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Abstract—The increasing gap between processor and memory
speeds, as well as the introduction of multi-core CPUs, have
exacerbated the dependency of CPU performance on the memory
subsystem. This trend motivates the search for more efficient
caching mechanisms, enabling both faster service of frequently
used blocks and decreased power consumption. In this paper
we describe a novel, random sampling based predictor that can
distinguish transient cache insertions from non-transient ones.
We show that this predictor can identify a small set of data
cache resident blocks that service most of the memory references,
thus serving as a building block for new cache designs and block
replacement policies. Although we only discuss the L1 data cache,
we have found this predictor to be efficient also when handling
L1 instruction caches and shared L2 caches.

I. I NTRODUCTION

The increased dependence of modern processors on their
memory system is driving a quest to find new methods to
identify temporal locality, methods that are more accuratethan
the prevalentstack depth and its derivative mechanisms such
as theLRU replacement policy.

In this paper we introduce the concept of acore working set
— a small subset of memory blocks that service the majority
of memory references — and describe a novel predictor that
determines whether a cache-residing block is part of this core
based onindependent random selections. The independent
selections eliminate the need to maintain any past-use in-
formation. The core working set concept and the predictor’s
design are based on analyzing L1 data memory references,
and showing they can be characterized using a statistical
phenomenon calledmass-count disparity [5]. Specifically, this
phenomenon stems from the known observation that memory
usage is highly skewed, with most references directed at a
relatively small subset of the address space; it is described in
Sect. II.

The main metric we use is the number of references a block
is likely to serve while in the cache, which is denoted as
the cache residency length. The predictor classifies these into
longer, non-transient residencies, and short, transient ones —
corresponding to residencies of blocks that are part of the core
working set, and residencies of non-core blocks. This is done
using random selection of memory references, as described in
Sect. III. It is compared with related work in Sect. IV.

The concepts presented in this paper were evaluated using
cache traces of SPEC benchmarks, generated using theSim-
pleScalar toolset [1] for 16K, 4-way set-associative L1 data
caches. All benchmarks were executed with theref input set
for 2×109 instructions, after fast-forwarding15×109 instruc-
tions to skip any initialization code. Despite only describing
results for data caches, the predictor was also found effective
for instruction caches and shared caches.

II. T HE SKEWED DISTRIBUTIONS OFMEMORY ACCESSES

Temporal locality of reference is one of the best-known
phenomena in computer workloads [3]. But this is actually
the result of two distinct properties: that references to the
same address tend to come in batches, and that some addresses
are much more popular than others [9]. These more popular
addresses can be grouped together to form thecore working
set — a subset of the classic working set definition [3] whose
cache residencies naturally serve the majority of references.
Blocks that are accessed only a few times and are not part of
this core will be calledtransient.

A good way to visualize skewed popularity is by using
mass-count disparity plots [5]. These plots superimpose two
distributions. The first, which is called thecount distribution,
is a distribution on blocks, and specifies how many times each
block is referenced. ThusFc(x) represents the probability that
a block is referencedx times or less. The second, called the
mass distribution, is a distribution on references; it specifies
the popularity of the block to which the reference pertains.
Thus Fm(x) represents the probability that a reference is
directed at a block that is referencedx times or less.

A problem with the above definition is that it considersall
the references to each block, throughout the duration of the
run. But the relative popularity of different blocks may change
in different phases of the computation, so the instantaneous
popularity may be more important for caching studies. Our
solution is thereforenot to count all the references to each
block, but to count only the number of references made during
a singlecache residency. Thus, if a certain block is referenced
100 times when it is brought into the cache for the first time,
is then evicted, and finally is referenced again for 200 times
when brought into the cache for the second time, we will
consider this as two cache residencies containing 100 and 200
references, respectively, rather than as a single residency of
300 references.

Returning to mass-count disparity plots, the disparity refers
to the fact that the graphs of the count and mass distributions
are quite distinct. An example is shown in Fig. 1, showing
the mass-count disparity for 4 SPEC 2000 benchmarks, one
of which (mcf) is known for its poor cache utilization. The
divergence between the distributions can be quantified by the
joint ratio [5], which is a generalization of the proverbial20/80
principle: This is the unique point in the graphs where the
sum of the two CDFs is 1. In the case of the vortex data, for
example, the joint ratio is approximately 13/87 (double-arrow
at middle of plot). This means that 13% of the cache resi-
dencies, and more specifically those instances that are highly
referenced, service a full 87% of the references, whereas the
remaining 87% of the residencies service only 13% of the
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Fig. 1: Mass-count disparity plots for data memory accesses
in select SPEC benchmarks. The arrows demonstrate theW1/2,
joint-ratio, andN1/2 metrics of mass-count disparity.

