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Abstract—Program comprehension concerns the
ability to understand code written by others. But not
all code is the same. We use an experimental plat-
form fashioned as an online game-like environment to
measure how quickly and accurately 222 professional
programmers can interpret code snippets with similar
functionality but different structures. The results indi-
cate, inter alia, that for loops are significantly harder
than ifs, that some but not all negations make a pred-
icate harder, and that loops counting down are slightly
harder than loops counting up. This demonstrates how
the effect of syntactic structures, different ways to
express predicates, and the use of known idioms can
be measured empirically, and that syntactic structures
are not necessarily the most important factor. By
amassing many more empirical results like these it may
be possible to derive better code complexity metrics
than we have today.

Index Terms—Code complexity; program under-
standing; gamification;

I. Introduction
Program comprehension is all about bridging gaps of

knowledge [6]. Developers often need to understand code
written by others. But doing so is notoriously hard and
time consuming. The attribute of the code that makes it
hard to understand is sometimes called “code complexity”.
This is an ill-defined term, and people use it in differ-
ent ways. Factors that may influence complexity include
length (more code is harder to understand), syntactical
elements (gotos are harder than structured loops), data
flow patterns (linear is simpler), variable names (which
should convey meaning), the way the code is laid out (is
it readable?), and more [14], [19], [30], [12], [7], [8], [10],
[20].

Once factors influencing complexity are identified, one
can try to formulate metrics that quantify the complexity.
One of the oldest examples is MCC (McCabe’s Cyclomatic
Complexity), which essentially counts branch points in the
code [29]. This was meant mainly as a testing-complexity
metric, meaning it provides a lower bound on the number
of tests required to exercise all paths in the code. However,
it is often used as a metric for general conceptual complex-
ity, partly because there are no widely agreed alternatives.
At the same time, using MCC to measure complexity has
met with heated debate [39], [44], [17], [4], [24].

MCC gives the same weight to all control structures.
But intuitively a while loop feels more complicated than

an if, a case in a switch is less complicated, nested
ifs feel more complicated than a sequence of ifs [34],
and so on. However, proposals to give different constructs
different weights did not report empirical evidence sup-
porting the proposed weights [38], [18]. We wanted to
measure how different constructs affect understanding,
thereby quantifying their contribution to complexity.

Following the tradition of “micro-benchmarks” used in
performance evaluation, we started by writing short code
snippets that isolate various basic structures, and used
them in controlled experiments to measure their effect.
But this led to two problems. First, there are endless
possibilities, which create the danger of confounding fac-
tors that will prevent meaningful analysis. Second, based
on experience with various code fragments, we felt that
some of the most important factors may not be related
to differences between basic constructs, but rather to
the composition of conditionals and to using or violating
common programming idioms.

We therefore made the following decisions. First, we fo-
cused on one specific well-defined family of code snippets:
checking whether a number is in any of a set of ranges.
This can be expressed in a wide variety of ways, using
different syntactical constructs and conditionals, thereby
enabling meaningful comparisons. Second, we extended
the scope to add compound conditional expressions. Third,
we included some specific idioms and their violations
that may have an effect on understanding despite being
syntactically similar (e.g. a loop counting up vs. a loop
counting down).

The following sections present the experimental design
in detail, followed by results of experiments with 222
programmers. They embody the following contributions:

• Development of an experimental platform where sub-
jects participate in an online game with the objective
to correctly interpret code snippets.

• Generation of an initial set of snippets that allow
comparisons between syntactic and other differences.

• Empirical quantification of differences between con-
structs (e.g. for loops are significantly harder than
ifs), predicates (some but not all negations make
predicates slightly harder), and idioms (loops count-
ing down are slightly harder than loops counting up,
despite being syntactically identical).



II. Related Work

Surprisingly, there has been relatively little empirical
work on how program structures affect comprehension.
For example, McCabe famously conjectured that the cy-
clomatic number of a function’s control flow graph reflects
its complexity, but did not put this to the test with any
real programmers [29]. He also suggested an extended
version where the components of compound conditionals
are enumerated separately, which in a sense anticipates
our work. This was later discussed by Myers, but again
with no empirical grounding, instead saying that “it is
hoped that the reader will intuitively arrive at the same
conclusion” [31]. Over the years there have been some
reports that this and related metrics can be used to predict
code quality [11], [30], [33], [37], but also reports that
claimed that any correlations with these metrics are low
or nonexistent [12], [15], [25].

Mynatt considered how the use of iteration vs. recur-
sion affects comprehension, as measured by being able to
recall programs [32]. Iselin studied looping constructs and
the interplay between writing positive/negative conditions
and whether they evaluate to true or false, in an effort to
substantiate theories of the cognitive processes involved in
comprehension [22]. We focus more on how (compound)
conditionals are expressed, and on quantifying this effect.
Other studies have also aimed at theories of cognitive
processes [40], [6], [27], [43], [3], [35]. In our opinion much
more experimental data is needed for such theorizing.

Another structural element of programs that may affect
comprehension is successive repetitions. The idea is that
repetitive code is easier to understand, because once one
understands a certain code fragment, this understanding
can be leveraged for its repetitions [42], [24]. At this stage
we only consider basic structures in isolation.

