Comparing Windows NT, Linux, and QNX
as the Basis for Cluster Systems

Avi Kavas Dror G. Feitelson
School of Computer Science and Engineering
The Hebrew University, 91904 Jerusalem, Israel

Abstract

Clusters use commodity hardware and software componeptsvale an environment for
parallel processing. A major issue in the development otiatet system is the choice of the
operating system that will run on each node. We compare thitematives: Windows NT,
Linux, and QNX — a real-time microkernel. The comparisonasdd on expressive power,
performance, and ease-of-use metrics. The result is the nbthese systems has a clear
advantage over the others in all the metrics, but that eaglithatrong and weak points. Thus
any choice of a base system will involve some technical comses, but not major ones.

1 Introduction

Rapid improvements in network and processor performaneecausing clustered commodity
workstations and PCs to become an increasingly populaophatfor executing parallel applica-
tions. In the past, Unix was used as the platform for alimdgiaahllel systems implementations.
Recently, however, it is becoming more common to use Windéwsas the base platform.

The decision which operating system to use involves mangiderations, including the oper-
ating system'’s cost and personal experience with the diftesystems. But there are also technical
implications. Our goal is to illuminate these technicaliss, by providing a broad comparison of
the capabilities and characteristics of the differentayst Throughput, the emphasis is on those
features deemed to be important for the implementation wipzdational clusters.

Surprisingly, very little work of this nature has been domdope. Tanenbaum has compared
three microkernels for use in parallel machines [41], baséhave not withstood the test of time
and the fact remains that today systems such as Linux andowsdre preferred. Lancaster and
Takeda have compared these systems, but only in terms afrpenice [27]; we consider many
other aspects as well. There have been some direct compauagdinux and Windows for the
commercial server market [25, 29], but not in the contextio$ters.

1.1 Cluster Architecture

A cluster is a parallel processing system, which consist adllection of interconnected stand-
alone computers working together as a single, integratetpating resource [39, 31]. The ratio-

1

Node
Daemon
4
7
7

Master
Daemon

Figure 1:General cluster architecture. The master daemon handlesree management with the
job representative processes (JR), and controls the nauhearss.

nale for clusters is the desire to leverage the commoditypedimg market, and ride the technology
curve. These considerations lead to the use of commeréigi@fshelf components, both for hard-
ware and for software. In particular, each node typicaltysra conventional operating system such
as Windows or Linux. They are tied into a cluster by some lsegl processes, often operating as
daemons.

At a high level of abstraction, many cluster systems use dasirarchitecture: There is a
single system-wide control process, and an additionalgg®on each node of the cluster (Fig.
1). The central controller is responsible for configuratitanagement, resource allocation, and
job control. The per-node processes collect local data mpdeiment the decisions of the central
controller. Example systems based on this design inclueiBénkeley NOW [23] and ParPar [19].

The next section presents a survey of system features thatesded in order to implement
such a structure. These include communication faciliteesduamong the different processes, and
facilities to spawn and control user processes. In somesc#ésis possible to spawn processes
remotely without using another process as a local agent. imipcations are discussed where
specifically relevant. We then go on to discuss performasseeis and ease of use. But first we
start with some background information about the threesgyst

1.2 Operating Systems Compared

We focus on the comparison of three systems: Windows NT,X,ianod QNX.

Windows NT was introduced in July 1993 and was aimed at the enterpriskemdor use
on high-end workstations and servers. It was the first versfolVindows to support the 32-bit
programming model of the Intel 80386, 80486, and Pentiumapiocessors. Windows NT has a
32-bit flat address space, provides the NTFS file system, @thltance security model, Remote
Access Server (RAS), and OS/2 and POSIX subsystems. It canrrintel and Alpha processors.
Windows 2000 was built on top of Windows NT and provides betédiability and some new

features such as Plug-n-Play, AGP support, Active Dirgetmripting tools, native ATM support
and more.

Both Windows NT and Windows 2000 use a microkernel architect However, this is not
a pure microkernel. Only the operating system environmerégute in user mode as discrete
processes, including DOS, Winl16, Win32, OS/2, and POSI¢€ Basic operating system sub-
systems, including the process manager and the virtual memanager, are compiled with the
kernel. They can therefore communicate with one anothersimyguunction calls for maximum
performance [38].

Several cluster systems are based on Windows NT, includmgiPVM system [11] and Mil-
lipede [22].

Linux is a completely free reimplementation of the POSIX spedibca with system V and
BSD extensions, which is available in both source code andrpiform. The first version of the
Linux kernel was made available on the Internet by Linus &tds in November 1991. A group of
Linux activists quickly formed, and continues to spur ondlegelopment of this operating system.
Numerous users test new versions and help to clear the bug$the software, making Linux the
model of open-source development [B} ¢ p: / / ww. opensour ce. org/).

Linux, like most Unix systems is monolithic, that is, the idoperating system is a single
executable file that runs in kernel mode. This binary costéie process management, memory
management, file system and the rest.

Many clusters have been built based on Linux or other Unixams. Examples include the
Berkeley NOW [23], the LosLobos Superclustet ¢ p: / / ww. ahpcc. unm edu/ Syst ens/
Har dwar e/ LosLobos/), Beowulf [36], and ParPar [19].

QNX is a real-time commercial operating system, developed bX @hfftware Systems. The
QNX real-time operating system provides applications aithetwork-distributed, real-time en-
vironment that delivers nearly the full device-level penfi@nce of the underlying hardware. The
architecture consists of a real-time microkernel surr@ahioy a collection of optional processes
(called resource managers) that provide UNIX-compatiipttesn services. By including or ex-
cluding resource manager processes at run time, the devetap scale QNX down for ROM-
based embedded systems, or scale it up to encompass huatipedsessors connected by various
LAN technologies [24]. We focus is QNX version 4.0; howew@i X Neutrino is also covered in
some cases. This is a new version of QNX currently in Betaestapich has some new features
such as SMP support and POSIX threads support.

While QNX does support a networked environment, few if angnpatational clusters have
been built using it. We include it because it seems reaserthht a real-time kernel can provide
important benefits to a parallel system [20].

2 Kernel Services and APl Comparison

This section presents a comparison of the set of operatisigrsyservices and API calls related
to parallel systems development as provided by each of thgpamed operating systems kernels.
In both Linux and QNX, functions classified as kernel funcimr system calls were compared
(man 2 section). In Windows, the Win32 API was used for the ganson. The NT system-call

interface, called the Native API, is hidden from programsreerd largely undocumented. The API

that the majority of NT applications write to is the Win32 ARIhich translates many Win32 APIs
to native APIs [35].

2.1 Process Control

One of the most basic capabilities required from a parajlsiesn is controlling the processes of
parallel jobs. This includes spawning them on the nodesaitiéal for the job, suspending them in
order to schedule another job to run, and resuming themwadtds. Process control also includes
the ability to kill or to send a user defined signal to all theqasses of a parallel job.

2.1.1 Process Creation

CreateProcess() is the fundamental system call used for creating new presdassWindows NT.

It creates both a process object and the main thread objeant @fpplication. CreateProcess()
allows the parent process to set the operating environnieéhémew process, including its work-
ing directory, security attributes, file handle inheritapenvironment variables, priorities, and the
command line it is passed [37, 30].

Win32 does not provide the capability to clone a running pssqand its associated in-memory
contents) as is done by the Urotk() system call (which is used on both Linux and QNX). This is
not such a hardship, since most Unix code forks and then inatedy callsexec() [30]. The Linux
implementation ofork() does not actually clone the parent process. Instead, ittheesopy-on-
write optimization so that common virtual memory pages &aad with read-only permissions.
If either of the parent process or the child process triesddify one of the shared pages, then the
kernel duplicates it. An important member of toek() family of functions isvfork(). This is used
to create a new process without fully copying the addressespathe parent, and can be useful
when the child won't reference the parent’s address spategircall exec() to run a new program
[40]. Linux also has a_clone() function, which allows the child to share parts of the exerut
context with its parent; it is used mainly to implement tlitea

Besides supporting thferk() family of functions, QNX has a@nx_spawn() system call. This
allows the programmer to modify various parameters for e process, e.g. scheduler type and
process priority. The most powerful featuregoik_spawn() is the option to create the child process
on a remote node.

