
Comparing Windows NT, Linux, and QNX
as the Basis for Cluster Systems

Avi Kavas Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

Abstract

Clusters use commodity hardware and software components toprovide an environment for
parallel processing. A major issue in the development of a cluster system is the choice of the
operating system that will run on each node. We compare threealternatives: Windows NT,
Linux, and QNX — a real-time microkernel. The comparison is based on expressive power,
performance, and ease-of-use metrics. The result is that none of these systems has a clear
advantage over the others in all the metrics, but that each has its strong and weak points. Thus
any choice of a base system will involve some technical compromises, but not major ones.

1 Introduction

Rapid improvements in network and processor performance are causing clustered commodity
workstations and PCs to become an increasingly popular platform for executing parallel applica-
tions. In the past, Unix was used as the platform for almost all parallel systems implementations.
Recently, however, it is becoming more common to use WindowsNT as the base platform.

The decision which operating system to use involves many considerations, including the oper-
ating system’s cost and personal experience with the different systems. But there are also technical
implications. Our goal is to illuminate these technical issues, by providing a broad comparison of
the capabilities and characteristics of the different systems. Throughput, the emphasis is on those
features deemed to be important for the implementation of computational clusters.

Surprisingly, very little work of this nature has been done before. Tanenbaum has compared
three microkernels for use in parallel machines [41], but these have not withstood the test of time
and the fact remains that today systems such as Linux and Windows are preferred. Lancaster and
Takeda have compared these systems, but only in terms of performance [27]; we consider many
other aspects as well. There have been some direct comparisons of Linux and Windows for the
commercial server market [25, 29], but not in the context of clusters.

1.1 Cluster Architecture

A cluster is a parallel processing system, which consists ofa collection of interconnected stand-
alone computers working together as a single, integrated computing resource [39, 31]. The ratio-

1

4

Master
Daemon

JR JR JR

Node
Daemon

1

Node
Daemon

2

Node
Daemon

3

Node
Daemon

Figure 1:General cluster architecture. The master daemon handles resource management with the
job representative processes (JR), and controls the node daemons.

nale for clusters is the desire to leverage the commodity computing market, and ride the technology
curve. These considerations lead to the use of commercial off-the-shelf components, both for hard-
ware and for software. In particular, each node typically runs a conventional operating system such
as Windows or Linux. They are tied into a cluster by some user-level processes, often operating as
daemons.

At a high level of abstraction, many cluster systems use a similar architecture: There is a
single system-wide control process, and an additional process on each node of the cluster (Fig.
1). The central controller is responsible for configurationmanagement, resource allocation, and
job control. The per-node processes collect local data and implement the decisions of the central
controller. Example systems based on this design include the Berkeley NOW [23] and ParPar [19].

The next section presents a survey of system features that are needed in order to implement
such a structure. These include communication facilities used among the different processes, and
facilities to spawn and control user processes. In some cases, it is possible to spawn processes
remotely without using another process as a local agent. Theimplications are discussed where
specifically relevant. We then go on to discuss performance issues and ease of use. But first we
start with some background information about the three systems.

1.2 Operating Systems Compared

We focus on the comparison of three systems: Windows NT, Linux, and QNX.
Windows NT was introduced in July 1993 and was aimed at the enterprise market, for use

on high-end workstations and servers. It was the first version of Windows to support the 32-bit
programming model of the Intel 80386, 80486, and Pentium microprocessors. Windows NT has a
32-bit flat address space, provides the NTFS file system, C2 compliance security model, Remote
Access Server (RAS), and OS/2 and POSIX subsystems. It can run on Intel and Alpha processors.
Windows 2000 was built on top of Windows NT and provides better reliability and some new

2

features such as Plug-n-Play, AGP support, Active Directory, scripting tools, native ATM support
and more.

Both Windows NT and Windows 2000 use a microkernel architecture. However, this is not
a pure microkernel. Only the operating system environmentsexecute in user mode as discrete
processes, including DOS, Win16, Win32, OS/2, and POSIX. The basic operating system sub-
systems, including the process manager and the virtual memory manager, are compiled with the
kernel. They can therefore communicate with one another by using function calls for maximum
performance [38].

Several cluster systems are based on Windows NT, including the HPVM system [11] and Mil-
lipede [22].

Linux is a completely free reimplementation of the POSIX specification, with system V and
BSD extensions, which is available in both source code and binary form. The first version of the
Linux kernel was made available on the Internet by Linus Trovalds in November 1991. A group of
Linux activists quickly formed, and continues to spur on thedevelopment of this operating system.
Numerous users test new versions and help to clear the bugs out of the software, making Linux the
model of open-source development [8] (http://www.opensource.org/).

Linux, like most Unix systems is monolithic, that is, the whole operating system is a single
executable file that runs in kernel mode. This binary contains the process management, memory
management, file system and the rest.

Many clusters have been built based on Linux or other Unix variants. Examples include the
Berkeley NOW [23], the LosLobos Supercluster (http://www.ahpcc.unm.edu/Systems/
Hardware/LosLobos/), Beowulf [36], and ParPar [19].

QNX is a real-time commercial operating system, developed by QNX Software Systems. The
QNX real-time operating system provides applications witha network-distributed, real-time en-
vironment that delivers nearly the full device-level performance of the underlying hardware. The
architecture consists of a real-time microkernel surrounded by a collection of optional processes
(called resource managers) that provide UNIX-compatible system services. By including or ex-
cluding resource manager processes at run time, the developer can scale QNX down for ROM-
based embedded systems, or scale it up to encompass hundredsof processors connected by various
LAN technologies [24]. We focus is QNX version 4.0; however,QNX Neutrino is also covered in
some cases. This is a new version of QNX currently in Beta stage, which has some new features
such as SMP support and POSIX threads support.

While QNX does support a networked environment, few if any computational clusters have
been built using it. We include it because it seems reasonable that a real-time kernel can provide
important benefits to a parallel system [20].

2 Kernel Services and API Comparison

This section presents a comparison of the set of operating system services and API calls related
to parallel systems development as provided by each of the compared operating systems kernels.
In both Linux and QNX, functions classified as kernel functions or system calls were compared
(man 2 section). In Windows, the Win32 API was used for the comparison. The NT system-call
interface, called the Native API, is hidden from programmers and largely undocumented. The API

3

that the majority of NT applications write to is the Win32 API, which translates many Win32 APIs
to native APIs [35].

2.1 Process Control

One of the most basic capabilities required from a parallel system is controlling the processes of
parallel jobs. This includes spawning them on the nodes allocated for the job, suspending them in
order to schedule another job to run, and resuming them afterwards. Process control also includes
the ability to kill or to send a user defined signal to all the processes of a parallel job.

2.1.1 Process Creation

CreateProcess() is the fundamental system call used for creating new processes in Windows NT.
It creates both a process object and the main thread object ofan application.CreateProcess()
allows the parent process to set the operating environment of the new process, including its work-
ing directory, security attributes, file handle inheritance, environment variables, priorities, and the
command line it is passed [37, 30].

Win32 does not provide the capability to clone a running process (and its associated in-memory
contents) as is done by the Unixfork() system call (which is used on both Linux and QNX). This is
not such a hardship, since most Unix code forks and then immediately callsexec() [30]. The Linux
implementation offork() does not actually clone the parent process. Instead, it usesthe copy-on-
write optimization so that common virtual memory pages are shared with read-only permissions.
If either of the parent process or the child process tries to modify one of the shared pages, then the
kernel duplicates it. An important member of thefork() family of functions isvfork(). This is used
to create a new process without fully copying the address space of the parent, and can be useful
when the child won’t reference the parent’s address space and will call exec() to run a new program
[40]. Linux also has a clone() function, which allows the child to share parts of the execution
context with its parent; it is used mainly to implement threads.

Besides supporting thefork() family of functions, QNX has aqnx spawn() system call. This
allows the programmer to modify various parameters for the new process, e.g. scheduler type and
process priority. The most powerful feature ofqnx spawn() is the option to create the child process
on a remote node.

