Cooperative Indexing, Classification, and
Evaluation in BoW

Dror G. Feitelson

School of Computer Science and Engineering,
The Hebrew University, 91904 Jerusalem, Israel,
feit@cs.huji.ac.il,

WWW home page: http://www.cs.huji.ac.il/"feit

Abstract. BoW is an on-line bibliographic Dynamic Ranked Information-
space (DyRI). It provides the infrastructure for users to add bibliograph-
ical information, classify it, index it, and evaluate it. Thus users coop-
erate by contributing and sharing their experience in order to advance
the most problematic aspects of information retrieval: finding the most
relevant and high quality information for their needs.

1 Introduction

The basic problem in information retrieval today is filtering the massive amounts
of information that are available in order to find high-quality relevant informa-
tion. The quest for high quality means that the available information must be
evaluated and ranked in some way. The quest for relevance means that the in-
formation must also be classified and indexed according to pertinent concepts.

Current information retrieval systems often leave much of this filtering to the
users. They focus on an effort to be comprehensive, producing a superset of the
desired information. The user then shifts through this information, discarding
most of it, and selecting those items that seem to best answer the needs. But
the effort expanded in this selection process — in which a human user with
understanding of the domain checks the system’s classification and performs an
evaluation — is lost. The system does not keep track of which data items were
selected in the end, and does not have the means to match them with a refined
version of the user’s original query.

The BoW project is an attempt to investigate the possibility of tapping the
work done by users to improve the system. The scope chosen is a bibliographic
repository for a limited domain (BoW stands for “Bibliography on the Web”, and
our prototype contains approximately 3000 entries from the domain of parallel
systems). Within this scope, users are provided with facilities to contribute to
the classification and indexing of entries, and the same facilities are used for the
incremental construction of queries. In addition, the system keeps track of users’
searches and their results, and uses this information to reorganize the way data
is presented to subsequent users. Thus valuable user experience contributes to
improving the system’s service, rather than being lost.

2 Dynamic Ranked Information Spaces

2.1 The Vision

Consider a situation where you are a university professor specializing in parallel
systems, and one of your students comes to you with an idea for a new network
topology. You recall that you have seen something like this in the past, but you
do not remember the name given to this topology or who did the work. An alta-
vista search using the term “network topology” produces 12,338 hits, and those
you check either describe specific installations or are dangling links pointing to
nothing. Your only recourse is to try and call up some colleagues who might
have a better memory.

Now consider what might have happened if the parallel processing community
maintained a dynamic ranked information space with technical publications in
this field. You would enter at the root node, and traverse the path “architecture”
— “interconnection networks” — “topologies” to arrive at a page listing hun-
dreds of proposed topologies, grouped according to their attributes. For each
one you will be able to get a concise description, the text of research articles
describing the topology and its uses, commentary on these articles, links to de-
scriptions of systems that actually use this topology, and an indication of how
many other researchers are also interested in it. If you find that any of this
information is stale or misleading, you will be able to either leave a comment
about it, or alert an editor that a link should be removed. Thus your experience
will immediately contribute to the maintenance of the site, as the experiences of
others have contributed before you.

This example is not unique to parallel systems or even to searching in the
scientific literature. For example, a similar situation can occur with an architect
looking for data on designing public libraries in a dynamic ranked information
space dedicated to that topic. The basis is the existence of a tightly knit commu-
nity of users that contribute to the maintenance and updating of the repository
by submitting information, commentary, and suggestions for structural changes.
As a result, the repository changes dynamically with time (rather than just ac-
cumulating more and more items), and contains feedback and evaluations in
addition to the original raw data items. In addition, using the repository short-
ens the publication time of new information to zero, and makes it available in
multiple cross sections. It is a large scale extension of the concept of peer review,
coupled with an indexing service.

The project follows the “field of dreams” approach, which is actually the basis
for the growth of the Internet [5]: we just provide the technology for creating the
information space, and leave it to the users to supply the content'. The resulting
system is called a “Dynamic Ranked Information-space”, or DyRI for short.