TABLE I: The N1/2 and W1/2 metrics values for L1 data
streams for the 20 SPEC 2000 benchmarks used.

Benchmark W1/2 W1/2@ N1/2 N1/2@

gzip 3.22 1 0.01 6005
vpr 4.40 2 0.08 1606
mcf 24.47 1 15.99 2
crafty 2.49 1 0.13 1932
parser 3.21 3 0.10 3441
perlbmk 1.82 4 0.51 2277
vortex 1.75 3 0.19 2528
bzip2 1.35 1 0.00 52757
twolf 6.78 3 1.78 60
wupwise 4.44 15 0.00 11521092
swim 39.49 10 37.80 10
mgrid 11.51 9 14.55 31
mesa 1.50 15 0.36 13377
galgel 11.98 2 0.61 198
art 21.75 1 15.73 3
facerec 2.30 2 0.05 17534
ammp 5.17 3 0.24 444
lucas 21.91 7 10.24 15
apsi 3.04 1 0.06 2232
Average 9.25 4.6 4.92 582479
Median 4.44 3 0.24 2232

references. Thus a typicalresidency is only referenced a rather
small number of times (up to about 10), whereas a typical
reference is directed at a long residency (one that is accessed
from 100 to millions of times).

More important for our work are theW1/2 andN1/2 metrics
[5]. TheW1/2 metric assesses the combined weight of the half
of the residencies that receive few references. For vortex,these
50% of the residencies together get∼1.7% of the references
(left down-pointing arrow). Thus these are instances of blocks
that are inserted into the cache but hardly used, and should
actually not be allowed to pollute the cache. Rather, the cache
should be used preferentially to store longer residencies,such
as those that together account for 50% of the references.
The number of long residencies needed to account for half
the references is quantified by theN1/2 metric; for vortex
it is less than 1% (right up-pointing arrow). Table I lists
the measuredW1/2 and N1/2 data for the 20 SPEC 2000
benchmarks used, along with the maximal residency length of

the blocks accounting forW1/2, and the minimal residency
length of the blocks accounting forN1/2 (marked by the @
value). For vortex, the table reveals that the 50% of the data
cache residencies are accessed up to 3 times, and that 50% of
vortex’s references are serviced by∼0.2% of the residencies,
each accessed over 2500 times. All-in-all, the table reveals that
half of the data references are serviced by less than 1% of all
residencies, in 15 of the 20 benchmarks inspected.

On the other hand, the disparity is less apparent for 5
benchmarks including mcf: almost 98% of its residencies
consist of no more than 5 references, but still compose over
70% of the references. This is manifested in a joint ratio of
33/66, and relatively highW1/2 andN1/2 values — the weight
of half the residencies (W1/2) is 25% of the mass, and the
16% longest residencies are required for half the mass (N1/2).
However, since the longest 2% of the residencies still compose
30% of the mass, mcf still exhibits some degree of disparity.

The existence of mass-count disparity demonstrate that the
working set is not evenly used but is rather focused around
a core. This has important consequences regarding random
sampling. Specifically, if you pick a residency at random, there
is a good chance that it is seldom referenced. That is why
random replacement is a reasonable eviction policy, as has
been observed many times [14]. But if you picka reference
at random, there is a good chance that this reference refers to
a block that is referenced very many times, thus belonging to
the core of the working set.

Identifying the core working set can improve the efficiency
of caching mechanism, and the nature of this core allows it to
be identified using random sampling. This observation is the
focus of this paper.

III. I DENTIFYING THE CORE WORKING SET

The basic goal of a residency length predictor is to identify
the residencies that are likely to be long. The optimal approach
would be to simply count the number of references made to
each block in the cache — i.e. the length of each residency
— and classify the residency aslong once it passes some
threshold. Fig. 1 indicates that even an arbitrary threshold
around 100 references-per-residency would suffice to identify
a small subset of residencies that service the majority of
references for most benchmarks. However, this naive design
is costly as it maintains a counter for each cache line.