Detailed options of process creation are compared in Table 1

As noted, QNX allows processes to be spawned on a remote nddelows has a similar
capability as part of the Distributed Component Object M@ OM). This is a protocol that
enables software components to communicate directly overtaork in a reliable, secure, and
efficient manner. However, there are two main reasons foruusmtg DCOM to run processes
remotely. One is that a significant performance overheadtrogcur because it uses multiple
software layers and interfaces. The other is that it woulghire users to implement their parallel
applications as DCOM objects (need to implement special BiGQerfaces), something which
is not desirable since it limits the user to a certain impletaton of his application. Also, direct
process control (sending signals for example) is not avisldirectly when using DCOM objects.

| Windows NT | Linux | QNX

create process on not supported not supported gnx_spawn()
a remote node
create process on CreateProcessAsUser() | not supported not supported
behalf of a user | CreateProcessWithLo-
gonW()
create suspended CreateProcess() using | not supported gnx_spawn() using
process CRE- _SPAWN_HOLD flag
ATE_SUSPENDED
flag
inherit address | not supported fork() fork()
space from
parent
inherit open CreateProcess() fork() all in fork() 10 in
handles / file gnx_spawn()
descriptors from
parent
parent needsto | never always always with
wait() for fork(), never with
children to die (to gnx_spawn() and
avoid zombies) _SPAWN_NOZOMBIE
flag
instruct file not supported not supported gnx_spawn() with
system to place _SPAWN_XCACHE
executable in
cache

Table 1:Process Creation Options.

2.1.2 Process Groups

Sometimes it is more convenient (or even necessary) todreat of processes as a single group,
e.g. to perform a collective operation on them or to setigins on the whole group.

Windows NT 4.0 does not support process groups. Only Wind29@9 offers a new job
kernel object that allows the programmer to group procetsggsther. This is used only to create
a sandbox that restricts what the job’s processes are alltovdo [3]. A detailed description of
these restrictions is given in Section 2.1.6.

Linux and QNX support two levels of grouping: sessions ammtess groups. At the top of the
hierarchy are sessions, each of which consists of one or progess groups [26]. In principle,
these are useful for the distribution of signals. Unforteha this is largely irrelevant for parallel
applications, since groups and sessions are limited teepsas on the same machine.

2.1.3 Process Termination

An important service in a parallel system is the option td &lil the processes in a parallel job.

In Windows NT TerminateProcess() causes all the threads within a process to terminate and the
process to exit. However, Microsoft documentation [3] segjg to us@erminateProcess() only in
extreme circumstances since it does not clean all the respattached to the process. Specifically,
DLLs attached to the process are not notified that the praséssminating, and the process object

is not necessarily removed from the system. In Linux and QM€ kill() system call is used to
terminate a process by sending it a SIGKILL or SIGTERM sigr&llGKILL is distinguished by

the fact that it cannot be caught nor ignored. QNX allail$) to send signals to processes on
remote machines.

2.1.4 Process Suspension and Resumption

Windows NT has no direct API for suspending or resuming gees. The probable reason is
that windows uses thread scheduling rather than processlslohg. Win32 supports thread sus-
pending or resuming usinguspendThread() and ResumeThread(). Single threaded processes
can therefore be handled easily by suspending/resumiirgati@ary thread which is returned in
the LPPROCES3INFORMATION structure after callin@reateProcess(). But in order to handle
multi-threaded processes, all the threads in the processtb®e suspended/resumed individually.
Unfortunately there is no direct API for enumerating all theeads of a given process. The Win-
dows registry contains data about all the running threatteisystem, so each thread in the system
has be queried for his process ID. The Windows 2000 ToolHetprly supplies a more convenient
API for doing this enumeration without digging in the Windevegistry, but still all the threads in
the system have to be enumerated in order to find the threatldsanf a given process.

In Linux and QNX thekill() system call is used to send SIGSTOP or SIGCONT to suspend or
resume a process.

2.1.5 Process Scheduling and Priorities

Windows NT, Linux, and QNX all implement a priority-drivepreemptive scheduling system.
The scheduler selects the next process to run by lookingegtribrity assigned to every process
(thread in Windows NT) that is in the READY state.

Windows NT scheduling is done at the thread granularity. Bfadlt, threads can run on
any available processor unless processor affinity is ussel $&ction 2.3.2) [33]. The priority
of each thread can be in the range from zero (lowest priotityd1 (highest priority), as deter-
mined by combining its base priority with dynamic adjusttseriThe base priority, in turn, is a
combination of the priority class of its process (IDLE, NORM HIGH PRIORITY, and REAL-
TIME) and the priority level of the thread within the prigritlass of its process (IDLE, LOWEST,
BELOW_NORMAL, NORMAL, ABOVE_NORMAL, HIGHEST, TIME.CRITICAL). Only the
system’s zero-page thread can have a priority of zero [3].

Linux and QNX perform scheduling at the process level. Botsteans offer the following
scheduling policies:

1. FIFO scheduling (SCHEIFIFO) in which the current process continues to hold the CPU
until it blocks or terminates. The highest priority READYogess is always selected.

6

2. Round-robin scheduling (SCHERR) in which processes are given equal time quanta in
turn. This allows the processes that share the highesitgrievel to share the CPU. These
two schemes are useful for real-time control.

3. Adaptive scheduling (SCHEDTHER) is which the CPU is shared as above, but the priori-
ties are adjusted according to a predefined policy that t@lkkt$ usage into account. This is
meant to support interactive (desktop) applications.

In QNX, when a process consumes its entire time slice, itwripyiis lowered by one (only once).
If in the next time slice the process will use its whole timieeslagain, it will stay at that priority.
If it didn’t use up its entire time slice, the kernel will irease its priority by one. In Linux, the
priority calculation takes into account the nice level (®gthenice() or setpriority() system call).
The priority is increased for each time quantum the procgessady to run but not running, and
decreased when the process is running.

QNX also offers a feature called “client driven priority” jweh allows a server to change its
priority according to the highest priority of the clientsérves. This feature can be used to prevent
the server from serving low priority clients in a high prigri

2.1.6 Placing Restrictions on Processes and Users

In Windows NT 4.0 there is no way to set restrictions on a psea® a group of processes. On
the other hand, Windows 2000 provides a rich API for settiegtrictions on jobs or processes
(recall that a job is essentially a process group). Thesebeansed to prevent processes from
monopolizing system resources. However, disk quotas #irenssing.

Linux has mechanisms to support filesystem quotas and @diogss. You can define storage
guota limits on each mountpoint for the number of blocks ofage and/or the number of unique
files (inodes) that can be used by a given user. A “hard” quotd Is a never-to-exceed limit,
while a “soft” quota can be temporarily exceeded (usingta(), quotactl(), andquotaon()). The
rlimit mechanism supports a large number of process qustad) as file size, number of child
processes, number of open files, and so on. In this case tki& lisot (also called the current
limit) cannot be exceeded, but can be raised to the “hardt (jahso called the upper limit) using
setrlimit(). The setrlimit() system call is used in order to set resources limits. It candsal in
parallel systems daemons during the creation of a new pdnebeing called after thierk() but
before theexec().

The capabilities of Linux and Windows 2000 are compared inld2. QNX provides no way
to set restrictions on a process or a group of processes.

2.1.7 Stdio/stderr Redirection

One of the capabilities required from a computing clustes redirect the standard output/error of a
job’s processes to the user’s terminal, and to redirectistahinput from the user to processes. This
is typically done by establishing two sockets for each psscene for stdio and the other for stderr.
The module that spawns the processes redirects the stidin/6te descriptors of the processes to
the established sockets. The I/0O handling application sasalect() on the established sockets to

determine if any new stdout/stderr messages have arrivetdne of the processes.