! However, initially it is necessary to prime the information spaces with enough con-
tent to make them sufficiently attractive so that potential users overcome the “new
technology” barrier.

2.2 The Design

While the concepts explored here apply to any information repository, we use a
bibliographic repository for concreteness. This also simplifies the prototype by
limiting it to rather structured data.

User Types Users of DyRIs are classified into three types: users, contributors,
and editors.

Users are those who use the information space to search for information.
The main search method is by traversing a concept index that classifies the
available information according to content. This allows for refining the search as
one proceeds, rather than requiring one to have a clear notion of the required
information at the outset.

While general users do not add information to the information space, they
do register feedback relating to existing data. One form of feedback is simply
by traversing the concept index: the system keeps counts of visits to each page,
and uses this information to identify the more popular ones to future users. In
addition, users may register positive or negative feedback to each page, to note
their level of satisfaction. Again, the system displays this information as part of
the indication of a page’s popularity.

Contributors are users who not only search for data, but also contribute
data. In principle any user may become a contributor; the only requirement is
to identify oneself to the system. Such identification is required both in order
to attribute contributions such as annotations to their authors, and in order to
identify the arguing parties in case of disputes. In extreme cases of misuse, it
may be necessary to limit certain users.

Contribution can take any of three forms:

— Adding a new entry to the repository.

— Adding an annotation to an existing entry, providing additional insight into
its importance or content.

— Adding a link between related pages or entries.

Links create the fabric of the concept index, allowing it to be traversed incre-
mentally, at the same time narrowing the scope of the search. Whenever a new
entry is added to the repository, it should be linked to appropriate pages in the
concept index. Contributors who discover additional meaningful links later may
also add them.

In addition, contributors can make minor modifications to existing data, e.g.
in order to correct errors. Contributors can also suggest major modifications,
such as deleting entries or links. However, acting upon such suggestions is left
to editors, after proper solicitation of a rebuttal from the original contributor.
Thus the editor’s main task is to resolve conflicts and maintain the quality of
the repository, based on input from the contributors.

The Concept Index Most search engines are unsatisfactory because users are
required to have a good notion of what they are looking for before they start.
The most common approach is to describe the query using keywords and logical
operations; for example, the query (scheduling & (parallel | distributed)) is read
as “find documents including the word ‘scheduling’ and either of ‘parallel’ or
‘distributed’ ”. The intent is probably to find references regarding scheduling
in parallel or distributed systems. However, the issue of whether we mean job
scheduling by the operating system, task scheduling by the runtime system, or
task scheduling by the compiler is left open. A good search engine will find all
three types (and maybe more) and leave it to the user to shift through them.
Adding keywords can reduce this burden, but runs the risk of false negatives,
where items of interest are rejected because they do not contain all the specified

Issues
Alphabetical listing
,' Classifications

I | General
/| Special hardware
Degree of synchronism
! Interconnection strategies
| Shared memory implementation
, !'| Vector and array processing

l’ // Parallel /0 Alphabetical list
Iy Technology ,”" | Required functionality
rl ,/ 0
’: /, General —— -~ - ——-—-—--————-~ 4 Proce.ss model
’/ // Job scheduling & processor allocation |~ ~ = l;/lappmg
Iy Controlling the parallelism - - -~~~ N cheduling
. e ; - N N
L/Iachmes and projécts .) J, r g:mg:n;c:{:c;r:ya;i:::sage passing ' | support fgr threads
rchitectures and interconnections e Memory management * Synchronization
. " 4 \ | Correctness and orderin
Operating systems & runtime support File systems and /0 \\ 9
Programming languages, program Hardware support N Group communication
development, and compilation N Routing
N Imperative languages

Performance and analysis — =~~~ ~ R
| \ | Non-procedural approaches

Algorithms and applications \ N Programming methodology and tools
'y Compilation

[Debugging

\ Program semantics and verification

\ | Fundamental limits and contention
\ | Performance measures
\ Analysis, simulation, and prediction
Improving performance
\ | Fault tolerance and detection

\ | Models of computation

\| Algorithm design paradigms
Algorithms

Algorithms for specific architectures
NC and P-completeness

Fig. 1. Example of the top levels of a concept index for an information space on parallel
systems.

keywords (and without any typos 8-).