The alternative, based on the observations made in the
previous section, is to use random sampling. If we sample
references uniformly with a relatively low probabilityP , short
residencies will have a very low probability of being selected.
But given that a single sample is enough to classify a residency
as belonging to the core (at least until the corresponding
block is evicted), the probability that a residency is classified
as core aftern references is1 − (1 − P )n. This converges
exponentially to 1 for largen.

Importantly, implementing such a predictor does not require
savingany state information for the blocks, since every random
selection is independent of its predecessors. The only hardware
required is a pseudo random number generator — a simple
linear-feedback shift register, for example.
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Fig. 2: The distributions characterizing selected and non-
selected L1 data cache residencies, with selection probability
P = 0.01. The downward arrows indicate the median points.

The predictor divides the set of all residencies into two:
those that are classified as core, and those that retain the tran-
sient label. In effect, the probabilistic classification also splits
every core residency in two, representing the references made
to the residencybefore and after the random selection. One
way to analyze the predictor is by comparing the distributions
of references made to residencies in the two groups (where the
transient group includes both residencies that are not selected
and the pre-selection part of those that are).

Fig. 2 shows the distributions of residencies (count) and
the number of references they service (mass) for each class,
using P = 0.01, for two benchmarks. The distributions and
their median values are compared to the base distributions of
residencies and references from Fig. 1. Note that the base
distribution of residencies practically overlaps that of the
residencies classified as transient, whereas the base distribution
of references resembles that of the residencies classified as
core (at least for cache-friendly benchmarks). This is another
manifestation of the mass-count disparity phenomenon.

The resulting distributions show a good correlation between
the residency’s length and whether it was classified as core,
with residencies classified as transient likely to be shorter than
those marked core (left of figure): less than 10% percent of
crafty’s residencies that are classified as transient consist of
more than 10 references, as opposed to over 50% of resi-
dencies classified as core. Furthermore, some 92% ofcrafty’s
references that are serviced by residencies classified as core
are indeed served by residencies longer than 200 references
(middle double-arrow). In contradistinction, only∼7% of
the references serviced by residencies that are classified as
transient actually reference residencies longer than 200.

Random sampling even yields reasonable results for the
cache-unfriendly mcf benchmark: Although 90% of the res-
idencies classified as core are shorter than 10 references, they
only account for 10% of the core’s mass. The other 90% of
the mass is composed of residencies longer than 10 references.
These 90% of the core references in fact cover over 60%
of mcf’s overall reference that target residencies longer than
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Fig. 3:Fraction of blocks sampled by the probabilistic predictor
and the percent of memory references they service, compared
to those of the optimal counter-based predictor.

10 references. Furthermore, the average residency length for
mcf’s entire stream is∼2, and under 1.8 for the transient
residencies — as oppose to 16.8 for the core residencies. Thus
random sampling was effective at identifying the core working
set to the degree that such a core exists at all.

Fig. 3 compares the probabilistic predictor to the optimal
(naive) counting approach, by showing the percentage of resi-
dencies classified as core and the references they service. The
X-axis equates a sampling probability ofP with a counting
threshold of 1

P . When analyzing the percent of references
serviced we see a very good correlation to those serviced
by the optimal predictor, at least forP up to 0.01. For
example, withP = 0.01 the sampling predictor covers over
93% of the number of references covered by the optimal
predictor for crafty. This good correlation stems from the
fact that both predictors only select a very small percentage
of the residencies, usually just a few percents. But when
P is relatively high, we get too many false positives where
transient residencies are classified as core (residencies shorter
than 15 references constitutes some 90% of all residencies in
the benchmarks shown in Fig. 1). These residencies are also
the reason why the probabilistic sampling predictor sometimes
seems to serve more references than the optimal predictor (this
is true for mcf, where the coverage atP = 0.01 is almost
103%). This implies thatP = 0.01 is a good operating point,
a result that was consistent for all benchmarks analyzed.

Summing over all the residencies, Table II shows how
many are classified as core and how many references they
service. By sampling only 0.1% of the references we select on
average∼1.3% of the residencies, and cover over 50% of the
references. As the average is highly affected by benchmarks
known for their poor temporal locality, such asswim, art,
and mcf, we also show the median values, demonstrating a
coverage of over 60% of the references.

In conclusion, the probabilistic predictor is shown to be very
effective in distinguishing between transient and core cache
residencies, thus approximating the optimal counting predictor.