Detailed options of process creation are compared in Table 1.
As noted, QNX allows processes to be spawned on a remote node.Windows has a similar

capability as part of the Distributed Component Object Model (DCOM). This is a protocol that
enables software components to communicate directly over anetwork in a reliable, secure, and
efficient manner. However, there are two main reasons for notusing DCOM to run processes
remotely. One is that a significant performance overhead might occur because it uses multiple
software layers and interfaces. The other is that it would require users to implement their parallel
applications as DCOM objects (need to implement special DCOM interfaces), something which
is not desirable since it limits the user to a certain implementation of his application. Also, direct
process control (sending signals for example) is not available directly when using DCOM objects.

4

Windows NT Linux QNX

create process on
a remote node

not supported not supported qnx spawn()

create process on
behalf of a user

CreateProcessAsUser()
CreateProcessWithLo-
gonW()

not supported not supported

create suspended
process

CreateProcess() using
CRE-
ATE SUSPENDED
flag

not supported qnx spawn() using
SPAWN HOLD flag

inherit address
space from
parent

not supported fork() fork()

inherit open
handles / file
descriptors from
parent

CreateProcess() fork() all in fork(), 10 in
qnx spawn()

parent needs to
wait() for
children to die (to
avoid zombies)

never always always with
fork(), never with
qnx spawn() and
SPAWN NOZOMBIE
flag

instruct file
system to place
executable in
cache

not supported not supported qnx spawn() with
SPAWN XCACHE

Table 1:Process Creation Options.

2.1.2 Process Groups

Sometimes it is more convenient (or even necessary) to treata set of processes as a single group,
e.g. to perform a collective operation on them or to set restrictions on the whole group.

Windows NT 4.0 does not support process groups. Only Windows2000 offers a new job
kernel object that allows the programmer to group processestogether. This is used only to create
a sandbox that restricts what the job’s processes are allowed to do [3]. A detailed description of
these restrictions is given in Section 2.1.6.

Linux and QNX support two levels of grouping: sessions and process groups. At the top of the
hierarchy are sessions, each of which consists of one or moreprocess groups [26]. In principle,
these are useful for the distribution of signals. Unfortunately, this is largely irrelevant for parallel
applications, since groups and sessions are limited to processes on the same machine.

5

2.1.3 Process Termination

An important service in a parallel system is the option to kill all the processes in a parallel job.
In Windows NTTerminateProcess() causes all the threads within a process to terminate and the
process to exit. However, Microsoft documentation [3] suggests to useTerminateProcess() only in
extreme circumstances since it does not clean all the resources attached to the process. Specifically,
DLLs attached to the process are not notified that the processis terminating, and the process object
is not necessarily removed from the system. In Linux and QNX,Thekill() system call is used to
terminate a process by sending it a SIGKILL or SIGTERM signal. SIGKILL is distinguished by
the fact that it cannot be caught nor ignored. QNX allowskill() to send signals to processes on
remote machines.

2.1.4 Process Suspension and Resumption

Windows NT has no direct API for suspending or resuming processes. The probable reason is
that windows uses thread scheduling rather than process scheduling. Win32 supports thread sus-
pending or resuming usingSuspendThread() and ResumeThread(). Single threaded processes
can therefore be handled easily by suspending/resuming their primary thread which is returned in
the LPPROCESSINFORMATION structure after callingCreateProcess(). But in order to handle
multi-threaded processes, all the threads in the process have to be suspended/resumed individually.
Unfortunately there is no direct API for enumerating all thethreads of a given process. The Win-
dows registry contains data about all the running threads inthe system, so each thread in the system
has be queried for his process ID. The Windows 2000 ToolHelp library supplies a more convenient
API for doing this enumeration without digging in the Windows registry, but still all the threads in
the system have to be enumerated in order to find the thread handles of a given process.

In Linux and QNX thekill() system call is used to send SIGSTOP or SIGCONT to suspend or
resume a process.

2.1.5 Process Scheduling and Priorities

Windows NT, Linux, and QNX all implement a priority-driven,preemptive scheduling system.
The scheduler selects the next process to run by looking at the priority assigned to every process
(thread in Windows NT) that is in the READY state.

Windows NT scheduling is done at the thread granularity. By default, threads can run on
any available processor unless processor affinity is used (see Section 2.3.2) [33]. The priority
of each thread can be in the range from zero (lowest priority)to 31 (highest priority), as deter-
mined by combining its base priority with dynamic adjustments. The base priority, in turn, is a
combination of the priority class of its process (IDLE, NORMAL, HIGH PRIORITY, and REAL-
TIME) and the priority level of the thread within the priority class of its process (IDLE, LOWEST,
BELOW NORMAL, NORMAL, ABOVE NORMAL, HIGHEST, TIME CRITICAL). Only the
system’s zero-page thread can have a priority of zero [3].

Linux and QNX perform scheduling at the process level. Both systems offer the following
scheduling policies:

1. FIFO scheduling (SCHEDFIFO) in which the current process continues to hold the CPU
until it blocks or terminates. The highest priority READY process is always selected.

6

2. Round-robin scheduling (SCHEDRR) in which processes are given equal time quanta in
turn. This allows the processes that share the highest priority level to share the CPU. These
two schemes are useful for real-time control.

3. Adaptive scheduling (SCHEDOTHER) is which the CPU is shared as above, but the priori-
ties are adjusted according to a predefined policy that takesCPU usage into account. This is
meant to support interactive (desktop) applications.

In QNX, when a process consumes its entire time slice, its priority is lowered by one (only once).
If in the next time slice the process will use its whole time slice again, it will stay at that priority.
If it didn’t use up its entire time slice, the kernel will increase its priority by one. In Linux, the
priority calculation takes into account the nice level (setby thenice() or setpriority() system call).
The priority is increased for each time quantum the process is ready to run but not running, and
decreased when the process is running.

QNX also offers a feature called “client driven priority”, which allows a server to change its
priority according to the highest priority of the clients itserves. This feature can be used to prevent
the server from serving low priority clients in a high priority.

2.1.6 Placing Restrictions on Processes and Users

In Windows NT 4.0 there is no way to set restrictions on a process or a group of processes. On
the other hand, Windows 2000 provides a rich API for setting restrictions on jobs or processes
(recall that a job is essentially a process group). These canbe used to prevent processes from
monopolizing system resources. However, disk quotas are still missing.

Linux has mechanisms to support filesystem quotas and process limits. You can define storage
quota limits on each mountpoint for the number of blocks of storage and/or the number of unique
files (inodes) that can be used by a given user. A “hard” quota limit is a never-to-exceed limit,
while a “soft” quota can be temporarily exceeded (usingquota(), quotactl(), andquotaon()). The
rlimit mechanism supports a large number of process quotas,such as file size, number of child
processes, number of open files, and so on. In this case the “soft” limit (also called the current
limit) cannot be exceeded, but can be raised to the “hard” limit (also called the upper limit) using
setrlimit(). The setrlimit() system call is used in order to set resources limits. It can beused in
parallel systems daemons during the creation of a new process by being called after thefork() but
before theexec().

The capabilities of Linux and Windows 2000 are compared in Table 2. QNX provides no way
to set restrictions on a process or a group of processes.

2.1.7 Stdio/stderr Redirection

One of the capabilities required from a computing cluster isto redirect the standard output/error of a
job’s processes to the user’s terminal, and to redirect standard input from the user to processes. This
is typically done by establishing two sockets for each process, one for stdio and the other for stderr.
The module that spawns the processes redirects the stdio/stderr file descriptors of the processes to
the established sockets. The I/O handling application can useselect() on the established sockets to
determine if any new stdout/stderr messages have arrived from one of the processes.