\ Windows 2000

Linux

CPU time

user time per process/job

0.1us

nCPU timeins

number of processe

sactive processes (and futu
children) associated with
job

renaximum number of prot
acesses per user

processor affinity

for all processes associats
with the job

eahot supported

priority and schedul;
ing

priority class and schedulin
class for all the processes g
sociated with the job

gnot supported
S_

memory restrictions

memory limit per-job or
per-process

maximum resident set size,
maximum data size,
maximum stack size,
maximum locked in memory|

GUI restrictions

creating desktops and switc
ing desktops,

changing display settings,
exiting windows,

change system parameters,
avoid interaction with wid-
ows outside the job,
interaction with the clipboarg

)

nnot supported

security restrictions

disallow administrator
access,

disallow unrestricted toke
access,

force a specific access toker
disable certain security ider
tifiers and privileges

n
N

user permissions

file system restric;
tions

none

number of open file descrig
tors,
maximum core file size,

disk quota per user

Table 2: Available restrictions in Windows 2000 and Linux.

When creating a new process in Windows NT us@rgateProcess(), one of the arguments
used is a pointer to a STARTUPINFO structure. Among othesrimtion, this structure contains
handles to standard input, standard output, standard anmdma process creation flags field. When
a parent process wants to redirect the stdio/stderr of thé plocess to predefined stdio/stderr
sockets it has to fill up a STARTUPINFO structure with the Haadio the sockets, and specify that
they be used by setting the appropriate flag.

In Linux, stdio/stderr redirection can be performed usimgdup2() system call. This system
call duplicates file descriptors, and can be used to dupl@abcket file descriptor and replace the
original stdin, stdout, or stderr. This is used to set up #ecdptors of a new process between the
fork() andexec() calls.

QNX has a shortcut for doing thdup as part ofgnx_spawn(). One of the arguments to this
function is an arrayov that should contain file descriptors 0 through 9. For exanifilee value 5
is placed inov[0], the new process would have its file descriptor O (stdin)aegd by file descriptor
5 of the calling process.

2.1.8 Process Termination Detection and Error Handling

Once a process is spawned, it's parent has to detect wheitsit €ke process might exit because it
finished its work or because of some unexpected error. leietbre helpful is the system provides
the user with the process exit status the the reason fornation.

In Windows, the way to detect that a child process has ex#¢ol create a thread which polls
periodically for the exit status of the child process. Thsigslone withGetExitCodeProcess(). If
the process is still running, it returns the value STIACTIVE, otherwise it returns its exit status.
No additional information can be retrieved besides the ggs@xit status.

In both Linux and QNX (as POSIX based operating systems) #renp process receives a
SIGCHLD signal when a child process dies. The parent musa stgnal handler in order to
catch the SIGCHLD signal and handle it (using system aadlsal() or sigaction()). In the handler
one of thewait() family of system calls can be used to determine the exit stamd the cause of
termination.

2.1.9 Deamons

The software architecture of cluster systems often empifagmnons — system processes that
participate in system administration, rather than runniegr programs. It is necessary to start
these processes when the system is booted. In Unix this &sloppthedaemon command, which
can be placed in a script that is executed upon bootup.

Windows equivalent to a Unix daemon is called a service. Aiserapplication conforms to
the interface rules of the Service Control Manager (SCMjait be started automatically at system
boot, by a user through the Services control panel applély an application that uses the service
functions included in the Win32 API. Services can execusnevhen no user is logged on to the
system [3].

2.2 Memory Management
2.2.1 Process Virtual Address Space

Many parallel applications require large amounts of memdnysupport them cluster nodes are
often fitted with lots of physical memory, ranging up to sevgigabytes. However, there is a limit
to the amount of memory that the operating system can handle.

In Windows (32 bit version) the size of the address space B @%). The top half of the
address space (2GB) is reserved for operating system nieetigjing kernel and device driver
code, I/O buffers, and system tables. Over the years, tleeybden a large outcry from developers
for a larger user-mode address space. Therefore Microgstilfowed the x86 version of Windows
2000 Advanced Server and Windows 2000 Data Center to inetbasuser-mode partition to 3GB
[33, 35]. In addition, Windows 2000 introduced a new memoanagement feature called Address
Windowing Extensions (AWE) which supports the allocatidmmwre RAM than fits within the
process’s address space (32 bit), up to 64 GB of memory. Tineamyeblocks are allocated using
AllocateUserPhysicalPages(), But these blocks are not visible in the process’s addresseshe
application needs to reserve a region of address space usinglAlloc(), which becomes the
address window. It can then callapUserPhysicalPages() to assign one RAM block at a time to
the address window [33, 1]. In effect, this is simply supgortoverlays.

In the x86 architecture, Linux allocates three gigabytetht process address space. The
remaining gigabyte is reserved for memory used by the keiftet three available gigabytes are
split into memory regions used by the process [10].

In QNX 4.0, the user can use all of the available free physiwhory in a 4GB (physical) ad-
dress space, using standard memory allocation functiohde\@NX 4.0 supports virtual memory,
it does not use swap files for reasons of real-time respoadermance. It should be noted that
the efficiency of the operating system and Watcom compilevide relatively small processes in
terms of memory requirements.

2.2.2 Pinning Memory Pages

In order to improve applications performance, it is somesmeeded to keep the data in physical
RAM and reduce disk paging. In clusters, this is also reguineorder to support the send and
receive buffers of user-level communication libraries][1@n the other hand, locking too many
pages into memory may degrade the performance of the systegedhcing the available RAM
and forcing the system to swap out other critical pages t@#geng file.

The WindowsVirtualLock() function locks the specified region of the process’s viraddress
space into physical memory (RAM), ensuring that subsecaergss to the region will not incur a
page fault. By default, a process can lock a maximum of 30pabee default limitis intentionally
small to avoid severe performance degradation. Applioatihat need to lock larger numbers
of pages must first call thBetProcessWorkingSetSize() function to increase their minimum and
maximum working set sizes. The maximum number of pages tpab@ess can lock is equal to
the number of pages in its minimum working set minus a smaltiogad [3].

In Linux mlockall() disables paging for all pages mapped into the address spéuve calling
process. This includes the pages of the code, data, andsstgolents, as well as shared libraries,
user space kernel data, shared memory, and memory mappedAllenapped pages are guar-

10

Windows | Linux | QNX |
max processors NT 4.0 Server: 4 16 OQONX4.0: 1

NT 4.0 Server Enterprise: 8 QNX Neutrino 2.0: 8
Win2K Server: 4
Win2K Advanced Server: 8
Win2K Data Center: 32

architectures | Intel Intel Intel
Alpha Sparc
Alpha
Power PC

Table 3:Architectural Limit on SMP Support.

anteed to be resident in RAM when theockall() system call returns successfully, and they are
guaranteed to stay there until they are unlocked, the psoegminates, or it callsxec(). The
mlock() system call locks a specified memory range. Child processastinherit page locks
across a fork.

Due to real time considerations QNX does not use swap filesrardfore locking of virtual
memory pages is not needed.

2.3 Support for SMP nodes
2.3.1 Architectural Restrictions

Symmetric multiprocessing (SMP) refers to machines witless processors that share acommon
main memory and I/O devices. This architecture is commosgduor high-performance servers,
and is also useful for the nodes of a cluster. However, itiregspecial operating system support.

Microsoft offers a few versions of Windows for different rkat sectors, and each supports
different SMP capabilities. Windows NT Server should bedusie regular servers and NTS/E for
cluster systems. Different versions of Windows 2000 suppalifferent number of processors.

Linux SMP support was introduced with kernel version 2.0 has improved steadily ever
since. The kernel locking granularity is much finer in 2.2hart in 2.0.x, which enables better
performance when processes are accessing the kernelsBes@and kernel-threads are distributed
among processors. User-space threads are not.

QNX 4.0 does not support SMP at all. Only the latest versioQNX for embedded systems,
QNX Neutrino 2.0, supports SMP.

Architectural limits on SMP support are compared in Table 3.

2.3.2 Processor Affinity

Specifying which processor should run a specific thread ocgss can improve performance by
reducing the number of times the processor cache is reloddedusters it can also be used to
control the contention between different parallel jobse Bissociation between a processor and a
thread or a process is called processor affinity.