The importance of programming idioms (or in their
terminology, “plans”), was studied by Soloway and Ehrlich
in the 1980s [41], in the context of studying the differences
between experts and novices. One of the findings was that
experts know of and exploit idioms. The related notion
of design patterns was later popularized by the “gang of
four” in the context of object-oriented programming [16].
Since then there has been some empirical research on the
actual impact of using patterns, but not very much, and
the cumulative results are not conclusive [2]. Our work
does not deal with these classic design patterns; rather,
we focus on more elementary idioms such as a simple
loop on an array. Moreover, we study the effect directly
on understanding and not on software quality metrics
or maintainability as is often done. As far as we know
the effect of using (or violating) such basic idioms on
comprehension has not been studied before.

III. Research Questions

Our goal is to measure how different syntactic and other
factors influence code complexity and comprehension. To

concretize this goal, in this research we focused on the
following research questions:
1) What is the effect of control structures on code com-

plexity? More specifically, is the complexity of an if
the same as that of a for?

2) What is the effect of different formulations of condi-
tionals on code complexity? This includes
a) What is the effect of the size (number of predicates)

of a logical expression?
b) What is the relative complexity of expressing a

multi-part decision using a single compound logical
expression as opposed to a sequence of elementary
ones?

c) What is the relative complexity of a “flat” formula-
tion and a nested one?

d) What is the effect of using negation?
3) How does the use (or violation) of programming idioms

affect the complexity of the resulting code?
The metrics used to investigate these questions are time

and correctness that are measured in a controlled exper-
iment, in which different code snippets with different con-
structs are presented to programmers. The experimental
task is to identify the printout of these snippets. A longer
time or more errors are assumed to reflect difficulties in
understanding and hence more complex code.

IV. Experimental Design
Our experiment is based on showing experimental sub-

jects short code snippets which they need to interpret. A
major issue is what code snippets to use.

A. Considerations for Code Snippet Selection
Since the number of possible code snippets is endless,

they need to be chosen carefully taking several considera-
tions into account.

First and obviously, the code snippets need to answer
the research questions. We need to include snippets us-
ing different constructs, simple or compound conditions,
flat/nested structure, with or without negation, and with
natural scaling to different sizes.

Second, differences in difficulty need to come only from
the code’s structure. A major gap that may exist between
whoever wrote some code and whoever is trying to un-
derstand it concerns domain knowledge. For example, if
a program embodies certain business rules, a reader who
doesn’t know these rules will find it difficult to understand.
This is unrelated to the programming. If we want to study
the difficulties in understanding code, we need to factor
out any domain knowledge and focus on the code elements.
Therefore, the code snippets need to have some well-known
common ground, so that the variation between them will
not come from their content but from how they express it.

Third, will the code snippets be synthetic or real?
Obviously it is better to have an experiment on snippets
taken from a real program, but this may cause noise that
will cloak the subtle effect we want to measure. Also,
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it may be hard to find suitable code snippets that have
common ground as we desire. We therefore decided to
settle on code written for our experiments.

Finally, a deeper issue is the major question of what
exactly we mean by “understanding the code”, and how
code snippets can be used to assess it at all. In principle
one can distinguish between interpretation (being able to
trace the execution of the code and find its output) and
comprehension (being able to state the objective of the
code). For example, consider the following code snippet:
sum = 0;
for (i=1; i<=100; i++)

sum += i;
one can immediately see that it calculates the sum of
all numbers from 1 to 100 — what we would classify as
comprehension. And if asked about the outcome, we can
calculate that it is 5050 without actually running all 100
iterations in our head. But in other cases the functionality
is not so transparent, and we do need to mentally execute
the code to find its outcome. Thus it might be claimed
that resorting to interpretation is a sign of complexity.
However, different people may be able to comprehend
different snippets easily, so the distinction is probably not
universal. We therefore decided not to try to distinguish
between different levels of understanding at this stage,
and let subjects use whatever works for them to find the
outcome of snippets. Investigating the distinction between
interpretation and comprehension further is left to future
work.
B. Choosing a Common Framework

Taken together, these considerations led to the decision
to use a set of synthetic code snippets with common
functionality, that can each be employed in the context
of multiple research questions. The chosen functionality
is to test whether a number is in a collection of non-
overlapping ranges. Each range is defined by a conjunction
of two simple Boolean atoms with > and < comparisons.
We assume that understanding such atoms is easy, and
specifically do not test for edge cases to avoid possible
confusion. The same atoms are used in all the snippets, so
the variation is caused only by the syntactic ways of using
and combining them.

In this framework all the snippets have common ground
from a very basic domain, they are easy to scale (add
more ranges), and the functionality can be expressed in
many different ways. For example, consider the question
of verifying whether x is in either of two successive ranges
(a,b) and (c,d), where a<b<c<d. We can express this
using a single if/else statement with a compound logic
expression:
if (x>a && x<b || x>c && x<d) {print(1); /*in*/}
else {print(2); /*out*/}

Alternatively, this can be broken into separate if/else
statements that together achieve the same goal:
if (x>c) {

if (x<d) {print(1); /*in*/}

else {print(2); /*out*/}
}
else if (x>a) {

if (x<b) {print(3); /*in*/}
else {print(4); /*out*/}

}
else {print(5); /*out*/}
The snippets include print statements that identify the

path in the code. This is done using single-digit numbers
rather than strings like “in” and “out” to avoid giving hints
regarding the functionality. The outcome of each snippet is
one such digit being printed, and this is what the subjects
are asked to identify. In the real experiments the “in” and
“out” comments are of course excluded.