In contrast, the concept index allows users to formulate their search incre-
mentally on-line, and does not depend on matching keywords. Essentially it can
be viewed as a menu-driven search. The top level of the index (the root) contains
links to several broad topics. Following such a link leads to a page representing
the chosen topic (a concept page), and including a list of subtopics and/or bib-
liographic entries. The index is navigated using a hypertext interface such as a
Web browser, by going from one concept page to another. The leaves contain
only bibliographic entries that pertain to a narrow and focused topic.

An example of the top levels of a concept index for the domain of parallel
systems is shown in Fig. 1. Using such a structure, a user looking for information
on the scheduling of parallel jobs will follow the “operating systems and runtime
support” link from the top level, and then the “Job scheduling & processor
allocation” link. A user looking for information about on-line task scheduling
would diverge at the second level, and choose the “controlling the parallelism”
link. A user looking for information about task scheduling by the compiler would
start with the “programming languages, program development, and compilation”
link at the top level, and then choose “compilation”.

As noted above, the structure of the concept index is of utmost importance.
For any specialized domain, it seems advisable to create a special index based
on a thorough understanding of the domain. This should be done with an eye
for what users might look for. The topics need not be (and probably should not
be) completely disjoint: the index structure can easily be a DAG rather than a
tree. Thus any subtopic that is relevant to two or more larger topics (e.g. if it
represents their intersection) is simply linked to all of them, and can be found by
several distinct routes in the index. For example, it would be convenient if infor-
mation on “virtual memory” was accessible both via “architectures” — “shared
memory implementation” and “operating systems” — “memory management” .

An important question is the “right” size for pages, and the resulting depth
of the index [2]. The tradeoff is between scrolling and loading. Using small pages
that do not require scrolling leads to a deeper index, and therefore requires more
pages to be loaded from the server. If we want to reduce the average number of
pages loaded in order to reduce the accumulated waiting time, we need to use
larger pages. A possible way out is to use a relatively low branching factor, but
show two levels of the index in each page. The pages are then bigger, but their
internal structure makes them easier to use.

User Feedback An important part of the interface is the support for registra-
tion and display of user feedback. The feedback feature is embedded naturally
into the concept index, so as to be usable and useful without any training. Reg-
istering feedback about links in the concept index is done as a byproduct of
traversing these links. One simple form of feedback is popularity: the system
keeps count of the number of times that each link is traversed, and displays
this at the head of the link (rather than displaying a count of visits in the page
itself). Note that if a page has more than one link pointing at it, the counts for

back with feedback

OBE

Fig. 2. Composite “back” button used to obtain feedback.

these links will be different, as they well should be, because they represent the
perceived relevance of the page in different contexts.

The problem with mere counts is that they represent the initial perception
of users, but not their final satisfaction with their choice. To capture user sat-
isfaction, pages have composite “back” buttons embedded in them (Fig. 2). By
selecting the happy or sad face, the user can distinguish between a “happy back
after finding what I wanted” and a “frustrated back after failing”. Clicking else-
where just performs the back function, without registering any feedback.

The problem with the composite back buttons is that we do not want to
burden the user with them. Therefore inferential feedback is used as well. One
form of inferential feedback is that positive feedback is applied to the whole path
from the root to the page on which the happy face is pressed, thus saving the
need to go all the way back to register satisfaction. Negative feedback, on the
other hand, is applied only to the last link, allowing for backtracking and trying
of other links. Another form of inferential feedback is that using the “export”
facility is deemed to represent positive feedback, based on the assumption that
the user is exporting data because he likes what he found.

Once the system has the feedback information, it should display it in a useful
manner. The suggested approach is to decorate each link with a small icon
that presents the information graphically. Specifically, a set of marks can be
used, with green check-marks denoting positive feedback and red X’s denoting
negative feedback. The number of marks indicates the degree of positiveness or
negativeness, while their size reflects the total number of visits. Such a display
allows users to focus immediately on “big check-mark” links, which are those
that many other users have found useful.