11

In Windows, the programmer can define processor affinity filread or for a processet-
ProcessAffinityMask() specifies the mask of processors on which all the threads od@egs are
allowed to run. SetThreadAffinityMask() specifies the mask of processors on which the current
thread is allowed to run. Windows also provides a weaker lefvprocessor affinity: usinget-
ThreadldealProcessor() the programmer can specify a preferred processor for adhildee system
schedules threads on their preferred processors whenessibfe.

In general, Microsoft does not encourage thread affinitgttiSg thread affinity should gener-
ally be avoided, because it can interfere with the schedudéility to schedule threads effectively
across processors. This can decrease the performancepgagiused by parallel processing. An
appropriate use of thread affinity is testing each procé$3pr

In Linux there is no way to force a process onto specific CPUgHmiLinux scheduler has a
processor bias for each process, which tends to keep pescted to a specific CPU. The Linux
community is currently working on a project called “PSET¥oPessor Sets for the Linux kernel.
The goal of this project is to make a source compatible anctiomally equivalent version of PSET
(as defined by SGI but partially removed from their IRIX 6.4red) for Linux. This enables users
to determine which processor or set of processors a procagsun on. The interface is based on
the sysmp() system call, Which allows one to specify the binding of a psscto a specific CPU,
restricting the set of processes that can run on a CPU, aatrgyesets of processors [28, 5].

As mentioned, QNX 4.0 does not support SMP. QNX Neutrino susghard processor affinity
using theThreadCtl() system call.

2.4 Security
2.4.1 Security Model Overview
Windows NT

Windows NT security is based on access tokens and secustyigors (SD). Every process or
thread possesses an access token. When a process is fied ctiea kernel gives it and its primary
thread an access token which contains identifiers thatsepté¢he user and any group to which the
user belongs. The access token can be passed to other passescribed below. This access
token is checked against the SD of an object to determinedhmipsions that the user has with
respect to that object.

An object’s security descriptor is essentially an accesgroblist (ACL) that specifies who is
and isn’t allowed to do things to the object. There are twesypf ACLs. The Discretionary ACL
is controlled by the owner of an object and specifies the aqoagicular users or groups can have
to that object. It contains an access control entry (ACEg#&arh user, global group, or local group
that is either allowed or forbidden to access the object. Brf@ an object is initially set to have
a DACL with no ACEs, meaning that there is no access for any Usegive access to all users or
groups, the DACL for the SD must be explicitly set to NULL. T8gstem ACL is controlled by
the system administrator, and allows system-level sectribe associated with the object [9].

Whenever a thread requests to create or use another kejeet,abspecifies the operations
it wishes to perform on that object. The kernel checks thedly SD to see if the requested
operations are allowed. If so, then a handle to the objectantgd, with only the permissions
requested by the thread. When the thread subsequentlypastéoperform a certain operation on

12

the object using the handle, the kernel verifies through émmssions attached to the handle that
the thread really has the required permissions.

Windows NT and Windows 2000 support C2-level security amnéefby the U.S. Department
of Defense. Apart from access control as described abomeratuires that erased data will not
be readable by other programs, that users need to idenéifggblves, that security events will be
audited, and that the system be protected from tampering [2]

Linux

The Linux security model is superficially similar to that oflows NT: processes have a user ID
(UID) that specifies their rights, and filesystem objectserav ACL (other objects, e.g. processes,
can only be manipulated by their owners). However, this isrg limited version of an ACL, and
only contains three entries: the permissions of the own#reobbject, the permissions of members
of the owner’s group, and the permissions of all others. Wénaew filesystem object is created,
its default access rights are set according tauthask of the creating process.

To allow processes different capabilities, they can abtuave several UIDs. The real UID
identifies the user on whose behalf the process is running. effiective UID is used for access
control checks (see below). Linux, as opposed to other nariaf the Unix system, also has a
filesystem UID which is used for filesystem access contralaly, there is the saved UID, which
is used to support switching permissions on and off.

UID 0 is a special privileged user (role) traditionally el “root” who can overrule most
security checks and is used to administer the system. Tw atbone splitting of the privileges held
by root, POSIX has decreed that processes have three sejsalfilities: the effective, inheritable,
and permitted capabilities. This was added to Linux 2.2 jduabt universally supported by other
Unix-like systems [42].

QNX

As a POSIX compliant operating system, the QNX security rhizeery similar to Linux. How-
ever, it is considered very unsecure by many developerseiQiiX community because of the
fact that once a user (or process) has root permissions oofdne network machines, he has root
permissions on all of the network machines.

2.4.2 Impersonation

In client-server systems, any client accessing the systeough the server might have the same
access rights as the server, probably the access righte @lygtem administrator. Clearly, this
kind of access can cause trouble. Impersonation providesaamsrof limiting the degree of access
to that of the client attempting to access the system. Int@lsisthis is needed when processes are
created on behalf of the user on remote nodes.

In Windows, a thread can impersonate a user by receivingig@ts access token. The imper-
sonating thread thereafter enjoys the user’s access rgyhdsis prevented from accessing objects
that are not allowed for this user. Of particular interestioluster environment is the ability to
impersonate a client connected to a named pipe, provideclitr has given permission for im-
personation. This gives the thread almost all of the pmgakeand abilities of that client. However,

13

it can’t subsequently connect to another machine as thetcbe create additional processes in the
name of the client [9].

In Linux and QNX, impersonation is done by tbetuid() system call. Only processes running
with root privileges (e.g. daemons) can set their real UIBdme chosen user. Another alternative
is that programs may allow whoever runs them to impersomaie owner by having the set-UID
bit set in their permissions. When such a prograrmaxsc’'d, the effective UID is copied to the
saved UID, and the effective UID becomes the program’s olwn#D. This allows the program
to access the owner’s files on behalf of whoever is running it.

The problem with usingetuid() is one of authentication: how does the daemon know that the
process requesting it to run as a certain user is trustwdr@ye solution is to use low-numbered
port numbers, which are be convention reserved for syst@moepses, for the communication
among daemons. However, this is inapplicable when reagithie initial request from a remote
user process. Another approach is to use a challenge basin dite system security mecha-
nisms, whereby the daemon challenges the requesting gracesad the contents of a file that is
accessible only to the claimed user [44].

The major drawback in this solution is that it is NFS based, lanits the usage of the system
to NFS based configurations. A better alternative is usingcared authentication protocol such
as MIT Kerberos. Windows 2000 and also some recent Linuxiligtons implement the Ker-
beros v5 authentication protocol, which defines how cliarteract with a network authentication
service. Clients obtain tickets from the Kerberos Key Olisition Center (KDC), and they present
these tickets to servers when connections are establisgtertheros tickets represent the client’s
network credentials[3].

2.4.3 Security Auditing

Windows NT can record a range of event types from a systemewdat, such as a user logging
on, to an attempt by a particular user to read a specific fileroNBFS drive. Both successful
and unsuccessful attempts to perform an action can be medoiVhen an audited event occurs,
an entry is added to the Windows NT security log. The seclwoiyis viewed by using the Event
Viewer application. In the context of clusters, the most amt@nt events are probably making
connections over the network and indirect object access.

The most common “audit” mechanism currently available amukiand QNX is the system’s
logger 6yslogd()). The logger enables the operating system and applicatmmgite logging
information to the system’s log according to their priarity can be configured to automatically
log certain security events such as users logging in.

2.4.4 Protecting Access to Cluster Nodes

In cluster environments, it may be necessary to prevensuisan running independent processes
on the cluster nodes without submitting them through thstelumanagement software.

In Linux and QNX access to remote nodes is mediated by a setstéra daemonsghd,
telnetd, etc.). These daemons can be disabled in order to prevemteamers from using the
cluster machines. However, once the remote daemons at#atisthe system administrator might
also not be able to remotely administrate the machines. dardo handle this issue, a terminal

14

server can be used. Using the terminal server, the adnatostcan access the cluster machines
remotely using the network.

In Windows running processes on a remote machine is not datéfeature. Special daemons
are needed to be installed for this task. So the problem obtemccess to the machines is not so
relevant in a Windows environment.

2.5 Collecting Information

The processes involved in managing a cluster system oftemtbacollect various types of infor-
mation. Initially the configuration and capabilities of bawde must be identified, especially in
heterogeneous clusters in which nodes can be used in a dyfeshion. It is often also necessary
to collect resource usage information in order to supp@duece management functions.