7

Windows 2000 Linux

CPU time user time per process/job in
0.1�s

CPU time in s

number of processesactive processes (and future
children) associated with a
job

maximum number of pro-
cesses per user

processor affinity for all processes associated
with the job

not supported

priority and schedul-
ing

priority class and scheduling
class for all the processes as-
sociated with the job

not supported

memory restrictions memory limit per-job or maximum resident set size,
per-process maximum data size,

maximum stack size,
maximum locked in memory

GUI restrictions creating desktops and switch-
ing desktops,

not supported

changing display settings,
exiting windows,
change system parameters,
avoid interaction with wid-
ows outside the job,
interaction with the clipboard

security restrictions disallow administrator
access,

user permissions

disallow unrestricted token
access,
force a specific access token,
disable certain security iden-
tifiers and privileges

file system restric-
tions

none number of open file descrip-
tors,
maximum core file size,
disk quota per user

Table 2:Available restrictions in Windows 2000 and Linux.

8

When creating a new process in Windows NT usingCreateProcess(), one of the arguments
used is a pointer to a STARTUPINFO structure. Among other information, this structure contains
handles to standard input, standard output, standard error, and a process creation flags field. When
a parent process wants to redirect the stdio/stderr of the child process to predefined stdio/stderr
sockets it has to fill up a STARTUPINFO structure with the handles to the sockets, and specify that
they be used by setting the appropriate flag.

In Linux, stdio/stderr redirection can be performed using thedup2() system call. This system
call duplicates file descriptors, and can be used to duplicate a socket file descriptor and replace the
original stdin, stdout, or stderr. This is used to set up the descriptors of a new process between the
fork() andexec() calls.

QNX has a shortcut for doing thedup as part ofqnx spawn(). One of the arguments to this
function is an arrayiov that should contain file descriptors 0 through 9. For example, if the value 5
is placed iniov[0], the new process would have its file descriptor 0 (stdin) replaced by file descriptor
5 of the calling process.

2.1.8 Process Termination Detection and Error Handling

Once a process is spawned, it’s parent has to detect when it exits. The process might exit because it
finished its work or because of some unexpected error. It is therefore helpful is the system provides
the user with the process exit status the the reason for termination.

In Windows, the way to detect that a child process has exited is to create a thread which polls
periodically for the exit status of the child process. This is done withGetExitCodeProcess(). If
the process is still running, it returns the value STILLACTIVE, otherwise it returns its exit status.
No additional information can be retrieved besides the process exit status.

In both Linux and QNX (as POSIX based operating systems) the parent process receives a
SIGCHLD signal when a child process dies. The parent must seta signal handler in order to
catch the SIGCHLD signal and handle it (using system callssignal() or sigaction()). In the handler
one of thewait() family of system calls can be used to determine the exit status and the cause of
termination.

2.1.9 Deamons

The software architecture of cluster systems often employsdaemons — system processes that
participate in system administration, rather than runninguser programs. It is necessary to start
these processes when the system is booted. In Unix this is done by thedaemon command, which
can be placed in a script that is executed upon bootup.

Windows equivalent to a Unix daemon is called a service. A service application conforms to
the interface rules of the Service Control Manager (SCM). Itcan be started automatically at system
boot, by a user through the Services control panel applet, orby an application that uses the service
functions included in the Win32 API. Services can execute even when no user is logged on to the
system [3].

9

2.2 Memory Management

2.2.1 Process Virtual Address Space

Many parallel applications require large amounts of memory. To support them cluster nodes are
often fitted with lots of physical memory, ranging up to several gigabytes. However, there is a limit
to the amount of memory that the operating system can handle.

In Windows (32 bit version) the size of the address space is 4GB (232). The top half of the
address space (2GB) is reserved for operating system needs,including kernel and device driver
code, I/O buffers, and system tables. Over the years, there has been a large outcry from developers
for a larger user-mode address space. Therefore Microsoft has allowed the x86 version of Windows
2000 Advanced Server and Windows 2000 Data Center to increase the user-mode partition to 3GB
[33, 35]. In addition, Windows 2000 introduced a new memory management feature called Address
Windowing Extensions (AWE) which supports the allocation of more RAM than fits within the
process’s address space (32 bit), up to 64 GB of memory. The memory blocks are allocated using
AllocateUserPhysicalPages(), But these blocks are not visible in the process’s address space. The
application needs to reserve a region of address space usingVirtualAlloc(), which becomes the
address window. It can then callMapUserPhysicalPages() to assign one RAM block at a time to
the address window [33, 1]. In effect, this is simply supportfor overlays.

In the x86 architecture, Linux allocates three gigabytes tothe process address space. The
remaining gigabyte is reserved for memory used by the kernel. The three available gigabytes are
split into memory regions used by the process [10].

In QNX 4.0, the user can use all of the available free physicalmemory in a 4GB (physical) ad-
dress space, using standard memory allocation functions. While QNX 4.0 supports virtual memory,
it does not use swap files for reasons of real-time response/performance. It should be noted that
the efficiency of the operating system and Watcom compiler provide relatively small processes in
terms of memory requirements.

2.2.2 Pinning Memory Pages

In order to improve applications performance, it is sometimes needed to keep the data in physical
RAM and reduce disk paging. In clusters, this is also required in order to support the send and
receive buffers of user-level communication libraries [17]. On the other hand, locking too many
pages into memory may degrade the performance of the system by reducing the available RAM
and forcing the system to swap out other critical pages to thepaging file.

The WindowsVirtualLock() function locks the specified region of the process’s virtualaddress
space into physical memory (RAM), ensuring that subsequentaccess to the region will not incur a
page fault. By default, a process can lock a maximum of 30 pages. The default limit is intentionally
small to avoid severe performance degradation. Applications that need to lock larger numbers
of pages must first call theSetProcessWorkingSetSize() function to increase their minimum and
maximum working set sizes. The maximum number of pages that aprocess can lock is equal to
the number of pages in its minimum working set minus a small overhead [3].

In Linux mlockall() disables paging for all pages mapped into the address space of the calling
process. This includes the pages of the code, data, and stacksegments, as well as shared libraries,
user space kernel data, shared memory, and memory mapped files. All mapped pages are guar-

10

Windows Linux QNX

max processors NT 4.0 Server: 4 16 QNX 4.0: 1
NT 4.0 Server Enterprise: 8 QNX Neutrino 2.0: 8
Win2K Server: 4
Win2K Advanced Server: 8
Win2K Data Center: 32

architectures Intel Intel Intel
Alpha Sparc

Alpha
Power PC

Table 3:Architectural Limit on SMP Support.

anteed to be resident in RAM when themlockall() system call returns successfully, and they are
guaranteed to stay there until they are unlocked, the process terminates, or it callsexec(). The
mlock() system call locks a specified memory range. Child processes do not inherit page locks
across a fork.

Due to real time considerations QNX does not use swap files andtherefore locking of virtual
memory pages is not needed.

2.3 Support for SMP nodes

2.3.1 Architectural Restrictions

Symmetric multiprocessing (SMP) refers to machines with several processors that share a common
main memory and I/O devices. This architecture is commonly used for high-performance servers,
and is also useful for the nodes of a cluster. However, it requires special operating system support.

Microsoft offers a few versions of Windows for different market sectors, and each supports
different SMP capabilities. Windows NT Server should be used on regular servers and NTS/E for
cluster systems. Different versions of Windows 2000 support a different number of processors.

Linux SMP support was introduced with kernel version 2.0, and has improved steadily ever
since. The kernel locking granularity is much finer in 2.2.x than in 2.0.x, which enables better
performance when processes are accessing the kernel. Processes and kernel-threads are distributed
among processors. User-space threads are not.

QNX 4.0 does not support SMP at all. Only the latest version ofQNX for embedded systems,
QNX Neutrino 2.0, supports SMP.

Architectural limits on SMP support are compared in Table 3.

2.3.2 Processor Affinity

Specifying which processor should run a specific thread or process can improve performance by
reducing the number of times the processor cache is reloaded. In clusters it can also be used to
control the contention between different parallel jobs. The association between a processor and a
thread or a process is called processor affinity.