The specific formula used combines the ratio of good to bad feedback with a
logarithmic scale, so as to allow for a large dynamic range. The formula for the
number of check-marks n is

—b
nzlg<%+0.7>+l

where g and b are the numbers of good and bad feedbacks, respectively. For X’s,
exchange g and b. This leads to numbers as indicated in Fig. 3.

An additional use of feedback is the internal organization of the concept
pages. It is envisioned that at lower levels of the index concept pages will be
divided into topics, each listing a set of relevant bibliographic entries. The order
of entries in such a set should be

positive feedbacks
o

negative feedbacks

Fig. 3. dependence of feedback visualization on actual number of positive and negative
feedbacks.

1. New documents that were only recently added to the repository. Such doc-
uments are kept on top for a few months or until they get some feedback
from users.

2. Documents that have received positive feedback.

3. Documents about which users are ambivalent, or no feedback is available,
possibly for lack of popularity.

4. Documents that have received negative feedback. These documents are can-
didates for removal.

3 Comparison with Other Approaches

The issue of finding relevant information according to one’s needs is obviously
of paramount importance. It has therefore motivated considerable research and
development activity, and the creation of a large industry that indexes and pro-
vides access to on-line information. There are three main approaches: using links,
using keywords, and using experts.

3.1 Finding Information Using Links

The Science Citation Index is based on the notion that related papers in the
scientific literature are “linked” by their bibliographical citations: either they
cite each other, or they share many citations. Thus if you have a starting point
for your search, namely some scientific paper on this topic, you can use both
its citations and citations to it to find additional related papers. Citations in
a paper are easy to find: they appear in the paper itself. The Science Citation
Index provides the other direction: for any given paper, it lists other papers that
cite it.

This idea has been extended in two ways using the WWW. One is to make ref-
erences into hyperlinks, and collect on-line documents that reference each other.
An example is the NEC Research Index (http://csindex.com), which is based on
an automatic tool that crawls the Web looking for scientific papers, analyzes
them, and creates a citation index from them [4]. A related example is the hy-
pertext bibliography project (http://theory.lcs.mit.edu/~dmjones/hbp). This project
contains information about all papers published in a host of journals and confer-
ences, mainly related to Theoretical Computer Science, and maintains two-way
links among these papers according to their citations.

The other extension is to apply these ideas directly to the structure of the
WWW itself. The thrust of the work in this direction is based on Kleinberg’s
classification of Web sites into hubs and authorities, based on the the links
emanating from them and pointing to them [3].

3.2 Finding Information Using Keywords

Indexing services are another well-known search facility. They don’t require you
to have a starting point — only a good notion of what you are looking for. They
survey the scientific literature as it is published, and collect papers by topic.
Thus they provide a much needed mapping from topics to journal pages, much
as an index at the end of a book provides a mapping from topics to the pages
of the book.

The enormous quantity of information that is available, and its exponential
growth rate, has lead to much interest in automatic indexing [7]. Direct im-
provements to simple indexing include the ability to derive related words, and
knowledge about synonyms based on a thesaurus [1, 8]. Using these facilities, it
is possible to find useful information even in cases where a direct match to the
user’s query does not exist.

A more sophisticated approach is based on learning from examples using
boosting algorithms [6]. These algorithms combine multiple inaccurate heuristic
classifications (e.g. based on keywords) into a more accurate final classification
(e.g. a prediction of the topic being addressed in the document). The method-
ology involves iterative learning using pre-classified examples. Each example at-
taches a set of labels to a document. The system learns to attach such labels
automatically, by iteratively refining its notion of how combinations of inaccu-
rate classifications lead to final classifications. This in turn is based on giving
higher weights to those examples that are hardest to classify.