Windows provides various system calls that can be used wordete the system’s configura-
tion and resource usage. Examples incl@aesysteminfo() for global system information such as
the number of CPUs, the processor architecture, level, evidion, and the page siz8gtDisk-
FreeSpace() and GetLogicalDriveStrings() for disk and logical drives information, ar@etCom-
puterName() to get the computer’s name.

An alternative interface is the Windows registry. In facime of the hardware configuration
is accessiblenlyfrom the Windows registry. For example, the CPU relatedrmfation (including
CPU speed, manufacturer and revision) is in the registny ¢tEY _LOCAL _MACHINE\HARD-
WARE\DESCRIPTION System CentralProcessgfcpu number[14].

Windows also provides a rich API for creating and accessargpus counters associated with
system events and performance data. Performance couateb®aised for monitoring system re-
sources, application bottlenecks, and program efficie@oynmon uses for performance counters
are to monitor how much memory an application is using, hodiypba computer is paging, and
how much CPU time a process is taking. Such counters are ydbé bVindows NT Performance
Monitor tool (PerfMon) [6], which can log the data, send tataessages to the Windows NT event
log when a counter exceeds a preset bound, and even run apregren a counter goes over a
predefined limit.

Windows performance counters data is stored in the regis®strieving the data from the
registry and interpreting it requires registry traversetéch involves serious programming efforts.
This can be eased by Performance Data Helper (PDH) libr&nygJL

Linux also provides system calls to access system infoonatExamples includsysinfo()
which provides information about the system hardware aftivace (except CPU speed), anal-
stat() which provides current load and activity information. Aneahative interface is the Linux
Iproc filesystem. This is an illusionary filesystem that does nédteon a disk. Instead, the kernel
creates it in memory as needed. This provides an alterniaigegace for viewing kernel infor-
mation, by using theead() system call, instead of a host of other specialized systdis daor
example, CPU information can be read frégproc/cpuinfo, and includes model, speed, and other
information for each installed CPU. Tipg command also reads /proc directly to get information
about the state of the system and the running processes3R I ¥ disadvantages of using /proc
is that the data is provided in textual form and has to be plarmgbereas the system calls provide
it in predefined structs.

In QNX, resource usage and system configuration informasionostly available via system

15

calls. The important ones agax_osstat(), gnx_psinfo() andgnx_info(). gnx_osstat() returns status
information of a specified node. The information contairesrtbmber of processes ready to execute
at each priority level and the average processor load at pachty level. gnx_info() provides
information about the system configuration.

2.6 Time Measurement and Timers

In cluster systems accurate time measurements and timetsesen be useful for job scheduling
and for profiling application execution times.

The resolution of time measurement depends on two thingat islspecified in the API, and
what is supported in practice. Both Linux and Windows cansueashort time intervals down to
microseconds resolution, and single microsecond diffsemo indeed occur when time is mea-
sured repeatedly. In QNX the time structutiemépec struct) supports nanoseconds resolution, but
the system actually supports only millisecond resolutlarfact, the shortest time interval that can
be measured is 10 milliseconds by default. This occurs dueatetime considerations. The sys-
tem uses a value call “ticksize” to determine the granyartall software system timers. All time
requests will be rounded up for this granularity. For examglthe tick size is 10 milliseconds, a
request to wait for 1 millisecond may wait for up to 10 milkemds [32]. Decreasing the ticksize
value to the minimum value of 0.5 millisecond will result iatber time measurement granularity.
However, changing the ticksize value is not recommendedusecit will affect all the timers in
the system, and might degrade the overall system perforganc

System timers can be used for setting periodic events wlanlbe used for scheduling jobs.
In the Windows operating system, “regular” timers are asged with windows, and thus with
interactive applications. In addition, there are waitabteers. These are synchronization objects
whose state is set to signaled when the specified due tinvesuriThere are two types of waitable
timers that can be created: manual-reset and synchramzatitimer of either type can also be a
periodic timer [3].

In Linux, the system provides each process with three iatégimers, each decrementing in a
distinct time domain. When a timer expires, a signal is seihé process, and the timer (poten-
tially) restarts. Timers are set usiagtitimer(), with one of the three flags: ITIMEREAL decre-
ments in real time, and delivers SIGALRM upon expirationMER_VIRTUAL decrements only
when the process is executing, and delivers SIGVTALRM upqgiration; and ITIMERPROF
decrements both when the process executes and when themsgstgecuting on behalf of the
process. Coupled with ITIMER/IRTUAL, this timer is usually used to profile the time spegt b
the application in user and kernel space. SIGPROF is delivepon expiration.

In QNX, two mechanisms can be used for setting timers. Stantiaers are created by
timer_create(), and their expiration time is set kimer_settime(). In addition, it is possible to
schedule hardware interrupts periodically every 50 natlands usingnx_hint_attach().

3 Performance Comparison

Performance is one of the most important factors that inlee¢he decision which operating sys-
tem should be selected for cluster system development.s€kison presents a performance com-

16

hardware| model IBM PC 300GL

processor Intel Pentium 11l 500 MHz
memory 128MB RAM
hard disk 10GB IDE

network card Intel 82555 100Base-Tx PHY Pro/100
software | Windows version NT Server 4.0 SP 5

services Alerter, Computer Browser,
EventLog, Messager, NAV Alert,
License Logging Service, Server,
Norton Program Scheduler,

Net Logon, NAV Autoprotect,

Plug and Play, Protected Storage,
RPC Locator, RPC Service, SOFF,
Spooler,TaskScheduler,workstation,
TCP/IP NetBIOS Helper

Linux version Linux 2.2.5-22

daemons amd, atd, crond, gpm, inet, keytable,
linuxconf, netfs, network, nfs, portma

O

random, sendmail, site, snmpd, sound,
syslog, xfs

QNX version QNX 4.25

daemons nameloc, syslogd, portmap, inetd,
Photon

Table 4: System configurations used for measurements.

parison of Windows, Linux, and QNX, With an emphasis on penfance topics relevant for cluster
systems software such as process control and networking.

3.1 Methodological Issues

In order to measure short time intervals with high precis@rspecial library called the “Time
Stamp Counters library” was used. This library offers a fooimeasuring time without the over-
head of a system call. It uses a Pentium op-code that read2ettt@m’s clock cycles counter,
at user level [18]. A good example for the library’s addedueails QNX time measurements. In
QNX, only intervals of 10,000 microseconds can be measuyeattbault. Using the Time Stamp
Counters library, intervals as low as 0.16 microsecondidoel easily measured.
The hardware and software configuration details of the nm&shused for the measurements

are given in Table 4.

3.2 Process Life Cycle

Some of the fundamental tasks required from parallel systemrunning parallel jobs and schedul-
ing parallel jobs on the cluster nodes. In this section weadrmneasure the overhead involved in

17

_Create Empty Process _Process Loops Over Memory

1000 1000

B windows B windows
Linux Linux

B oNx B oNx

[N

o

<]
|

100

Time (millisec.)
Time (millisec.)

=
o
|

10 +

2KB 10KB 100KB 1MB 10MB 2KB 10KB 100KB 1MB 10MB
Executable Size Executable Size

Figure 2: Process Creation and Termination Times.

some of the basic process control operations: processamestid termination and process sus-
pension/resumption.

In the measurements presented below results can be distyrt&ndom system events (such
as long context switches). These distortions affect thedstal deviation of the results. Therefore,
in order to minimize the impact of these random events, eashwas run 5 times and the test
which resulted in the smallest standard deviation is piteskmere.

3.2.1 Process Creation and Termination

This benchmark tries to measure the overhead involved icgsocreation and termination in each
of the compared operating systems. Pseudo code for thisbek is as follows:

for (50 iterations) {
measure time
create a process
wait for the process to die
measure time and save time interval

}

calculate average time and standard deviation

The following system calls were used for process creativaateProcess() in Windows,fork()
in Linux, andgnx_spawn() in QNX. The spawned process is empty and exits immediatelyrder
to avoid inconsistent results due to buffer cache hitsfesisene warmup iteration was used for
loading the executable into the buffer cache.