11

In Windows, the programmer can define processor affinity for athread or for a process.Set-
ProcessAffinityMask() specifies the mask of processors on which all the threads of a process are
allowed to run. SetThreadAffinityMask() specifies the mask of processors on which the current
thread is allowed to run. Windows also provides a weaker level of processor affinity: usingSet-
ThreadIdealProcessor() the programmer can specify a preferred processor for a thread. The system
schedules threads on their preferred processors whenever possible.

In general, Microsoft does not encourage thread affinity: “Setting thread affinity should gener-
ally be avoided, because it can interfere with the scheduler’s ability to schedule threads effectively
across processors. This can decrease the performance gainsproduced by parallel processing. An
appropriate use of thread affinity is testing each processor” [3].

In Linux there is no way to force a process onto specific CPUs but the Linux scheduler has a
processor bias for each process, which tends to keep processes tied to a specific CPU. The Linux
community is currently working on a project called “PSET”: Processor Sets for the Linux kernel.
The goal of this project is to make a source compatible and functionally equivalent version of PSET
(as defined by SGI but partially removed from their IRIX 6.4 kernel) for Linux. This enables users
to determine which processor or set of processors a process may run on. The interface is based on
thesysmp() system call, Which allows one to specify the binding of a process to a specific CPU,
restricting the set of processes that can run on a CPU, and creating sets of processors [28, 5].

As mentioned, QNX 4.0 does not support SMP. QNX Neutrino supports hard processor affinity
using theThreadCtl() system call.

2.4 Security

2.4.1 Security Model Overview

Windows NT

Windows NT security is based on access tokens and security descriptors (SD). Every process or
thread possesses an access token. When a process is first created, the kernel gives it and its primary
thread an access token which contains identifiers that represent the user and any group to which the
user belongs. The access token can be passed to other processes as described below. This access
token is checked against the SD of an object to determine the permissions that the user has with
respect to that object.

An object’s security descriptor is essentially an access control list (ACL) that specifies who is
and isn’t allowed to do things to the object. There are two types of ACLs. The Discretionary ACL
is controlled by the owner of an object and specifies the access particular users or groups can have
to that object. It contains an access control entry (ACE) foreach user, global group, or local group
that is either allowed or forbidden to access the object. An SD for an object is initially set to have
a DACL with no ACEs, meaning that there is no access for any user. To give access to all users or
groups, the DACL for the SD must be explicitly set to NULL. TheSystem ACL is controlled by
the system administrator, and allows system-level security to be associated with the object [9].

Whenever a thread requests to create or use another kernel object, it specifies the operations
it wishes to perform on that object. The kernel checks the object’s SD to see if the requested
operations are allowed. If so, then a handle to the object is granted, with only the permissions
requested by the thread. When the thread subsequently attempts to perform a certain operation on

12

the object using the handle, the kernel verifies through the permissions attached to the handle that
the thread really has the required permissions.

Windows NT and Windows 2000 support C2-level security as defined by the U.S. Department
of Defense. Apart from access control as described above, this requires that erased data will not
be readable by other programs, that users need to identify themselves, that security events will be
audited, and that the system be protected from tampering [2].

Linux

The Linux security model is superficially similar to that of Windows NT: processes have a user ID
(UID) that specifies their rights, and filesystem objects have an ACL (other objects, e.g. processes,
can only be manipulated by their owners). However, this is a very limited version of an ACL, and
only contains three entries: the permissions of the owner ofthe object, the permissions of members
of the owner’s group, and the permissions of all others. Whena new filesystem object is created,
its default access rights are set according to theumask of the creating process.

To allow processes different capabilities, they can actually have several UIDs. The real UID
identifies the user on whose behalf the process is running. The effective UID is used for access
control checks (see below). Linux, as opposed to other variants of the Unix system, also has a
filesystem UID which is used for filesystem access control. Finally, there is the saved UID, which
is used to support switching permissions on and off.

UID 0 is a special privileged user (role) traditionally called “root” who can overrule most
security checks and is used to administer the system. To allow some splitting of the privileges held
by root, POSIX has decreed that processes have three sets of capabilities: the effective, inheritable,
and permitted capabilities. This was added to Linux 2.2, butis not universally supported by other
Unix-like systems [42].

QNX

As a POSIX compliant operating system, the QNX security model is very similar to Linux. How-
ever, it is considered very unsecure by many developers in the QNX community because of the
fact that once a user (or process) has root permissions on oneof the network machines, he has root
permissions on all of the network machines.

2.4.2 Impersonation

In client-server systems, any client accessing the system through the server might have the same
access rights as the server, probably the access rights of the system administrator. Clearly, this
kind of access can cause trouble. Impersonation provides a means of limiting the degree of access
to that of the client attempting to access the system. In clusters, this is needed when processes are
created on behalf of the user on remote nodes.

In Windows, a thread can impersonate a user by receiving thatuser’s access token. The imper-
sonating thread thereafter enjoys the user’s access rights, and is prevented from accessing objects
that are not allowed for this user. Of particular interest ina cluster environment is the ability to
impersonate a client connected to a named pipe, provided theclient has given permission for im-
personation. This gives the thread almost all of the privileges and abilities of that client. However,

13

it can’t subsequently connect to another machine as the client, or create additional processes in the
name of the client [9].

In Linux and QNX, impersonation is done by thesetuid() system call. Only processes running
with root privileges (e.g. daemons) can set their real UID tosome chosen user. Another alternative
is that programs may allow whoever runs them to impersonate their owner by having the set-UID
bit set in their permissions. When such a program isexec’d, the effective UID is copied to the
saved UID, and the effective UID becomes the program’s owner’s UID. This allows the program
to access the owner’s files on behalf of whoever is running it.

The problem with usingsetuid() is one of authentication: how does the daemon know that the
process requesting it to run as a certain user is trustworthy? One solution is to use low-numbered
port numbers, which are be convention reserved for system processes, for the communication
among daemons. However, this is inapplicable when receiving the initial request from a remote
user process. Another approach is to use a challenge based onthe file system security mecha-
nisms, whereby the daemon challenges the requesting process to read the contents of a file that is
accessible only to the claimed user [44].

The major drawback in this solution is that it is NFS based, and limits the usage of the system
to NFS based configurations. A better alternative is using a secured authentication protocol such
as MIT Kerberos. Windows 2000 and also some recent Linux distributions implement the Ker-
beros v5 authentication protocol, which defines how clientsinteract with a network authentication
service. Clients obtain tickets from the Kerberos Key Distribution Center (KDC), and they present
these tickets to servers when connections are established.Kerberos tickets represent the client’s
network credentials[3].

2.4.3 Security Auditing

Windows NT can record a range of event types from a systemwideevent, such as a user logging
on, to an attempt by a particular user to read a specific file on an NTFS drive. Both successful
and unsuccessful attempts to perform an action can be recorded. When an audited event occurs,
an entry is added to the Windows NT security log. The securitylog is viewed by using the Event
Viewer application. In the context of clusters, the most important events are probably making
connections over the network and indirect object access.

The most common “audit” mechanism currently available on Linux and QNX is the system’s
logger (syslogd()). The logger enables the operating system and applicationsto write logging
information to the system’s log according to their priority. It can be configured to automatically
log certain security events such as users logging in.

2.4.4 Protecting Access to Cluster Nodes

In cluster environments, it may be necessary to prevent users from running independent processes
on the cluster nodes without submitting them through the cluster management software.

In Linux and QNX access to remote nodes is mediated by a set of system daemons (rshd,
telnetd, etc.). These daemons can be disabled in order to prevent remote users from using the
cluster machines. However, once the remote daemons are disabled, the system administrator might
also not be able to remotely administrate the machines. In order to handle this issue, a terminal

14

server can be used. Using the terminal server, the administrator can access the cluster machines
remotely using the network.

In Windows running processes on a remote machine is not a standard feature. Special daemons
are needed to be installed for this task. So the problem of remote access to the machines is not so
relevant in a Windows environment.

