer-
tain range of runtimes represented by a small square. The
shade of the square indicates how many jobs have this
combination of attributes. Note that the data is a sam-
ple at a particular point in time, not an integration over a
certain time window.

The figure has four rows, and four columns. The first
two rows correspond to the CREASY scheduler, and other
two rows correspond to EASY. The first two columns
show samples of the running and waiting jobs at the be-
ginning (10:00AM) and at the end (16:00PM) of the work
day. The third column shows a sample from the night
time, at 23:00PM for CREASY and 20:00PM for EASY,
since EASY’s queue drains much faster. For comparison,
the fourth column shows the distribution of running and
waiting jobs for simulations without daily cycles.

We start by focusing on the sub-figures that are sim-
ilar for both schedulers. As can easily be observed in
the rightmost column, both the distribution of the running
and the distribution of waiting jobs are very similar for
CREASY and EASY for the simulationswithoutthe daily
cycles. This is expected, as the performance results from
Figure 2 also indicate a very similar behavior.

In addition, the distributions ofrunning jobsat differ-
ent times during the day are also largely similar for both
schedulers (rows 1 and 3), except perhaps for CREASY
running more small jobs at 10:00 AM (leftmost column).
This similarity is attributed to the fact that we use statis-
tical sampling, and thus only trace jobs at specific points
in time; thus even if CREASY runs many more short jobs
than EASY, it is difficult to capture this quantitatively us-
ing plain sampling, which results in figures that look alike.

The differences however are clearly seen for thewaiting

jobsin rows 2 and 4, which as opposed to the running jobs
that typically run for short periods of time, accumulate
in the scheduler queue for relatively long periods. These
distributions exhibit two important differences, which we
further circled in the sub-figures to help guide the expla-
nation.

First, CREASY is much more effective in servicing
small short jobs, whereas under EASY they tend to ac-
cumulate in the scheduler’s wait queue (small oval at bot-
tom left corner of the daytime waiting distributions, left-
most columns). This is a direct result of CREASY’s pol-
icy of prioritizing critical jobs in the interest of improv-
ing user satisfaction and motivation to submit additional
jobs. Second, as an indirect consequence of that policy,
large long jobs tend to wait much longer under CREASY
compared to EASY (large oval at 4:00PM and nighttime,
second and third columns), which in contradistinction al-
lows these jobs to freely compete for execution with the
shorter jobs.

The de-prioritization of the large, long jobs is the core
enabler of improved throughput of CREASY. By delay-
ing these jobs in the queue, CREASY frees compute
resources for the short interactive jobs, and encourages
users to continue the interaction with the system. The de-
layed jobs are then executed during the night, utilizing
resources that would otherwise remain idle. Thanks to
the daily cycle, these jobs do not starve under CREASY,
and the scheduler completely drains its queue prior to the
beginning of the next day of activity. This also implies
that explicit mechanisms for preventing starvation, such
as reservations, may actually be redundant in the presence
of daily cycles in the workload.

Another interesting observation from the distributions
is that CREASY is quite different from SJF (shortest job
first) scheduling, despite the fact that it also prioritizes
the short jobs. With SJF, we would expect to see many
more short jobs running, and fewer of them waiting in the
queue. The figures show, however, that CREASY actually
preferssmallerjobs overshortones.

The reason is that CREASY considers the response
times of the jobs, which is the sum of time the job has
already waited in the queue, and the time it is expected to
run. Thus if short jobs wait for a long time in the queue,
their priority decreases under CREASY, so the computa-
tion resources can be allocated to interactive jobs whose
effect on the users is still significant.

5 Conclusions

When coming to evaluate new systems, it is often hard to
anticipate in advance exactly which workload attributes
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Figure 6:Characteristics of running and waiting jobs as sampled at different times of the day, with the CREASY and
EASY schedulers (250 users). The situation with no daily cycles is shown on the right for comparison.
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will turn out to be important, and which can be abstracted
away [3, 9]. When this is the case, two courses of action
become available. The more frugal approach is to strive
for the most parsimonious model possible, and include in
the model only those attributes that are positively known
to be important. The alternative and more conservative ap-
proach is to exclude from the model only those attributes
that have been positively identified as unimportant. Our
study suggests the safety of the conservative approach as
the default course of action.

Using daily cycles of activity as an example, we have
shown that while it might sometimes seem reasonable to
ignore them and only model the high loads of the day-
time, this could in fact lead to unreliable evaluations.
In our case study of user-aware scheduling, excluding
daily cycles effectively eliminated significant differences
in performance, and could lead one to choose EASY over
CREASY as the preferable design option. Surprisingly,
the 50% improvement under CREASY didnot stem from
any feature that explicitly takes advantage of the cycles,
but rather emerged from the system dynamics — as a con-
sequence of prioritizing interactive jobs, which led to sus-
taining higher throughput during the day and delaying the
extra load to the nighttime. This underscores the impor-
tance of conservative modeling, as the effect was not an-
ticipated in advance. Thus conservative modeling is more
robust to lapses in our knowledge, which are ever present
in the evaluation of new designs.
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