C. Conversion Rules
In order to be able to compare snippets consistently, we

define precise conversion rules for compound predicates
in ifs. Conjunction (AND) in a compound expression
converts to an additional if nested in the then block:

if(A && B){print(1)}
else{print(2)} ←→

if(A){
if(B){print(1)}
else{print(2)}}

else{print(3)}

Disjunction (OR) converts to an elseif (or equivalently
an if nested in the else block).

if(A || B){print(1)}
else{print(2)} ←→

if(A){print(1)}
else if(B){print(2)}
else{print(3)}

Brackets are added only if necessary, meaning that the
expression outcome will be different without brackets.

D. Creating the Pool of Snippets
Given the common framework described above, we need

to create specific code snippets to use in experiments and
answer the different research questions.

We start by defining three main variations of the code
structure, with differences in nesting. These reflect RQ 2c:
a. The simplest and most straightforward way is testing

whether a number is in the first range or in the second
range or in the third range and so on. This is a flat
structure.

b. A two-level scheme, first testing whether a number
is between a lower and an upper bound, and then
whether it is in some range in between.

c. Divide the whole range into two, test whether the
number is in the first part or the second part, then
continue recursively inside those parts drilling down
to the individual ranges. This is the most nested
structure.

Each of these variation is then expressed in two main ways:
using a single if/else statement with a compound logical
expression, or using control flow with multiple if/elses
with a single condition in each one (as in the example
above). This reflects RQ 2b. In the sequel, the first three
will be denoted al, bl, and cl (l for logic), the later three
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TABLE I
Code snippets used for each research question

RQ description snippet comparisons
1 if vs. for as–cs–f*–f[ ], f*–f[ ]
2a expression size more or fewer ranges
2b compound vs. structure as–al, bs–bl, cs–cl
2c flat vs. nesting as–bs–cs, al–bl–cl
2d negation al–an–an1–an2
3 loop idioms lp0–lp1–...–lp5–lp6

as, bs, and cs (s for structure). Actual code will be shown
below when we discuss it in the results.

The next step was to express the first variant (al above)
with negation, in three different variants that will be
denoted an, an1, and an2 (the differences are detailed
below). This reflects RQ 2d.

A harder problem is to accommodate different control
structures. It initially seems that if is intrinsically differ-
ent from for: the first denotes a branch, the second a loop.
But when we want to check inclusion in multiple ranges,
this can be done either by ifs as shown above, or by a
loop that traverses all the ranges and checks them one at
a time. This observation facilitated creating snippets using
a for loop, used for RQ 1, with two versions:

• By setting the ends of the ranges to be multiples of
10, say 0 to 10, 20 to 30, and so on, we can express
them by simple arithmetic manipulations of the for
loop iteration variable (variant f*).

• Alternatively it is possible to store the ranges’ end
points in an array and to go over them in a sequential
manner (variant f[ ]).

These are both reasonable uses of for loops.
All these code snippets were then scaled with different

numbers of ranges: 2, 3, and 4, for RQ 2a.
Finally, we need snippets which reflect idioms and their

violation, for RQ 3. We decided to use idioms of for loops.
These are denoted lp0 to lp6, and included the following:

• Loops with different end conditions, comparing the
classic loop for (i=0; i<n; i++) with variants
starting from 1 and/or using <= as the condition. An
example is for (i=1; i<n; i++), which does not
cover the full conventional range.

• Comparing a loop counting up with the same loop
counting down, e.g. for (i=n-1; i>=0; i--).

A summary of the snippets and their relationship to
research questions is given in Table I.

E. Generating a Test Plan
All told we have 40 code snippets: 12 each with 3 and 4

ranges, only 9 with 2 ranges (because some cases become
identical for only 2 ranges, e.g. al and cl), and 7 special
loop cases. In the pilot we found that this is too much
for a single subject to perform, not because of the time
investment (many snippets take only 10–20 seconds to
solve) but because they are repetitive causing reduced

bl

f[]

f*

if−for

logic−
structure

cs

as al

bs

cl

bl1

nest
flat−
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an

an2

Fig. 1. Code snippet comparisons in relation to research questions.

focus and a learning effect. So we need to select a subset
for each subject.

The selection needs to be done efficiently in terms of
including pairs or sets of snippets that are meaningful to
compare to each other. For example, snippet al (simple
logic expression) can be compared with as (an equivalent
structure of ifs) in the context of RQ 2b. It can also
be compared with snippets an, an1, and an2 (alternative
expressions using negation) to answer RQ 2d, and with
snippets bl and cl (different nesting structure) for RQ 2c.
The full graph showing all pairs of comparable snippets
(except those relating to size) is given in Figure 1.

Based on the above, the selection of snippets to present
to a subject is done as follows.

• We formed three partly overlapping subsets based
on the research questions: {as, cs, f*, f[ ]}, {as, al,
bs, bl, cs, cl}, and {al, an, an1, an2}. By selecting
all the snippets in such a group, we collect data
that facilitates within-subject comparisons of all the
relevant pairs of snippets described above. For each
subject we pick one of these three groups at random.

• The snippets in the above group are used in their 3-
range version. In addition we select two of them at
random and add their 2-range and 4-range versions
(if they exist — not all snippets have a meaningful
2-range version).

• Next, we add three special idiom snippets drawn
randomly.

The selected snippets are presented in a random order.
The total number of snippets presented to each subject is
between 11 and 14.

V. Experimental Platform
Given a well defined pool of snippets, we need to design

the experimental platform to present them to subjects.

A. Considerations and Implementation Principles
Our metrics — from which we deduce the effect of

syntactic factors — are the time and accuracy with which
subjects interpret the code. But this may be a subtle effect.
The snippets are at a basic level and very short. So we
need high accuracy in measurement and many samples,
meaning many subjects.
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Fig. 2. Stylized game slogan.