TABLE II: Percents of residencies (insertions) classified as core
and the references they service, forP = 0.001 andP = 0.01.

P = 0.001 P = 0.01

Benchmark %Ins %Refs %Ins %Refs
gzip 0.69 60.21 4.93 75.47
vpr 0.87 57.33 6.17 70.58
gcc 1.12 66.63 9.04 73.78
mcf 0.19 9.29 1.76 18.09
crafty 1.02 62.68 5.60 81.25
parser 1.14 65.66 6.90 79.72
perlbmk 3.05 68.01 13.66 87.22
vortex 2.19 69.16 9.96 88.33
bzip2 1.14 73.32 7.41 85.38
twolf 1.05 35.10 7.66 55.46
wupwise 1.64 77.54 14.45 82.01
swim 1.12 3.89 10.68 13.95
mgrid 1.56 21.55 13.00 40.77
mesa 4.72 87.24 19.19 94.28
galgel 0.58 29.04 3.86 57.06
art 0.24 20.82 2.38 23.53
facerec 1.17 66.80 9.43 74.19
ammp 1.00 49.24 7.39 65.20
lucas 0.79 31.72 7.44 39.24
apsi 0.73 64.93 4.14 82.29
Average 1.30 51.01 8.25 64.39
Median 1.12 62.68 7.44 74.19

IV. RELATED WORK

Predicting temporal locality — and specifically identifying
the core working set — is an integral part of every block
replacement policy and cache filtering mechanism. Either
implicitly or explicitly, several predictors have been discussed
as part of the research in cache design.

Variations of the optimal predictor were used by Sahuquillo
and Pont [13] and by Rivers and Davidson [12], at a price of
maintaining an access counter for each cache line. González
at al. used a stride predictor to identify spatial and temporal
locality, for a dual-cache structure [6]. Karlsson and Hagersten
found that the number of cache replacements between a
block’s last use and its eviction is fairly stable, and checked
whether a block’s reuse distance is smaller [10]. Jalmingerand
Stenström targeted similar goals using a structure similar to a
two level branch predictor [7]. In a different approach, Tyson
et al. implemented non-transiency prediction by identifying
load/store operations that are likely to cause a cache miss,us-
ing a cache bypass for the fetched data [15]. Temporal locality
predictors are also used in buffer-caches, with relaxed resource
consumption limitations thereby making them infeasible for
use in hardware caches (for example, the LIRS predictor is
based on an inter-reference recency metric [8]).

The only study that used some form of sampling was done
by Behar et al. [2]. As programs are known to spend most of
the time executing a small portion of the code, they observed
that generating only 1 in 10 traces for the trace cache does
not hinder performance and reduces the power consumption of
the trace generating unit. This 90/10 effect indicates thatmass-
count disparity is also common in trace generation. Naturally,
they do not address data caches.

All but the last study rely on maintaining block usage
history information, requiring additional storage with its impli-
cations of power and timing. In contradistinction, our design
relies on a simple probabilistic phenomenon observed on
reference streams, enabling it to utilize pure random sampling.

V. CONCLUSIONS

In this paper we explore the mass-count disparity of memory
references, where the vast majority ofreferences are serviced
by a very small fraction of all cache residencies, and the
majority of residencies serve only very few references. This
even applies to cache-unfriendly benchmarks.

Harnessing this phenomenon, we have designed a predictor
that classifies cache residencies based on their expected length.
The predictor uses independent random selection of references
with a low probabilty (e.g. 1

100
), thereby mostly selecting

long residencies (in 20 SPEC benchmarks, it selected an
average of∼8% of the residencies that service∼64% of all
references). The use of independent selection eliminates the
need to maintain any past-use information. This also enables
easy integration with other predictor types, such as those
addressing memory level parallelism and the criticality of
specific references for performance [11].

Extending this work, we have successfully used random
sampling to preferentially insert core residencies into the cache
[4]. The proposed design services core residencies from a
direct-mapped cache, and transient ones from a small filter.By
utilizing the direct-mapped cache’s low-latency and low-power
traits, while eliminating most conflict misses, this design
achieves better performance and consumes less power than
an equal size set-associative cache.

In future work we intend to explore the use of random
sampling for the design of shared L2 caches, attempting
to reduce cache pollution caused by transient residencies.
Preliminary experiments show promising results.
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