2.5 Collecting Information

The processes involved in managing a cluster system often have to collect various types of infor-
mation. Initially the configuration and capabilities of each node must be identified, especially in
heterogeneous clusters in which nodes can be used in a dynamic fashion. It is often also necessary
to collect resource usage information in order to support resource management functions.

Windows provides various system calls that can be used to determine the system’s configura-
tion and resource usage. Examples includeGetSystemInfo() for global system information such as
the number of CPUs, the processor architecture, level, and revision, and the page size,GetDisk-
FreeSpace() andGetLogicalDriveStrings() for disk and logical drives information, andGetCom-
puterName() to get the computer’s name.

An alternative interface is the Windows registry. In fact, some of the hardware configuration
is accessibleonly from the Windows registry. For example, the CPU related information (including
CPU speed, manufacturer and revision) is in the registry entry HKEY LOCAL MACHINEnHARD-
WAREnDESCRIPTIONnSystemnCentralProcessornhcpu numberi [14].

Windows also provides a rich API for creating and accessing various counters associated with
system events and performance data. Performance counters can be used for monitoring system re-
sources, application bottlenecks, and program efficiency.Common uses for performance counters
are to monitor how much memory an application is using, how badly a computer is paging, and
how much CPU time a process is taking. Such counters are used by the Windows NT Performance
Monitor tool (PerfMon) [6], which can log the data, send alert messages to the Windows NT event
log when a counter exceeds a preset bound, and even run a program when a counter goes over a
predefined limit.

Windows performance counters data is stored in the registry. Retrieving the data from the
registry and interpreting it requires registry traversalswhich involves serious programming efforts.
This can be eased by Performance Data Helper (PDH) library [16, 6].

Linux also provides system calls to access system information. Examples includesysinfo()
which provides information about the system hardware and software (except CPU speed), andvm-
stat() which provides current load and activity information. An alternative interface is the Linux
/proc filesystem. This is an illusionary filesystem that does not exist on a disk. Instead, the kernel
creates it in memory as needed. This provides an alternativeinterface for viewing kernel infor-
mation, by using theread() system call, instead of a host of other specialized system calls. For
example, CPU information can be read from/proc/cpuinfo, and includes model, speed, and other
information for each installed CPU. Theps command also reads /proc directly to get information
about the state of the system and the running processes [21, 43]. The disadvantages of using /proc
is that the data is provided in textual form and has to be parsed, whereas the system calls provide
it in predefined structs.

In QNX, resource usage and system configuration informationis mostly available via system

15

calls. The important ones areqnx osstat(), qnx psinfo() andqnx info(). qnx osstat() returns status
information of a specified node. The information contains the number of processes ready to execute
at each priority level and the average processor load at eachpriority level. qnx info() provides
information about the system configuration.

2.6 Time Measurement and Timers

In cluster systems accurate time measurements and timer events can be useful for job scheduling
and for profiling application execution times.

The resolution of time measurement depends on two things: what is specified in the API, and
what is supported in practice. Both Linux and Windows can measure short time intervals down to
microseconds resolution, and single microsecond differences do indeed occur when time is mea-
sured repeatedly. In QNX the time structure (timepec struct) supports nanoseconds resolution, but
the system actually supports only millisecond resolution.In fact, the shortest time interval that can
be measured is 10 milliseconds by default. This occurs due toreal-time considerations. The sys-
tem uses a value call “ticksize” to determine the granularity of all software system timers. All time
requests will be rounded up for this granularity. For example, if the tick size is 10 milliseconds, a
request to wait for 1 millisecond may wait for up to 10 milliseconds [32]. Decreasing the ticksize
value to the minimum value of 0.5 millisecond will result in better time measurement granularity.
However, changing the ticksize value is not recommended because it will affect all the timers in
the system, and might degrade the overall system performance.

System timers can be used for setting periodic events which can be used for scheduling jobs.
In the Windows operating system, “regular” timers are associated with windows, and thus with
interactive applications. In addition, there are waitabletimers. These are synchronization objects
whose state is set to signaled when the specified due time arrives. There are two types of waitable
timers that can be created: manual-reset and synchronization. A timer of either type can also be a
periodic timer [3].

In Linux, the system provides each process with three interval timers, each decrementing in a
distinct time domain. When a timer expires, a signal is sent to the process, and the timer (poten-
tially) restarts. Timers are set usingsetitimer(), with one of the three flags: ITIMERREAL decre-
ments in real time, and delivers SIGALRM upon expiration; ITIMER VIRTUAL decrements only
when the process is executing, and delivers SIGVTALRM upon expiration; and ITIMERPROF
decrements both when the process executes and when the system is executing on behalf of the
process. Coupled with ITIMERVIRTUAL, this timer is usually used to profile the time spent by
the application in user and kernel space. SIGPROF is delivered upon expiration.

In QNX, two mechanisms can be used for setting timers. Standard timers are created by
timer create(), and their expiration time is set bytimer settime(). In addition, it is possible to
schedule hardware interrupts periodically every 50 milliseconds usingqnx hint attach().

3 Performance Comparison

Performance is one of the most important factors that influence the decision which operating sys-
tem should be selected for cluster system development. Thissection presents a performance com-

16

hardware model IBM PC 300GL
processor Intel Pentium III 500 MHz
memory 128MB RAM
hard disk 10GB IDE
network card Intel 82555 100Base-Tx PHY Pro/100

software Windows version NT Server 4.0 SP 5
services Alerter, Computer Browser,

EventLog, Messager, NAV Alert,
License Logging Service, Server,
Norton Program Scheduler,
Net Logon, NAV Autoprotect,
Plug and Play, Protected Storage,
RPC Locator, RPC Service, SOFF,
Spooler,TaskScheduler,workstation,
TCP/IP NetBIOS Helper

Linux version Linux 2.2.5-22
daemons amd, atd, crond, gpm, inet, keytable,

linuxconf, netfs, network, nfs, portmap,
random, sendmail, site, snmpd, sound,
syslog, xfs

QNX version QNX 4.25
daemons nameloc, syslogd, portmap, inetd,

Photon

Table 4:System configurations used for measurements.

parison of Windows, Linux, and QNX, With an emphasis on performance topics relevant for cluster
systems software such as process control and networking.

3.1 Methodological Issues

In order to measure short time intervals with high precision, a special library called the “Time
Stamp Counters library” was used. This library offers a toolfor measuring time without the over-
head of a system call. It uses a Pentium op-code that reads thePentium’s clock cycles counter,
at user level [18]. A good example for the library’s added value is QNX time measurements. In
QNX, only intervals of 10,000 microseconds can be measured by default. Using the Time Stamp
Counters library, intervals as low as 0.16 microseconds could be easily measured.

The hardware and software configuration details of the machines used for the measurements
are given in Table 4.

3.2 Process Life Cycle

Some of the fundamental tasks required from parallel systems are running parallel jobs and schedul-
ing parallel jobs on the cluster nodes. In this section we tryto measure the overhead involved in

17

Create Empty Process

Executable Size
2KB 10KB 100KB 1MB 10MB

T
im

e
(m

ill
is

ec
.)

2

10

100

1000

Windows

Linux

QNX

Process Loops Over Memory

Executable Size
2KB 10KB 100KB 1MB 10MB

T
im

e
(m

ill
is

ec
.)

2

10

100

1000

Windows

Linux

QNX

Figure 2:Process Creation and Termination Times.

some of the basic process control operations: process creation and termination and process sus-
pension/resumption.

In the measurements presented below results can be distorted by random system events (such
as long context switches). These distortions affect the standard deviation of the results. Therefore,
in order to minimize the impact of these random events, each test was run 5 times and the test
which resulted in the smallest standard deviation is presented here.