As the time to create a process also depends on the size afatswk used executables ranging
in size from 2KB to 10MB. This was achieved by using statioedition and initialization of an
array. In addition, we checked a second version in which tbegss steps once through this array
at 4KB increments, to ensure that it is all paged into memory.

As shown in Fig. 2, Windows and Linux indeed create processistheir memory swapped
out, and only perform the real allocation if it is accesselNXQon the other hand, always allocates
the memory at once when the process is created, in order it paging during execution. Com-

18

paring the systems, we can see that although QNX is fastexirutable sizes of up to 100KB,
from 1MB QNX becomes slower than Windows and Linux.

3.2.2 Process Suspension and Resumption

Implementations of gang scheduling on clusters typicadifigrm their scheduling of parallel jobs
by suspending all the processes which constitute a job ananiag all the processes of another
job. This benchmark tries to evaluate the overhead invalvedispending a process and resuming
another. Pseudo code for this benchmark is as follows:

turn =1
for (500 iterations) {
measure start time
if (turn ==1) {
suspend process A
resume process B
turn =0
} else {
suspend process B
resume process A
turn =1

}

measure end time and save time interval

}

calculate average time and standard deviation

The results were that suspending and resuming a processaakederate amount of time on
all three systems: about 2 microseconds in Linux, 3 micrasés in Windows, and 3.5 in QNX.

3.3 Networking

Networking performance is one of the important factors thltence computing clusters per-
formance and distributed applications in general. Sinc/TiCis the most common networking
protocol, it was selected for the networking performanamgarison. We also compare the QNX
native protocol performance (FLEET protocol) against QNSPTIP performance.

In order to measure TCP/IP performance, a standard netwasfermance benchmark called
“Netperf” was usedftt p: / / www. net perf. org). Netperf was configured to run a TCP
stream test. The stream test sends a stream of TCP packetof® machine to another and
measures the bandwidth for various size packets. The nmexasuts were done using two identi-
cal machines. The communication medium was a 10MB/s switahesl by other users during the
test, or 10MB/s and 100MB/s dedicated hubs.

The major conclusions from these tests were (Fig. 3):

1. When using Windows NT and Linux out of the box, Windows @utprms Linux on 10MB/s
connections but Linux outperforms Windows on 100MB/s catio@s.

19

TCP/IP Stream Bandwidth Using 10MB Hub

10
¢ NT default (8192 bytes socket)

Linux default (65536 bytes socket)
8 " Linux (16384 bytes socket)
7 4 QNX default (8192 bytes socket)

Bandwidth (MB/Sec)
o

14
2 -
4
s -
16 |
32 -
64 —

128
256 —
512 —
024 —
2048 —
4096 —
8192 —
16384 —
32768 —
65536 —
131072 -~

Message Size(gytes)

TCP/IP Stream Bandwidth Using 100MB Hub

100 —
¢ NT default (8192 bytes socket)

90 NT (16384 bytes socket)

80 —— ® Linux default (65536 bytes socket)
g 70 4 = Linux (16384 bytes socket)
% 4 QNX default (8192 bytes socket)
m 60 —
=3
< 50 4
=
=]
£ 40
5
c
© 30 —
[ai]

20

10 +

\

1
2 -

4

g -

16

32 -

64 —

128 -
256 |
512
024 |
2048 |
4096 |
8192 |
16384 —
32768 —
65536 —
131072

Message Size(Eytes)

Figure 3: Bandwidth for TCP/IP Stream Using Netperf Benchmark (108/&4d 100MB/s Hub
Connections).

2. After manually finding the optimal buffer sizes for a givestwork configuration and run-
ning the test using these buffer sizes, the Linux bandwittreiased significantly on 10MB/s
connections and matched Windows. Both improved signifigdat 100MB/s connections,
with Linux still outperforming Windows by a small margin. iBhagrees with previously
published results for 100MB/s connections [27].

3. QNX does not require any buffer size modifications. lt$gremance is comparable to Linux

and Windows using 10MB/s connection. In 100MB/s connegtiba QNX performance is
somewhat lower than Windows and Linux.

20

QNX Fleet Protocol vs. TCP/IP Protocol

=
o
|

¢ QNX Fleet (10MB switch)
® QNX Fleet (10MB hub)
- " TCP/IP (10MB switch)

4 TCP/IP (10MB hub)

Bandwidth (MB/Sec)

o B N W A O O N o ©
|

1

2048 —
4096 —
8192 —

LI
N
< N
o

wn

256

T
@©
N
bl

Message Size(Eyt

64

T
N
™

1
2 —4
4 —
s -
16 |
16384 |
32768 —

[]

S)
Figure 4: QNX FLEET Protocol vs. TCP/IP Protocol.

4. When using optimized buffer size, Linux achieves its peakdwidth using message sizes
smaller than Windows and QNX. For example: when using 10M#y¥gch connections
Linux bandwidth stabilizes at 4 byte messages vs. 32 bytsages in Windows or 64 byte
messages in QNX.

FLEET is QSSL's fault tolerant, load balancing LAN prototaiilt into QNX. It allows mes-
sage passing between processes on separate nodes andssoqitiple LAN cards connected to
multiple LANs. Using multiple networks in this way can inese bandwidth and provide fault tol-
erance. If a cable or network card in one network fails, FLEEIomatically reroutes data through
another network. This happens on the fly, without involvipglacation software [24].

As shown in Figure 4, QNX FLEET protocol maximum bandwidtlapgproximately the same
as TCP/IP bandwidth. The difference is that TCP/IP proteeathes it's maximum bandwidth
already at 64 byte messages as opposed to FLEET which regchesximum bandwidth only for
8192 byte messages (Fig. 4).

3.4 System Overheads

The operating system has various overheads that, whileamgtsignificant on a desktop, become
amplified in a cluster with dozens of nodes. These includétw and shutdown times, and the
memory footprint. The measurements were made using two snadadows mode (X in Linux,
Photon in QNX, and regular Windows NT mode), and console nvduere available (Linux and
QNX). Results are summarized in Fig. 5.

The boot processes is considered as finished when the oesgtitem is ready to log-in users.
QNX is the fastest Operating system both to boot and to skhutd®dhis is due to the fact that QNX
is the lightest Operating system in terms of memory footpriNso, it does not use a swap file
that has to be flushed to disk once the operating system ig st down. Windows boot time

21

50 2 49 B windows

42 Linux X
Linux console

30 29 29 Bl QNX Photon

21 B QNX console
20 17 16 Q

Boot [s] Shutdown [s] Memory [MB]

Figure 5:Boot time, shutdown time, and memory footprint.

is faster than Linux boot time even when Linux is run in copgolbde. On the other hand, Linux
shutdown process is faster than Windows in both configuratio

4 Ease of Use

In this section we try to evaluate the ease of use of the cosdpaperating systems. Evaluating
operating systems ease of use is not easy, and thereforgciisdied in a broad sense. Metrics
for evaluation of operating system’s ease of use include &k count, documentation, Web

resources count, and ease of administration.

4.1 API Calls Count

One of the significant factors that influences a programnteaisiing curve is the number of API
functions needed for implementing a specified programmasg.t In some of the operating sys-
tems, the kernel API (system calls) is enough for developa@llel systems. In others the de-
velopment should be done using a higher API. Counting thebaurof functions supported by
the lowest usable API can be used as a metrics for measumingasde of development. Fewer
functions to learn can be considered better.

In Linux, system calls are basically enough for developingputing clusters. As shown
in Table 5, Linux provides the smallest number of of functioreeded to be learned in order to
develop parallel systems (190 calls). In Windows, the Kesgstem calls are undocumented and
therefore cannot be used for development. Windows expbsed/in32 subsystem API which is
built on top of the kernel API. In fact, Win32 is the lowest ABVel that can be used for developing
applications. QNX as a microkernel operating system exporsy 21 kernel functions (see Table
5), the rest of the functions are implemented as separagegikls (POSIX, WATCOM and ANSI).