We also need to motivate the subjects to do their best in
terms of both time and accuracy. This typically involves a
tradeoff: higher accuracy requires more time, so we don’t
want subjects to spend much time rechecking their work.
Moreover, the subjects won’t be under our control, and
monetary compensation will probably not work to get
experienced professionals to participate in such a short
experiment. So how we are going to motivate the subjects?

Our solution to these problems comes in two levels:
• Technological: To reach many subjects and achieve ac-

curate measurements, we implement a website for the
experiment. Participation is then easy (send a link,
no installation needed in the client, cross platform so
any OS with a browser can run it).

• Methodological: To motivate the subjects we design
the website based on some gamification principles.
Huotari and Hamari define gamification by the user
experience, which should be fun and challenging [21].
Deterding et al. say that gamification is reflected in
the system implementation, by including game ele-
ments like graphics, an avatar, a timer, a progress bar,
feedback, etc. [13]. We will show how we implement
gamification according to both these definitions.

B. The Platform
We present the system by describing its flow.

1) When a subject visits the experiment website, the
landing page is a welcome screen with an explanation
of how the experiment will be conducted. It includes
statements that the topic is code comprehension, that
we are evaluating the code and not the participants,
and that they may retire before finishing if they wish.
We add gamification elements like a cartoon of a
programmer in action that will act as an avatar, so the
subject can identify with him through the experiment.
We also use a stylized slogan (“Get the code”, see
Figure 2) to create a game context, and label the ‘next’
button with ‘Got you!’ in order to create an enjoyable
atmosphere. At this point, the server chooses a test
plan randomly according to the procedure described
earlier.

2) A popup is opened with a demographic questionnaire
with details on education and experience. None of
the fields are mandatory. Notice that choosing a test
plan does not dependent on experience or any other
demographic information of the user.

3) Then an example screen is displayed, showing how
the experimental screen looks and pointing out the
function of the different parts.

4) Now the actual experiment starts. The main screen is
shown in Figure 3. A code snippet is presented in the

Fig. 3. Screenshot of gamified experimental platform.

white window to the left. If the snippet is too long,
scrollbars are automatically added. The subject should
write the snippet’s output in the black window to
the right. Additional important elements in this screen
include:
• The main screen is decorated as an office from

the perspective of a programmer. This graphic is
a gamification element that creates atmosphere and
context.

• A timer counting down to 0. The timer provides a
constant reminder to answer as fast as possible. This
is a known gamification element that adds challenge
and motivation. In most of the questions the clock
counts back 60 seconds. For questions where the pilot
indicated subjects had trouble answering within a
minute we gave 90 seconds.

• A progress bar, showing the place in the sequence of
questions. This is also a gamification element that
keeps subject motivated by keeping them aware of
their progress.

• Two buttons at the bottom of the reply screen,
labeled “I think I made it” and “skip”. The first
is used if the subject believes he managed to solve
the challenge. The second allows him to skip the
question; we provide this option to reduce the mo-
tivation to guess. When the subject clicks either of
these buttons a small popup appears, showing the
correct answer and the user’s answer, and giving a
short compliment if the subject got it right (“Wow”,
“Nice :)”, “Good!”). Such feedback is a gamification
element that on the one hand motivate the user, and
on the other hand helps to do better next time by
learning from mistakes.
The popup also contains a button labeled “let’s
continue!” to enable the subject to move on. This
allows each subject to advance at his own rate. In
particular, subjects that take a part in the experi-
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ment remotely may be disturbed and may not do it
continuously.

Every time a user completes a question we save his
answer and the time it took him asynchronously to the
server. Thus, if subjects decide to quit the experiment
in the middle, we can still use the results for those
snippets they did do. In addition, the correct answer to
the question is not loaded together with the question,
but only after the answer is submitted, so subjects
cannot peek using the browser console.

5) After completing the experiment a goodbye screen with
a thank-you message and a summary of the results is
shown. We also added a reminder that the scores are
not comparable, as each subject gets different snippets
and some are harder than others. This was because we
noticed in the pilot that a competitive atmosphere was
created, and some of the subjects who achieved low
results were disappointed.

VI. Experiment Execution
A. Subjects

Experimental subjects were recruited by soliciting their
help. These were all professional developers, starting with
colleagues of the first author working at the same multi-
national software company, and then continuing via word
of mouth to other departments and companies. Most were
from Israel, but some came from locations of the same
companies in India and the UK. Sending an email with
a deadline (“we need the results of this experiment by
Tuesday’’) led to 180 responses within 3 days, after a
previous request without a deadline yielded only 40 in a
whole week.

The results presented here are based on 222 subjects
who participated through the Internet during June to
August 2016. (In addition there were about 30 in the pilot
and 25 who were observed personally.) 119 of them were
male and 103 female. The average age was 28.9 (range of
21–56). 151 of them had an academic degree: 124 BSc, 17
MSc, and 10 PhD. Levels of experience ranged from 0 to
19 years, with an average of 5.6 years.

B. Variables
The most important independent variable is obviously

the code snippets. But there are also other independent
variables that may cause confounding effects. This includes
the demographic variables (level of experience, level of
education, sex). Another is the order that the snippets
are presented, as the common framework behind the snip-
pets may lead to learning effects. But the effect of these
variables is mitigated by randomization.