3.2.1 Process Creation and Termination

This benchmark tries to measure the overhead involved in process creation and termination in each
of the compared operating systems. Pseudo code for this benchmark is as follows:

for (50 iterations) f
measure time
create a process
wait for the process to die
measure time and save time intervalg

calculate average time and standard deviation

The following system calls were used for process creation:CreateProcess() in Windows,fork()
in Linux, andqnx spawn() in QNX. The spawned process is empty and exits immediately. In order
to avoid inconsistent results due to buffer cache hits/misses, one warmup iteration was used for
loading the executable into the buffer cache.

As the time to create a process also depends on the size of its data, we used executables ranging
in size from 2KB to 10MB. This was achieved by using static allocation and initialization of an
array. In addition, we checked a second version in which the process steps once through this array
at 4KB increments, to ensure that it is all paged into memory.

As shown in Fig. 2, Windows and Linux indeed create processeswith their memory swapped
out, and only perform the real allocation if it is accessed. QNX, on the other hand, always allocates
the memory at once when the process is created, in order to avoid paging during execution. Com-

18

paring the systems, we can see that although QNX is faster forexecutable sizes of up to 100KB,
from 1MB QNX becomes slower than Windows and Linux.

3.2.2 Process Suspension and Resumption

Implementations of gang scheduling on clusters typically perform their scheduling of parallel jobs
by suspending all the processes which constitute a job and resuming all the processes of another
job. This benchmark tries to evaluate the overhead involvedin suspending a process and resuming
another. Pseudo code for this benchmark is as follows:

turn = 1
for (500 iterations) f

measure start time
if (turn == 1) f

suspend process A
resume process B
turn = 0g else f
suspend process B
resume process A
turn = 1g

measure end time and save time intervalg
calculate average time and standard deviation

The results were that suspending and resuming a process takes a moderate amount of time on
all three systems: about 2 microseconds in Linux, 3 microseconds in Windows, and 3.5 in QNX.

3.3 Networking

Networking performance is one of the important factors thatinfluence computing clusters per-
formance and distributed applications in general. Since TCP/IP is the most common networking
protocol, it was selected for the networking performance comparison. We also compare the QNX
native protocol performance (FLEET protocol) against QNX TCP/IP performance.

In order to measure TCP/IP performance, a standard network performance benchmark called
“Netperf” was used (http://www.netperf.org). Netperf was configured to run a TCP
stream test. The stream test sends a stream of TCP packets from one machine to another and
measures the bandwidth for various size packets. The measurements were done using two identi-
cal machines. The communication medium was a 10MB/s switch shared by other users during the
test, or 10MB/s and 100MB/s dedicated hubs.

The major conclusions from these tests were (Fig. 3):

1. When using Windows NT and Linux out of the box, Windows outperforms Linux on 10MB/s
connections but Linux outperforms Windows on 100MB/s connections.

19

TCP/IP Stream Bandwidth Using 10MB Hub

Message Size(bytes)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

B
an

dw
id

th
 (

M
B

/S
ec

)

0

1

2

3

4

5

6

7

8

9

10
NT default (8192 bytes socket)

Linux default (65536 bytes socket)

Linux (16384 bytes socket) 	

QNX default (8192 bytes socket)

TCP/IP Stream Bandwidth Using 100MB Hub

Message Size(bytes)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

B
an

dw
id

th
 (

M
B

/S
ec

)

0

10

20

30

40

50

60

70

80

90

100
NT default (8192 bytes socket)

NT (16384 bytes socket)

Linux default (65536 bytes socket)

Linux (16384 bytes socket)

QNX default (8192 bytes socket)

Figure 3: Bandwidth for TCP/IP Stream Using Netperf Benchmark (10MB/s and 100MB/s Hub
Connections).

2. After manually finding the optimal buffer sizes for a givennetwork configuration and run-
ning the test using these buffer sizes, the Linux bandwidth increased significantly on 10MB/s
connections and matched Windows. Both improved significantly for 100MB/s connections,
with Linux still outperforming Windows by a small margin. This agrees with previously
published results for 100MB/s connections [27].

3. QNX does not require any buffer size modifications. Its performance is comparable to Linux
and Windows using 10MB/s connection. In 100MB/s connection, the QNX performance is
somewhat lower than Windows and Linux.

20

QNX Fleet Protocol vs. TCP/IP Protocol

Message Size(bytes)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

B
an

dw
id

th
 (

M
B

/S
ec

)

0

1

2

3

4

5

6

7

8

9

10
QNX Fleet (10MB switch)

QNX Fleet (10MB hub)

TCP/IP (10MB switch)	

TCP/IP (10MB hub)	

Figure 4:QNX FLEET Protocol vs. TCP/IP Protocol.

4. When using optimized buffer size, Linux achieves its peakbandwidth using message sizes
smaller than Windows and QNX. For example: when using 10MB/sswitch connections
Linux bandwidth stabilizes at 4 byte messages vs. 32 byte messages in Windows or 64 byte
messages in QNX.

FLEET is QSSL’s fault tolerant, load balancing LAN protocolbuilt into QNX. It allows mes-
sage passing between processes on separate nodes and supports multiple LAN cards connected to
multiple LANs. Using multiple networks in this way can increase bandwidth and provide fault tol-
erance. If a cable or network card in one network fails, FLEETautomatically reroutes data through
another network. This happens on the fly, without involving application software [24].

As shown in Figure 4, QNX FLEET protocol maximum bandwidth isapproximately the same
as TCP/IP bandwidth. The difference is that TCP/IP protocolreaches it’s maximum bandwidth
already at 64 byte messages as opposed to FLEET which reachesits maximum bandwidth only for
8192 byte messages (Fig. 4).

3.4 System Overheads

The operating system has various overheads that, while not very significant on a desktop, become
amplified in a cluster with dozens of nodes. These include theboot and shutdown times, and the
memory footprint. The measurements were made using two modes: windows mode (X in Linux,
Photon in QNX, and regular Windows NT mode), and console modewhere available (Linux and
QNX). Results are summarized in Fig. 5.

The boot processes is considered as finished when the operating system is ready to log-in users.
QNX is the fastest Operating system both to boot and to shutdown. This is due to the fact that QNX
is the lightest Operating system in terms of memory footprint. Also, it does not use a swap file
that has to be flushed to disk once the operating system is being shut down. Windows boot time

21

Boot [s] Shutdown [s] Memory [MB]

0

10

20

30

40

50

39

29

49
52

25

39
42

16

29

17

11

23

11 11

21

Windows

Linux X

Linux console

QNX Photon

QNX console

Figure 5:Boot time, shutdown time, and memory footprint.

is faster than Linux boot time even when Linux is run in console mode. On the other hand, Linux
shutdown process is faster than Windows in both configurations.

4 Ease of Use

In this section we try to evaluate the ease of use of the compared operating systems. Evaluating
operating systems ease of use is not easy, and therefore it discussed in a broad sense. Metrics
for evaluation of operating system’s ease of use include APIcalls count, documentation, Web
resources count, and ease of administration.

4.1 API Calls Count

One of the significant factors that influences a programmer’slearning curve is the number of API
functions needed for implementing a specified programming task. In some of the operating sys-
tems, the kernel API (system calls) is enough for developingparallel systems. In others the de-
velopment should be done using a higher API. Counting the number of functions supported by
the lowest usable API can be used as a metrics for measuring the ease of development. Fewer
functions to learn can be considered better.

In Linux, system calls are basically enough for developing computing clusters. As shown
in Table 5, Linux provides the smallest number of of functions needed to be learned in order to
develop parallel systems (190 calls). In Windows, the kernel system calls are undocumented and
therefore cannot be used for development. Windows exposes the Win32 subsystem API which is
built on top of the kernel API. In fact, Win32 is the lowest APIlevel that can be used for developing
applications. QNX as a microkernel operating system exposes only 21 kernel functions (see Table
5), the rest of the functions are implemented as separate libraries (POSIX, WATCOM and ANSI).

When trying to understand the variance of the API calls count, we need to take into account
the different functionality supported by the API. It is obvious that Win32 offers by far the largest
number of services to the developer which can explain the large number of API calls. The flip
side of this argument is that Windows is much more complex, and therefore more susceptible to
performance and reliability problems. For clusters, a large part of this complexity — e.g. the
support of graphical interfaces — is unwarranted.