When trying to understand the variance of the API calls cowetneed to take into account
the different functionality supported by the API. It is obus that Win32 offers by far the largest
number of services to the developer which can explain trgelaumber of API calls. The flip
side of this argument is that Windows is much more comples, therefore more susceptible to
performance and reliability problems. For clusters, adgpgrt of this complexity — e.g. the
support of graphical interfaces — is unwarranted.

22

system kernel calls higher API

Windows NT | 1049 (ntdll.dll)| 1940 (Win32)
Linux 190
QNX 21 338 (kernel+Posix

Table 5: API Calls Count. (Linux system calls from /usr/include/bits/syscall.h. ®MNystem calls from
/usr/include/sys/kernel.h. Windows system calls re&ideusing dumpbin /exports ntdll.dll. Win32 API functions
count from list in the MSDN library.)

4.2 Standard Documentation

An important factor that influences the ease of developneetite standard documentation pro-
vided with the operating system. Good documentation isisgéor effective software develop-

ment, especially for the non-expert developers, and shougldde everything from the simplest
commands up to detailed technical articles including caepdes. Another parameter for good
documentation is the time it takes to find it.

The most comprehensive resource for Windows developmentrdentation is MSDN (Mi-
crosoft Developer’'s Network). It is available both on a Wik éht t p: / / msdn. m cr osoft.
com) and on a CD as a part of the Microsoft development environaistribution (Visual Studio).
The MSDN Library contains more than a gigabyte of technicagpamming information, includ-
ing code samples, documentation, technical articles aniitbrosoft Developer Knowledge Base.
When trying to compare the quantity and quality of Windowswaentation to Linux and QNX
documentation, Windows is clearly superior. The MSDN co#a@ huge number of articles and
code samples.

Linux has two main sources for standard documentation: gfatided with the distribution,
and the Linux documentation project. Documentation in tis&riution includes kernel whitepa-
pers, man pages, and various other miscellaneous documer{teowto, FAQs, tutorials, installed
software documentation). In addition, the distributiodlirdes the source code itself, which is the
ultimate reference when trying to figure out intricate detaf the system’s behavior.

The Linux Documentation Project (LDPh{(t p: // www. | i nuxdoc. or g) is working on
developing free, high quality documentation for the GNWx operating system. The overall
goal of the LDP is to create a canonical set of documentaB@mg online (and downloadable),
the documentation can be frequently updated in order tomtapp of the many changes in the
Linux world. The effort is collaborative with minimal ceatrorganization, just like the develop-
ment of Linux itself. Recently, some of the Linux distritaris have started providing the LDP
documentation CD along with the operating system instalatD.

In general, the volume of QNX documentation is very low lgkato the other two sys-
tems. It includes the QNX Helpviewer application for thepiisy of online help, man pages,
and manuals, whitepapers, and data sheets located in the 8t t p: / / www. gnx. cont
literaturel).

4.3 Web Resources Availability

Apart from the “official” resources available for each systelevelopment can benefit from help
from the on-line community. To get some notion of what researof this type are available, we

23

Google hits _newsgroups _message volume _Amazon books

300 1000000 1500

B windows
Linux

B ONX

1000000 —

|

250 — 100000 — 1250
100000 —

|

200 — 10000 — 1000
10000 —

150 — 1000 — 750 —
1000 —

100 100 100 500

10 - 50 — 10 250 -

1- 0 - 1- 0 -

Figure 6: Results of Web search regarding the three operating syst@vessgroups retrieved from
the Hebrew University’s news server which contains 42, 1883groups. Some may not be active. Message volume
retrieved from Deja News. Valid as of 25/07/00.)

tabulate search engine hits, newsgroup activity, and b@ags6).

Search engines can be very useful when looking for docurientaechnical articles, online
books, and source code samples. We checked the number afttets looking for “Windows
NT”+"Windows 2000”, “Linux”, and “QNX” keywords in populasearch engines. More hits
implies more resources and a shorter time until the requiredmation is found. We found that
Windows and Linux number of hits is comparable, and in sonse€de.g. AltaVista) there was
even a significant advantage for Linux. QNX hit counts, ondtieer hand, are relatively low.

Newsgroups can be considered as a powerful tool for findifgnmation and solving problems
using the Internet community. Finding newsgroups relevarg specific topic is easier when a
large number of newsgroups is available. Windows has altmost the number of newsgroups as
Linux. QNX has only six newsgroups. Similar differences abbserved regarding the volume of
messages in these newsgroups.

Books about Operating systems and related software arbanaotportant resource for users,
especially for the non-advanced users who wish to study ot the system. Since the vast
majority of the literature is available also in on-line basitops, running queries in the Web sites
of these shops can be used to measure the amount of liteeataitable. The number of books
about Windows is significantly higher than about Linux in@ilthe book shops checked. QNX
literature is poor by any standard.

4.4 Source Code Availability and Extensibility

As mentioned above, an important benefits of operating systaurce code availability is that it
can be used to gain a better understanding of the operatitgrsynternals and behavior. But even
more important is the option of modifying the operating syst For example, the Mosix system
provides a load balancing capability among the nodes of stellubased on a process migration
facility [7]. This is implemented within the kernel of thedmsystem, which is Linux. Likewise,
the development of Beowulf hinged on kernel modificatiorsd gllowed several physical networks
to be used as a single logical network [36].

In Linux, all the source code is available under the term$iefGNU General Public License.

24

Both Windows and QNX are commercial operating systems aeid slource code is unavailable
for the public. However, Microsoft is cooperating with aeadc research and has shared Windows
source code with a few research institutes.

A separate issue is the ability to extend the kernel, esiheeidth regard to device drivers.
Due to the dominant market share enjoyed by windows, nedlrigeaice manufacturers write
device drivers for Windows. In addition, the Microsoft dexdrivers development toolkit eases the
development of new drivers by providing various templatds Device drivers for Linux are less
plentiful, but drivers for popular hardware can often befdwn the Internet even if they were not
provided by the hardware manufacturer, and extensive dentation to help in the development
of drivers is available [34]. QNX has very few device drivaxsilable by comparison.

Extending the kernel is not only a matter of acquiring (ortimg) the software. Linux allows
kernel modules, including drivers, to be loaded and unldadsile the system is operational [15].
This obviously has significant advantages in a server thaestfor continuous availability, but also
in a cluster serving multiple parallel applications. In \dfiwvs, every such modification requires a
reboot to take effect.

4.5 Administration

Windows uses administration tools based on graphical mserfaces. This has the well-known
advantages of being able to provide hints, context-seediielp, and certain consistency checks.
In Unix (including Linux and QNX) most of the tools used to nage the system are command-line
based, although some tools also have graphical interfa@gs [

In the context of clusters, however, command-line intexga@re more robust in the sense that
it is usually possible to access a remote machine via someddgnxinal, but not always via a
graphical interface. Also, text-based programs are essi@atomate so administrators can make
the same changes on several machines using a single scnpt.céimes with various scripting
facilities such as the shell and Perl. Windows does not. B\e Unix uses textual configuration
files that are easy to edit and reproduce, whereas Windouwgimegses a proprietary binary format
that is created by the system.

One of the most attractive features of Unix is the ability emizol machines remotely. Since
Linux and QNX come with a telnet daemon built in, adminisiratcan telnet virtually any ma-
chine running the telnet daemon, regardless of operatisigsy to do all administrative tasks. To
remotely administer a Windows server, you must purchas@arate application to allow remote
control. Two of the most popular remote administration picid for this are PC Anywhere by
Symantec and SMS (Systems Management Solution) from Mifttddsing commercial adminis-
tration tools can become costly because you must purchasgydar the server to act as the host,
and a copy for each computer that needs to remotely coneddhver.

5 Conclusions

Our comparison of Windows NT, Linux, and QNX as the basis folding cluster systems uncov-
ered a host of differences among these systems, but no cleaenvEach system supports some
important features that do not exist in the others. For exanwgindows NT can create suspended

25

processes, which Linux cannot, and has better support feglisonation. Linux, on the other hand,
can easily suspend a process, and supports disk quotase iMhilack of such features can cause
headaches, they are typically not show-stoppers.

Likewise, contrary to the common belief that Linux outpenis Windows, and the expectation
the QNX would outperform both, we found no clear-cut advgattor one system over the other.
This agrees with the results of Lancaster and Takeda, wiidicate that the compiler is more
important than the base system in terms of performance [27].