The main dependent variables are correctness and time.
Code snippets that are more complex are expected to
require more time and lead to more mistakes. Time is mea-
sured from displaying the code until the subject presses
the button to indicate he is done. In our analysis we focus
exclusively on the time for correct answers since incorrect

answers may reflect misunderstandings, or guesses, or
giving up. Another dependent variable is the button the
subject chose to click: either “I think I made it” or “skip”.
However, skip was used only 27 times in total, out of 2326
recorded answers, so its effect is negligible.

C. Statistical Methodology
1) Within subject design: A major issue in software

engineering empirical research is individual differences
between experimental subjects. It is commonly thought
that such differences can reach a factor of 10 or more [36],
[9], [26]. This causes the results to have a large variance,
which may mask experimental effects.

A possible solution to this problem is to use within
subject comparisons and paired samples. Thus, when we
want to compare performance on snippets a and b, we
measure how the same subjects perform on both. We then
analyze the differences rather than the raw results, which
factors out individual differences to a large degree. Our
assignment of snippets to subjects facilitates this design.

2) Statistical Approach: We denote Xi,j = 1 if subject
i’s answer to code snippet j is correct, and Xi,j = 0 if
wrong. Moreover, we define Yi,j ∈ R+ to be the time
to reach a correct answer, with the same indexes. The
matrices Xi,j and Yi,j contain many missing values, since
subjects are not tested on all snippets.

Suppose we have two vectors of code snippets, such that
the differences between them reflect one of the research
questions (e.g. one uses negation and the other doesn’t).
We denote them by A = (a1, .., an) and B = (b1, .., bn).
The terms ak and bk are snippets’ identifiers. Note that the
members of each vector are not necessarily all different, as
we may want to compare the same snippet against several
others. The snippets are ordered so that ak and bk are
considered a pair (à la Figure 1). Let Pk denote the index
set of all subjects who answered correctly both snippets of
the pair ak and bk.

We first analyze the time difference of correct answers
to A and B. Denote by tj the time distribution of a correct
answer to code snippet j. Our null hypothesis is that
tak

= tbk for every k = 1, ..., n. In other words, the correct
answer distributions of pairs are identical. We apply a non-
parametric permutation test, where the test statistic is
defined as follows. Let Dk = (Yi,ak

− Yi,bk) for i ∈ Pk be
the time difference vector, for the k’th snippets pair, of all
subjects in Pk. Then,

Tk =
√
|Pk|

Dk

SD(Dk)
, (1)

where SD stands for standard deviation. The test statistic
T is the mean of all Tk’s. In this way we account for the
difference within each set. If |A| = |B| = 1 (we’re com-
paring just one pair of snippets) T becomes the ordinary
standardized mean difference.

Because the null hypothesis states identical time distri-
bution of snippet pairs, exchanging observations within
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pairs does not change T ’s distribution. To obtain T ’s
empirical distribution, we calculate 2 × 104 values of T
corresponding to random selections of what observations
to flip. To test if tak

− tbk > 0 on average for k = 1, .., n
(standardized average as above), we calculate the upper
tail region of T . To test if tak

− tbk ̸= 0, using the fact that
T is symmetric around zero under the null hypothesis, we
consider the distribution of the absolute value statistic,
and calculate the upper region of |T |.

We also perform a Wilcoxon signed rank test. Denote
by Ri,k the rank of |Yi,ak

− Yi,bk |. We compute the value
R

′

i,k = sgn(Yi,ak
− Yi,bk)Ri,k, and then calculate Tk as in

(1), using all R′

i,k that belong to the snippet pair (ak, bk).
Finally, we obtain the mean of Tk, k = 1, ..., n. Calculation
of significance was done as previously, with 2×104 random
permutations.

In order to estimate the difficulty of snippets, we use the
Rasch model applied to the error rates [1], [5]. Denote the
ability of subject i by θi, and the difficulty of snippet j by
βj . The essence of the model is to express the probability
of a correct answer as a logistic function of the difference
between the ability and the difficulty:

Pr(Xi,j = 1) =
eθi−βj

1 + eθi−βj
. (2)

As the difficulty parameter βj increases, the probability of
the event {Xi,j = 1} decreases. Note that the model is not
identifiable, since adding a constant c to βj and θi does not
change expression (2). We therefore add a restriction that
the sum of all estimated βs be 0. To estimate the βs we
use the conditional maximum likelihood (CML) approach,
which conditions on the number of correct answers of each
subject as a sufficient statistic for θi.

To compare difficulty between groups A and B, we
consider the contrast statistic

C(A,B) = 1

|A|
∑
j∈A

β̂j −
1

|B|
∑
j∈B

β̂j . (3)

We can calculate the variance given the covariance matrix
Σ of β̂. In order to obtain the p-value, we assume normality
of C(A,B)√

Var(C)
, since the number of degrees of freedom is large.

All this procedure was done using the eRm package [28].

VII. Results
A. Descriptive Statistics

An example of the raw results is shown in Figure 4. This
includes the distributions (CDF) of the time to achieve a
correct answer for two snippets: al (basic simple formula-
tion) and an2 (a formulation with negation). The graphs
show that, except perhaps in the tails, the distribution for
an2 dominates that of al, and indeed the analysis below
shows that the difference is statistically significant.

However, it is interesting to also note the distribution of
differences between pairs of results by the same subjects.
This turns out to include both positive and negative
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Fig. 4. Distributions of time to correct answer for two snippets.

results that are quite high. This means that despite the
general tendency to do better on al, some subjects actually
did better (and even significantly better) on an2. This
happened in practically all comparisons.
B. Results of Statistical Analysis

Results comparing various groups of snippets are given
in Table II. These include p-values from permutation and
Wilcoxon tests on the time to correct answers, and from
contrasts on the number of wrong answers. Note that they
do not always correspond to each other, as it may happen
that in a certain comparison there is a difference in times
but not in error rates, or vice versa.