22

system kernel calls higher API
Windows NT 1049 (ntdll.dll) 1940 (Win32)
Linux 190
QNX 21 338 (kernel+Posix)

Table 5: API Calls Count. (Linux system calls from /usr/include/bits/syscall.h. QNX system calls from
/usr/include/sys/kernel.h. Windows system calls retrieved using dumpbin /exports ntdll.dll. Win32 API functions
count from list in the MSDN library.)

4.2 Standard Documentation

An important factor that influences the ease of development is the standard documentation pro-
vided with the operating system. Good documentation is essential for effective software develop-
ment, especially for the non-expert developers, and shouldinclude everything from the simplest
commands up to detailed technical articles including code samples. Another parameter for good
documentation is the time it takes to find it.

The most comprehensive resource for Windows development documentation is MSDN (Mi-
crosoft Developer’s Network). It is available both on a Web site (http://msdn.microsoft.
com) and on a CD as a part of the Microsoft development environment distribution (Visual Studio).
The MSDN Library contains more than a gigabyte of technical programming information, includ-
ing code samples, documentation, technical articles and the Microsoft Developer Knowledge Base.
When trying to compare the quantity and quality of Windows documentation to Linux and QNX
documentation, Windows is clearly superior. The MSDN contains a huge number of articles and
code samples.

Linux has two main sources for standard documentation: thatprovided with the distribution,
and the Linux documentation project. Documentation in the distribution includes kernel whitepa-
pers, man pages, and various other miscellaneous documentation (howto, FAQs, tutorials, installed
software documentation). In addition, the distribution includes the source code itself, which is the
ultimate reference when trying to figure out intricate details of the system’s behavior.

The Linux Documentation Project (LDP) (http://www.linuxdoc.org) is working on
developing free, high quality documentation for the GNU/Linux operating system. The overall
goal of the LDP is to create a canonical set of documentation.Being online (and downloadable),
the documentation can be frequently updated in order to stayon top of the many changes in the
Linux world. The effort is collaborative with minimal central organization, just like the develop-
ment of Linux itself. Recently, some of the Linux distributions have started providing the LDP
documentation CD along with the operating system installation CD.

In general, the volume of QNX documentation is very low relative to the other two sys-
tems. It includes the QNX Helpviewer application for the display of online help, man pages,
and manuals, whitepapers, and data sheets located in the QSSL site (http://www.qnx.com/
literature/).

4.3 Web Resources Availability

Apart from the “official” resources available for each system, development can benefit from help
from the on-line community. To get some notion of what resources of this type are available, we

23

Google hits

1

10

100

1000

10000

100000

1000000

newsgroups

0

50

100

150

200

250

300 message volume

1

10

100

1000

10000

100000

1000000 Amazon books

0

250

500

750

1000

1250

1500
Windows

Linux

QNX

Figure 6: Results of Web search regarding the three operating systems. (Newsgroups retrieved from
the Hebrew University’s news server which contains 42,126 newsgroups. Some may not be active. Message volume
retrieved from Deja News. Valid as of 25/07/00.)

tabulate search engine hits, newsgroup activity, and books(Fig. 6).
Search engines can be very useful when looking for documentation, technical articles, online

books, and source code samples. We checked the number of hitswhen looking for “Windows
NT”+”Windows 2000”, “Linux”, and “QNX” keywords in popularsearch engines. More hits
implies more resources and a shorter time until the requiredinformation is found. We found that
Windows and Linux number of hits is comparable, and in some cases (e.g. AltaVista) there was
even a significant advantage for Linux. QNX hit counts, on theother hand, are relatively low.

Newsgroups can be considered as a powerful tool for finding information and solving problems
using the Internet community. Finding newsgroups relevantto a specific topic is easier when a
large number of newsgroups is available. Windows has almosttwice the number of newsgroups as
Linux. QNX has only six newsgroups. Similar differences areobserved regarding the volume of
messages in these newsgroups.

Books about Operating systems and related software are another important resource for users,
especially for the non-advanced users who wish to study moreabout the system. Since the vast
majority of the literature is available also in on-line bookshops, running queries in the Web sites
of these shops can be used to measure the amount of literatureavailable. The number of books
about Windows is significantly higher than about Linux in allof the book shops checked. QNX
literature is poor by any standard.

4.4 Source Code Availability and Extensibility

As mentioned above, an important benefits of operating system source code availability is that it
can be used to gain a better understanding of the operating system internals and behavior. But even
more important is the option of modifying the operating system. For example, the Mosix system
provides a load balancing capability among the nodes of a cluster, based on a process migration
facility [7]. This is implemented within the kernel of the base system, which is Linux. Likewise,
the development of Beowulf hinged on kernel modifications that allowed several physical networks
to be used as a single logical network [36].

In Linux, all the source code is available under the terms of the GNU General Public License.

24

Both Windows and QNX are commercial operating systems and their source code is unavailable
for the public. However, Microsoft is cooperating with academic research and has shared Windows
source code with a few research institutes.

A separate issue is the ability to extend the kernel, especially with regard to device drivers.
Due to the dominant market share enjoyed by windows, nearly all device manufacturers write
device drivers for Windows. In addition, the Microsoft device drivers development toolkit eases the
development of new drivers by providing various templates [4]. Device drivers for Linux are less
plentiful, but drivers for popular hardware can often be found on the Internet even if they were not
provided by the hardware manufacturer, and extensive documentation to help in the development
of drivers is available [34]. QNX has very few device driversavailable by comparison.

Extending the kernel is not only a matter of acquiring (or writing) the software. Linux allows
kernel modules, including drivers, to be loaded and unloaded while the system is operational [15].
This obviously has significant advantages in a server that strives for continuous availability, but also
in a cluster serving multiple parallel applications. In Windows, every such modification requires a
reboot to take effect.

4.5 Administration

Windows uses administration tools based on graphical user interfaces. This has the well-known
advantages of being able to provide hints, context-sensitive help, and certain consistency checks.
In Unix (including Linux and QNX) most of the tools used to manage the system are command-line
based, although some tools also have graphical interfaces [12].

In the context of clusters, however, command-line interfaces are more robust in the sense that
it is usually possible to access a remote machine via some text terminal, but not always via a
graphical interface. Also, text-based programs are easierto automate so administrators can make
the same changes on several machines using a single script. Unix comes with various scripting
facilities such as the shell and Perl. Windows does not. Moreover, Unix uses textual configuration
files that are easy to edit and reproduce, whereas Windows registry uses a proprietary binary format
that is created by the system.

One of the most attractive features of Unix is the ability to control machines remotely. Since
Linux and QNX come with a telnet daemon built in, administrators can telnet virtually any ma-
chine running the telnet daemon, regardless of operating system, to do all administrative tasks. To
remotely administer a Windows server, you must purchase a separate application to allow remote
control. Two of the most popular remote administration products for this are PC Anywhere by
Symantec and SMS (Systems Management Solution) from Microsoft. Using commercial adminis-
tration tools can become costly because you must purchase a copy for the server to act as the host,
and a copy for each computer that needs to remotely control the server.

5 Conclusions

Our comparison of Windows NT, Linux, and QNX as the basis for building cluster systems uncov-
ered a host of differences among these systems, but no clear winner. Each system supports some
important features that do not exist in the others. For example, Windows NT can create suspended

25

processes, which Linux cannot, and has better support for impersonation. Linux, on the other hand,
can easily suspend a process, and supports disk quotas. While the lack of such features can cause
headaches, they are typically not show-stoppers.

Likewise, contrary to the common belief that Linux outperforms Windows, and the expectation
the QNX would outperform both, we found no clear-cut advantage for one system over the other.
This agrees with the results of Lancaster and Takeda, which indicate that the compiler is more
important than the base system in terms of performance [27].