Thus it seems we can say that all three systems provide sisuifgoort for the construction of
clusters. We verified this claim by implementing a reducedioa of ParPar on all three of them,
using the same basic architecture. Overall, the implenientare rather similar and required
commensurate effort. In fact, they were so similar that weidil it was pointless to try and
measure the differences between them in terms of code caitypde other software metrics.

Of course, the comparison done in this research could be@stkto other topics. The bench-
marks written could be improved, and new ones can be wrideadmparing other topics. One of
the most important aspects which was not covered in thisresevas operating system stability.
Determining how stable is the operating system for a longodenf time under different types of
load is not an easy task and can be used as a subject for artai research. Alternatively, itis
possible to try and glean some information from other corspas, especially between Windows
NT and Linux [25, 29, 13]. However, it should be remembered slnich comparisons — especially
those published by companies that have an interest in théses may be tainted by the fact that
they have huge economic implications. In addition, theyifoon the server market which is only
partly relevant to high-performance computing clusters.

Acknowledgements
This work was supported in part by the Israel Science Foumdand by the Ministry of Science.

References

[1] “Address windowing extensions and Microsoft Windows 200@&Beanter Servér URL
http://msdn.microsoft.com/library/backgrnd/html/aviedata.htm, Mar 1999.

[2] “ C2 level security. Platform SDK documentation, MSDN, Jan 2000.
[3] “Microsoft Developer Network Jan 2000.

]

]

[4] “ Microsoft windows driver development KitsURL http://www.microsoft.com/DDKJ/.

[5] “Pset - Processor Sets for Linux/SMRIRL http://isunix.it.ilstu.edu/thockin/pset/.
]

[6] R. Anderson, Finding leaks and bottlenecks with a Windows NT PerfMon CQijkot’. URL

http://msdn.microsoft.com/library/techart/perfmamh Jan 1999.

[7] A.Barak, O. La’adan, and A. ShilohScalable cluster computing with MOSIX for Lintixin Linux
Expa pp. 95-100, May 1999.

[8] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and\rworner,Linux Kernel Internals
Addison-Wesley, 2nd ed., 1998.

26

[9] P. Bosch, Windows NT security system basicdJRL
http://msdn.microsoft.com/library/periodic/period@30197.htm, 1997.

[10] R. Card Eric Dumas, and F. MéveT,he Linux Kernel BoakWiley, 1998.

[11] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, La@iini, and J. Prusakovatigh
performance virtual machines (HPVM): clusters with supetputing APIs and performarntdn 8th
SIAM Conf. Parallel Processing for Scientific Compiar 1997.

[12] Q. P. Coldiron, Replacing Windows NT Server with LinlixURL
http://citv.unl.edu/linux/LinuxPresentation.html, 4R

[13] D. H. Brown Associates, Inc. Operating system scorecardJRL
http://www.dhbrown.com/dhbrown/opsys.cfm.

[14] T. Daniels,1001 Secrets for Windows NT RegistP@th Street Press, 1997.

[15] J-M. de Goyeneche and E. A. F. de Soudapddable kernel modulés|EEE Softw16(1), pp. 65-71,
Jan/Feb 1999.

[16] A. Denver, ‘Using the performance data helper librarldRL
http://msdn.microsoft.com/library/techart/msddhlib.htm, Mar 1997.

[17] P. Druschel, Operating system support for high-speed communicati@omm. ACM39(9),
pp. 41-51, Sep 1996.

[18] Y. Etsion and D. G. Feitelsoffime Stamp Counters Library - Measurements with Nano Second
Resolution Technical Report 2000-36, Inst. Computer Science, Thedtebniversity of Jerusalem,
Aug 2000.

[19] D. G. Feitelson, A. Batat, G. Benhanokh, D. Er-El, Y.i&ts A. Kavas, T. Klainer, U. Lublin, and
M. A. Volovic, “ The ParPar system: a software MPR High Performance Cluster Computing, Vol.
1. Architectures and SysteniR. Buyya (ed.), pp. 754-770, Prentice-Hall, 1999.

[20] D. G. Feitelson, Y. Ben-Asher, M. Ben Ezra, |. Exman, icHerski, L. Rudolph, and D. Zernik,
“Issues in run-time support for tightly-coupled paralladgessing. In 3rd Symp. Experiences with
Distributed & Multiprocessor Systpp. 27—42, USENIX, Mar 1992.

[21] J. Fink, “An overview of the proc filesystein Linux Gazettet6, Oct 1999. URL
http://lwww.linuxgazette.com/issue46/fink.html.

[22] R. Friedman, M. Goldin, A. Itzkovitz, and A. SchusteM/llipede: easy parallel programming in
available distributed environmentsSoftware — Pract. & ExR7(8), pp. 929-965, Aug 1997.

[23] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdaitj T. E. Anderson,GLUnix: a global
layer Unix for a network of workstatiofis Software — Pract. & Exm®8(9), pp. 929-961, Jul 1998.

[24] D. Hildebrand, ‘An architectural overview of QNX URL
http://lwww.gnx.com/literature/whitepapers/archovewhtml.

[25] J. Kirch, “Microsoft Windows NT Server 4.0 versus UNIXURL http://www.unix-vs-nt.org/kirch/,
Aug 1999.

27

[26]
[27]

(28]
[29]

[30]
[31]

[32]
[33]
[34]
[35]

[36]

[37]
[38]
[39]

[40]
[41]
[42]

[43]

[44]

R. Krten,Getting Started with QNX.4Parse Software Devices, 1998.

D. Lancaster and K. TakedComparative performance of a commodity Alpha cluster mgriinux
and Windows NT. In IEEE Workshop Cluster Compuiay 1999.

D. Mentré, ‘Linux SMP HOWTCO'. URL http://www.phy.duke.edu/brahma/smp-fag/, Sep9.99

Microsoft Corp., ‘Linux myths'. URL
http://www.microsoft.com/ntserver/nts/news/msnwikiMyths.asp, Oct 1999.

Microsoft Corp., ‘Moving Unix applications to Window's MSDN, Jan 2000.

G. F. Pfister, Clusters of computers for commercial processing: the iiobd@sarchitecture IEEE
Parallel & Distributed Technology(3), pp. 12—-14, Fall 1996.

QNX Software System®QNX Operating System Utilities Referen€gSSL, 1998.
J. Richter,Programming Applications for Microsoft Windowilicrosoft Press, 4th ed., 1999.
A. Rubini, Linux Device Drivers O’'Reilly, 1998.

M. Russinovich, NT vs. UNIX: is one substantially betterWindows NT Magazindec 1998. URL
http://www.winntmag.com/Articles/Index.cfm?Artic2+4500.

D. F. Savarese and T. Sterlinggéowulf’. In High Performance Cluster Computing, Vol. 1:
Architecture and SystemR. Buyya (ed.), pp. 625-645, Prentice Hall, 1999.

R. J. SimonWindows NT WIN32 API Superbibl@aite Group Press, 1998.
D. S. Solomon]|nside Windown NTMicrosoft Press, 2nd ed., 1998.

T. Sterling, D. J. Becker, D. Savarese, J. E. Dorbandd.URanawake, and C. V. ParkeBeowulf: a
parallel workstation for scientific computatiorin Intl. Conf. Parallel Processingvol. I, pp. 11-14,
Aug 1995.

W. R. StevensAdvanced Programming in the Unix EnvironmeAtdison Wesley, 1993.
A. S. Tanenbaum,A comparison of three microkernélsJ. Supercompu®(1/2), pp. 7-22, 1995.

D. A. Wheeler, ‘Secure programming for Linux and Unix HOWTOURL
http://www.dwheeler.com/secure-programs/.

L. Wirzenius, “The linux system administrators’ guide, version 0.6.8RL
http://www.linuxdoc.org/LDP/sag/book1.html.

S. Zhou, X. Zheng, J. Wang, and P. Delisl&topia: a load sharing facility for large, heterogeneous
distributed computer systethsSoftware — Pract. & ExR3(12) pp. 1305-1336, Dec 1993.

28