When comparing the p-values to a threshold of 0.05,
5% of them by definition should be found to be “statis-
tically significant” even if the null hypothesis holds (type
I errors). Therefore a Bonferroni correction (dividing the
threshold by the number of tests) is typically used when
multiple tests are performed. However, we performed a
total of 31 tests, and around half (rather than only 1 or
2) were below the 0.05 threshold, so the majority can be
assumed to hold anyway. Most are also below a Bonferroni
corrected threshold.

1) RQ 1: if vs. for: The results show a significant
difference between snippets based on ifs and those using
for. The former are represented by snippets as and cs, and
use a nested sequence of > or < tests to establish inclusion
in a set of ranges, while the latter do it with loops using
either of the following styles:

f*: for (var i=0 ; i<3 ; i++)
if (x>10*2*i && x<10*(2*i+1)) { ... }

f[ ]:
var a = [[0,10] , [20,30] , [40,50]];
for (var i=0 ; i<a.length ; i++)

if (x>a[i][0] && x<a[i][1]) { ... }

The snippets using for took more than twice as long
to interpret, and led to more errors. All the differences
were statistically significant (Table II). This implies that
metrics like MCC that assign the same complexity to
all branching instructions may be too simplistic. Further-
more, the f* variant took much longer than the f[ ] variant,
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TABLE II
Results of comparisons related to each research question

__ compare this... __ ___ ...with this ___ ____ p-value ____
RQ description snippet avg±stdv err snippet avg±stdv err N sd permutation Wilcoxon contrast
1 if vs. f*,f[ ] 40.5±17.8 0.387 as,cs 17.8±9.8 0.213 79 1 0∗∗ 0∗∗ 0.0003∗∗

for f* 46.6±19.0 0.325 as 18.3±11.2 0.175 24 1 0∗∗ 0∗∗ 0.0072∗
f[ ] 35.0±14.7 0.450 as 15.9±11.1 0.175 19 1 0∗∗ 0∗∗ 0.0002∗∗
f* 43.6±19.3 0.325 cs 20.3±9.3 0.250 19 1 0.0001∗∗ 0.0001∗∗ 0.0813
f[ ] 34.5±15.0 0.450 cs 16.3±6.4 0.250 17 1 0.0001∗∗ 0.0001∗∗ 0.0049∗
f* 45.6±21.9 0.325 f[ ] 33.2±13.2 0.450 14 2 0.0578 0.0785 0.291

2a size 3 seg 24.0±13.1 0.206 2 seg 20.6±13.4 0.145 235 1 0∗∗ 0∗∗ 0.0081∗
4 seg 24.4±12.9 0.333 3 seg 21.5±11.7 0.236 226 1 0.748 0.0727 0.175

2b expr vs. al,bl,cl 21.2±8.6 0.142 as,bs,cs 19.5±9.6 0.208 115 1 0.0423∗ 0.0288∗ 0.970
struct al 19.2±8.4 0.082 as 17.1±8.8 0.175 43 1 0.0949 0.0895 0.999

bl 22.5±9.4 0.182 bs 19.9±9.4 0.190 38 1 0.0630 0.0528 0.535
cl 22.3±7.7 0.254 cs 22.0±10.3 0.250 34 1 0.429 0.358 0.544
bl 23.7±11.0 0.182 bl1 21.6±9.0 0.196 35 1 0.133 0.172 0.491

2c flat vs. as,al 17.5±7.9 0.119 bs,bl 21.1±10.2 0.186 84 2 0.0032∗ 0.0039∗ 0.0580
nested as 16.6±8.1 0.175 bs 19.9±9.6 0.190 42 2 0.0486∗ 0.0622 0.961

al 18.5±7.6 0.082 bl 22.4±10.7 0.182 42 2 0.0237∗ 0.0192∗ 0.0097∗
as,al 17.4±9.6 0.119 cs,cl 21.4±9.2 0.252 102 2 0.0002∗∗ 0∗∗ 0∗∗
as 16.7±9.9 0.175 cs 20.8±10.1 0.250 63 2 0.0016∗ 0∗∗ 0.175
al 18.6±9.0 0.082 cl 22.4±7.4 0.254 39 2 0.0192∗ 0.0140∗ 0∗∗

bs,bl 20.1±9.7 0.186 cs,cl 22.2±9.2 0.252 70 2 0.482 0.272 0.120
bs 20.1±9.7 0.190 cs 22.0±10.6 0.250 38 2 0.339 0.388 0.240
bl 22.2±9.8 0.182 cl 22.3±7.4 0.254 32 2 0.957 0.495 0.297

2d negation an,an1,an2 25.0±10.9 0.232 al 23.5±10.4 0.082 166 1 0.0661 0.148 0.0002∗∗
an 21.5±8.4 0.162 al 23.5±10.7 0.082 64 1 0.917 0.928 0.0593

an1 26.7±11.9 0.355 al 24.0±11.0 0.082 44 1 0.0920 0.116 0∗∗
an2 27.5±11.7 0.182 al 23.0±9.8 0.082 58 1 0.0040∗ 0.0063∗ 0.0030∗
an1 28.1±11.9 0.355 an 21.5±8.5 0.162 42 2 0.0008∗∗ 0.0004∗∗ 0.0020∗
an2 27.6±12.1 0.182 an 21.2±7.1 0.162 55 2 0.0013∗∗ 0.0008∗∗ 0.273
an1 26.1±11.7 0.355 an2 26.0±11.9 0.182 41 2 0.973 0.930 0.036∗