Thus it seems we can say that all three systems provide similar support for the construction of
clusters. We verified this claim by implementing a reduced version of ParPar on all three of them,
using the same basic architecture. Overall, the implementation are rather similar and required
commensurate effort. In fact, they were so similar that we decided it was pointless to try and
measure the differences between them in terms of code complexity or other software metrics.

Of course, the comparison done in this research could be extended to other topics. The bench-
marks written could be improved, and new ones can be written for comparing other topics. One of
the most important aspects which was not covered in this research was operating system stability.
Determining how stable is the operating system for a long period of time under different types of
load is not an easy task and can be used as a subject for an independent research. Alternatively, it is
possible to try and glean some information from other comparisons, especially between Windows
NT and Linux [25, 29, 13]. However, it should be remembered that such comparisons — especially
those published by companies that have an interest in the results — may be tainted by the fact that
they have huge economic implications. In addition, they focus on the server market which is only
partly relevant to high-performance computing clusters.

Acknowledgements

This work was supported in part by the Israel Science Foundation and by the Ministry of Science.

References

[1] “ Address windowing extensions and Microsoft Windows 2000 DataCenter Server”. URL
http://msdn.microsoft.com/library/backgrnd/html/awewindata.htm, Mar 1999.

[2] “ C2 level security”. Platform SDK documentation, MSDN, Jan 2000.

[3] “ Microsoft Developer Network”. Jan 2000.

[4] “ Microsoft windows driver development kits”. URL http://www.microsoft.com/DDK/.

[5] “ Pset - Processor Sets for Linux/SMP”. URL http://isunix.it.ilstu.edu/˜thockin/pset/.

[6] R. Anderson, “Finding leaks and bottlenecks with a Windows NT PerfMon COM object”. URL
http://msdn.microsoft.com/library/techart/perfmon.htm, Jan 1999.

[7] A. Barak, O. La’adan, and A. Shiloh, “Scalable cluster computing with MOSIX for Linux”. In Linux
Expo, pp. 95–100, May 1999.

[8] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Verworner,Linux Kernel Internals.
Addison-Wesley, 2nd ed., 1998.

26

[9] P. Bosch, “Windows NT security system basics”. URL
http://msdn.microsoft.com/library/periodic/period97/vc0197.htm, 1997.

[10] R. Card,Éric Dumas, and F. Mével,The Linux Kernel Book. Wiley, 1998.

[11] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, and J. Prusakova, “High
performance virtual machines (HPVM): clusters with supercomputing APIs and performance”. In 8th
SIAM Conf. Parallel Processing for Scientific Comput., Mar 1997.

[12] Q. P. Coldiron, “Replacing Windows NT Server with Linux”. URL
http://citv.unl.edu/linux/LinuxPresentation.html, 1997.

[13] D. H. Brown Associates, Inc., “Operating system scorecard”. URL
http://www.dhbrown.com/dhbrown/opsys.cfm.

[14] T. Daniels,1001 Secrets for Windows NT Registry. 29th Street Press, 1997.

[15] J-M. de Goyeneche and E. A. F. de Sousa, “Loadable kernel modules”. IEEE Softw.16(1), pp. 65–71,
Jan/Feb 1999.

[16] A. Denver, “Using the performance data helper library”. URL
http://msdn.microsoft.com/library/techart/msdnpdhlib.htm, Mar 1997.

[17] P. Druschel, “Operating system support for high-speed communication”. Comm. ACM39(9),
pp. 41–51, Sep 1996.

[18] Y. Etsion and D. G. Feitelson,Time Stamp Counters Library - Measurements with Nano Seconds
Resolution. Technical Report 2000-36, Inst. Computer Science, The Hebrew University of Jerusalem,
Aug 2000.

[19] D. G. Feitelson, A. Batat, G. Benhanokh, D. Er-El, Y. Etsion, A. Kavas, T. Klainer, U. Lublin, and
M. A. Volovic, “The ParPar system: a software MPP”. In High Performance Cluster Computing, Vol.
1: Architectures and Systems, R. Buyya (ed.), pp. 754–770, Prentice-Hall, 1999.

[20] D. G. Feitelson, Y. Ben-Asher, M. Ben Ezra, I. Exman, L. Picherski, L. Rudolph, and D. Zernik,
“ Issues in run-time support for tightly-coupled parallel processing”. In 3rd Symp. Experiences with
Distributed & Multiprocessor Syst., pp. 27–42, USENIX, Mar 1992.

[21] J. Fink, “An overview of the proc filesystem”. Linux Gazette46, Oct 1999. URL
http://www.linuxgazette.com/issue46/fink.html.

[22] R. Friedman, M. Goldin, A. Itzkovitz, and A. Schuster, “Millipede: easy parallel programming in
available distributed environments”. Software — Pract. & Exp.27(8), pp. 929–965, Aug 1997.

[23] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat,and T. E. Anderson, “GLUnix: a global
layer Unix for a network of workstations”. Software — Pract. & Exp.28(9), pp. 929–961, Jul 1998.

[24] D. Hildebrand, “An architectural overview of QNX”. URL
http://www.qnx.com/literature/whitepapers/archoverview.html.

[25] J. Kirch, “Microsoft Windows NT Server 4.0 versus UNIX”. URL http://www.unix-vs-nt.org/kirch/,
Aug 1999.

27

[26] R. Krten,Getting Started with QNX 4. Parse Software Devices, 1998.

[27] D. Lancaster and K. Taked, “Comparative performance of a commodity Alpha cluster running Linux
and Windows NT”. In IEEE Workshop Cluster Comput., May 1999.

[28] D. Mentré, “Linux SMP HOWTO”. URL http://www.phy.duke.edu/brahma/smp-faq/, Sep 1999.

[29] Microsoft Corp., “Linux myths”. URL
http://www.microsoft.com/ntserver/nts/news/msnw/LinuxMyths.asp, Oct 1999.

[30] Microsoft Corp., “Moving Unix applications to Windows”. MSDN, Jan 2000.

[31] G. F. Pfister, “Clusters of computers for commercial processing: the invisible architecture”. IEEE
Parallel & Distributed Technology4(3), pp. 12–14, Fall 1996.

[32] QNX Software Systems,QNX Operating System Utilities Reference. QSSL, 1998.

[33] J. Richter,Programming Applications for Microsoft Windows. Microsoft Press, 4th ed., 1999.

[34] A. Rubini, Linux Device Drivers. O’Reilly, 1998.

[35] M. Russinovich, “NT vs. UNIX: is one substantially better”. Windows NT Magazine, Dec 1998. URL
http://www.winntmag.com/Articles/Index.cfm?ArticleID=4500.

[36] D. F. Savarese and T. Sterling, “Beowulf”. In High Performance Cluster Computing, Vol. 1:
Architecture and Systems, R. Buyya (ed.), pp. 625–645, Prentice Hall, 1999.

[37] R. J. Simon,Windows NT WIN32 API Superbible. Waite Group Press, 1998.

[38] D. S. Solomon,Inside Windown NT. Microsoft Press, 2nd ed., 1998.

[39] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U.A. Ranawake, and C. V. Parker, “Beowulf: a
parallel workstation for scientific computation”. In Intl. Conf. Parallel Processing, vol. I, pp. 11–14,
Aug 1995.

[40] W. R. Stevens,Advanced Programming in the Unix Environment. Addison Wesley, 1993.

[41] A. S. Tanenbaum, “A comparison of three microkernels”. J. Supercomput.9(1/2), pp. 7–22, 1995.

[42] D. A. Wheeler, “Secure programming for Linux and Unix HOWTO”. URL
http://www.dwheeler.com/secure-programs/.

[43] L. Wirzenius, “The linux system administrators’ guide, version 0.6.2”. URL
http://www.linuxdoc.org/LDP/sag/book1.html.

[44] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: a load sharing facility for large, heterogeneous
distributed computer systems”. Software — Pract. & Exp.23(12), pp. 1305–1336, Dec 1993.

28