3 loops lp2,lp3,lp4 15.0±9.4 0.385 lp0,lp1 15.5±9.0 0.225 103 1 0.831 0.820 0.0003∗∗
lp5,lp6 20.6±7.9 0.341 lp0,lp1 16.2±8.7 0.225 73 1 0.0002∗∗ 0.0003∗∗ 0.0215∗

0 means < 10−5. ∗ denotes statistical significance p < 0.05; ∗∗ denotes statistical significance also after Bonferroni correction p < 0.0016.
avg±stdv: of time to correct answer. err: wrong answers rate. N: number of paired samples of correct answers. sd: one-sided/two-sided.

albeit a direct comparison was not statistically significant.
This may imply that using arithmetic on the loop index
is overly confusing, at least in this case, while referencing
successive array cells is more natural.

2) RQ 2a: size of conditional: The size of conditionals
is quantified by the number of atomic comparisons they
contain. In our code snippets this reflects the number
of ranges that are checked. The results were largely as
expected. Snippets with 3 ranges took 16.5% more time
than snippets with 2 on average, and this was statistically
significant. Snippets with 4 ranges also took more time
than snippets with 3 on average, but this was not statisti-
cally significant. More ranges also led to higher error rates.
(Note: in these analyses N > 222 because each subject
typically had 2 relevant comparisons.)

3) RQ 2b: single expression vs. structure: As noted
above in Section IV-C, compound logical expressions com-
posed of many atoms may be converted into a nested
structure of simple ifs. But which of these two structures
is easier to handle? The results were that the nested
structure took slightly less time on average, but nearly
all the comparisons were not statistically significant.

This lack of difference is somewhat surprising, because
in debriefings of subjects that were observed during the

experiment they reported that the nested structures were
significantly easier than the snippets with compound logic
expressions. We conjectured that this is because a se-
quence of ifs allows one to trace the relevant path through
the code for the given input one step at a time, but when
faced with a compound expression you need to understand
it as a whole.

Note that the lack of significant separation also implies
that the structures of many nested ifs is not significantly
harder, even though these code snippets are much longer
when counting LOC.

4) RQ 2c: flat vs. nested structure: This distinction is
somewhat subtle, and involves the use of a “flat” structure
where predicates follow each other on the same level,
as opposed to a nested structure where some predicates
are subordinate to others. The logical expressions (for 4
ranges) are

al: (x>0 && x<10 || x>20 && x<30 ||
x>40 && x<50 || x>60 && x<70)

bl: (x>0 && x<70 && (x<10 || (x>20 &&
(x<30 || (x>40 && (x<50 || x>60))))))

cl: (x>40 && (x<50 || x>60 && x<70) ||
x<30 && (x>20 || x<10 && x>0))

Similarly, there were versions with nested ifs that each
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contain a single atom, based on the conversion rules
described above in Section IV-C.

As it was not clear which is expected to be easier, we
used a two-sided test in this case. The results indicate that
the a versions were slightly easier than the other two, and
this was statistically significant or nearly so (significance
was stronger when comparing with the c versions, which
have the deepest nesting).

Note that the bl version has deep skewed nesting, which
was required in order to apply the conversion rules. But
most programmers would probably avoid this, so we also
checked an alternative version:

bl1: (x>0 && x<70 && (x<10 || x>20 && x<30 ||
x>40 && x<50 || x>60))

The results were that there was no significant difference.
5) RQ 2d: use of negation: The logic expressions in the

four snippets being compared in this case, for 3 number
ranges, are the following:

al: (x>0 && x<10 || x>20 && x<30 || x>40 && x<50)

an: (x>0 && x<50 && !(x>10 && x<20) && !(x>30 && x<40))

an1: (!(x<0 || (x>10 && x<20) || (x>30 && x<40)|| x>50))

an2: (!x<0 && !(x>10 && x<20) && !(x>30 && x<40) && !(x>50))

The results were somewhat surprising. Comparing the
positive version al to the three negation version, there
was a significant difference only when comparing with
an2. Moreover, the average time for an was actually a bit
shorter than for al (although not statistically significantly
different). And comparisons of an with an1 and an2 led
to strongly statistically significant differences. Thus not
every negation causes difficulties to the same degree.
Detailed investigation of this effect is left to future work.

6) RQ 3: common loop idioms: A special set of 7
snippets concerned the details of for loops on arrays. The
specifics are listed in the following table:

version init cmp end step
lp0 0 < len ++
lp1 0 <= len-1 ++
lp2 0 < len-1 ++
lp3 1 < len ++
lp4 1 < len-1 ++
lp5 len-1 >= 0 – –
lp6 len-1 > 0 – –

Note that lp2, lp3, lp4, and lp6 do not cover the whole
range as may be expected, and are therefore abnormal.
The results showed that this did not cause significant
differences in processing time, but did lead to significantly
more errors. In addition, significant differences were found
between loops counting up and loops counting down,
which took 27% longer on average.

VIII. threats to validity
Several decisions about the experimental design were

taken specifically to mitigate threats to validity. However,
other threats remain.

Construct validity refers to correctly measuring the
dependent variable. In our case this is the time to interpret
a certain code snippet, which we relate to its structure.
But the way the snippet is written can also have an effect.
One problem is that in a flat compound statement the
ends of the number ranges can appear in numerical order,
but when using nested ifs the order must be manipulated
in correspondence with the structure. For example, in the
recursive style it is necessary to start from the middle.
Also, different programmers are used to different coding
guidelines. Opinions about this sometimes reach religious
proportions. For example not placing brackets on a new
line may cause annoyance and distraction.

Another issue is the different lengths of the code snip-
pets. Longer code is considered harder to understand, and
some say that LOC is the only important metric [20].
In principle we could inflate shorter snippets by adding
meaningless lines (e.g. var z = 1;), but decided against
doing so as this might also confound the results.

Finally, what we really care about is understanding and
not time. One can question whether the time and accuracy
of providing the output of a code snippet really reflect
understanding. We leave the deeper discussion of what
exactly is meant by “understanding” and how to measure
it to future work.

Internal validity refers to causation: are changes in the
dependent variable necessarily the result of manipulations
to treatments. In our case the treatments are snippets
that differ in use of constructs and in the structure of
conditionals. However they may also differ in length,
MCC, or some other metric, which may have an effect.

Another problem is possible learning effects. Since most
of the snippets actually perform the same logic, there is
a threat of a learning effect with the progress from one
question to the next. This is mitigated by randomizing
the order, and moreover observed subjects did not notice
the commonality of the snippets.

The experiment can be conducted anywhere and at
any time. Not all of the subjects necessarily took the
experiment under the same conditions. They could do all
the questions in a row or take a break for a long time in the
middle. They could use accessories without us knowing.
Even though we added the “skip” button, we can not
actually know whether a subject just guessed when giving
some answers.

Finally there is the personality of the subjects, and its ef-
fect on the way they choose to deal with the snippets. The
time is limited, but still a variation in the way different
subjects answered was observed. There were subjects that
chose to check themselves, while other subjects answered
immediately when they thought they were correct and
moved on.

External validity refers to generalization. The snippets
used are synthetic code, created just for the experiment.
The generalization to real production code is therefore
questionable, especially since our snippets deal only with
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TABLE III
Main results for the different research questions

RQ description results
1 if vs. for for loops are harder than ifs
2a expression size 3 predicates is harder than 2

3 vs. 4 not significant
2b compound vs.

structure
differences not statistically significant

2c flat vs. nesting flat structures appear to be slightly
easier

2d negation some but not all uses of negation are
harder: negations are different from
each other

3 loop idioms loops counting up are easier
unusual loop bounds do not have a
significant effect

finding a number in a set of ranges, and do not necessarily
pertain to the general issues of constructs, conditionals,
etc. The justification is that we preferred to limit the
experiment to a narrow scope in order to establish a solid
base that allows for future expansion.

Another concern is that the experimental subjects may
not be a valid sample. They all come from the same
companies, and even certain departments in them. Thus
replications with other subjects and additional code sam-
ples are as always needed.

IX. Conclusions and Future Work
How to measure code complexity — and even how to

define code complexity — is a contentious issue. Many
different metrics have been suggested, each focusing on
certain specific aspects of the code. But there has been
relatively little empirical evidence to support such metrics
and to compare them to each other.

We have designed and implemented an experimental
platform, fashioned as an online game, which can be used
to measure the speed and accuracy of interpreting code
snippets. We used this to measure the performance of
222 professional programmers as they interpret up to 14
different code snippets from a pool of 40 such snippets,
that have diverse structures.

Analyzing the results we find that indeed different code
structures take different times to interpret. For example,
our results indicate that for loops take more time than
sequences of ifs. Thus the approach taken by MCC,
for example, where all branching constructs are given
the same weight, is overly simplistic. Moreover, we also
found differences that stem from different ways to express
the same logical conditions (e.g. different ways of using
negation), or from adhering to or violating common idioms
(e.g. that loops count up). This implies that looking only
at basic syntactic constructs is too limited. The main
results are summarized in Table III.

While these results are illuminating and demonstrate
new paths for empirical investigation, they are far from
being comprehensive. Our study focused on one specific

family of conditions, and a limited number of structures
that can be used to express them. We did not cover
while loops, switch cases, conditionals with equality and
inequality, and much more. A lot of additional work will
be needed to complete the picture and better quantify the
effects of different structures and the interactions between
them.

Once such additional work is conducted, it may be
possible to derive sound complexity metrics that are better
than those available today and are backed by empirical
data. For example, instead of just counting constructs it
may be possible to weight them, and perhaps also modify
the weights based on nesting and other context [23].

To start with, we are already planning additional ex-
periments that focus on different styles of negation and
use of De Morgan’s laws, and on the effect of different
levels of nesting. We are also planning to reproduce this
work using another domain, such as array and string
operations, to improve external validity. On the method-
ological front, we note that anecdotal evidence from our
subjects suggests that they appreciated the gamification
element of the experiment. To support this we have started
another experiment aimed at assessing how much (if at all)
the gamification elements indeed contribute to motivation
and achievements, by re-running experiments with these
elements removed.

On a wider scale, we note that the code snippets we
use and the methodology in general do not distinguish
between different levels of understanding, and specifically
interpretation and comprehension. We are therefore plan-
ning new experiments that will establish this distinction.
This will be a first step in addressing the deeper issues of
what affects understanding and how to aid comprehension.

Verifiability
All experimental materials, including the source code

for the gamified experimental platform and all versions of
all code snippets, are available on github:
https://github.com/shulamyt/break-the-code/tree/icpc17.
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