3.3 Indexing by Experts

While machine learning can help achieve good classifications based on keywords,
some believe that ultimately there is no alternative to human understanding.
Indeed, most Internet portals now include large indexes (usually called Internet
Directories) maintained by their staff in addition to the traditional keyword
search facility (Table 1). These indexes classify the whole Internet according to
a hierarchical structure, and provide lists of generally useful web pages for each

Table 1. The sizes of major Internet directories at end of 1999, according to Search
Engine Watch (http://www.searchenginewatch.com).

directory editors |categories|links
Yahoo! 100+ 711200000+
LookSmart 200 60000{1000000
Open Directory|15400 153000(950000
Snap 30-50 64000 600000

topic. The Yahoo! index is especially interesting, as it is a DAG rather than a
tree, with explicit indication that some pages are shared by several branches
(http://www.yahoo.com). The Open Directory (whose slogan is “HUMANS do it
better”) also has a very useful structure: The home page displays two levels of
the directory, with links to pages on the main topics, and below each one, links
to more focused subtopics. About.com (http://www.about.com) is a network of
sites maintained by experts in various fields, which makes a point of parading
the human experts rather than the technology.

3.4 Problems and Comparison

There are various problems with the abovementioned approaches. One is that
many of them lack interpretation. This means that papers are associated ac-
cording to superficial attributes (citations or keywords), not according to an un-
derstanding of what the papers are actually about and how they relate to each
other. There is no real editorial work on classification and organization. More-
over, users cannot augment these mechanisms with private annotations that do
contain interpretation.

Another is that they are often source oriented. This relates to the choice of
papers that are covered: certain journals are selected, and all the papers that
appear in them are included, starting from a certain year. Granted, an effort is
made to select as many journals as possible, and to focus on the best journals, but
economic and business considerations may sometimes prevail over technical ones.
Moreover, even good journals sometimes contain not-so-good papers, and some
good papers are published in obscure journals. Results that are only published
in conferences or technical reports are excluded outright. So are old papers that
were published before the indexing commenced.

A third problem is that of coverage and quality. This problem is especially
common in keyword-based search, where hits that do indeed contain the re-
quested keywords have widely different levels of importance and usefulness. In
the extreme case we have false positives, which contain the desired keywords
but are totally irrelevant. An example is a search for “gang scheduling”? which
retrieved a web page that included the sentence “The RV6 forum got off to a

2 A scheduling technique used on parallel computers whereby a job’s processes are
scheduled simultaneously on distinct processors.

rocky start due to a scheduling misunderstanding with the Van’s gang”. A re-
lated problem is false negatives, that is relevant and useful documents that use
synonyms or related terms are therefore not found.

The problem with human experts is that they are expensive, so there is a
necessary tradeoff between the number of experts and the size of the fields that
they have to cover. As a result, the human classifiers cannot in general have
cutting edge knowledge about all their fields.

The BoW project is based on the idea that indexing by paid experts is futile.
Instead, indexing and ranking must be done by the users of the information, thus
tapping their enormous combined pool of knowledge and experience. Of special
importance is the support of ranking and evaluation of documents, which does
not exist in other projects. It is this ranking which counteracts the exponential
growth of information, and ensures that high-quality information becomes more
visible. The thrust of our work is to create the infrastructure and technology to
enable such a mode of cooperation.

4 The BoW Prototype

The BoW project has been ongoing for a couple of years, and two generations
have been completed. An example screen dump of a page from the concept index
of a parallel systems information space is shown in Fig. 4. The prototype supports
insertion of new bibliographic entries, addition of annotations, creation of links
from concept pages to entries, among entries, and to external web pages (thus
supporting the publication of full text rather than only references), user feedback
and display, and exporting of bibliographical entries. It has a concept index of 142
pages, in which 8201 links to entries are grouped according to 3167 topics. In all,
there are 3046 entries, for an average of 2.7 links per entry. This is all based on an
automatic conversion of a bibliographic database kept in LaTeX/BibTeX format
since 1988. It can be accessed on-line at URL http://www.bow.cs.huji.ac.il.

The implementation is based on using perl mode in an Apache Web server.
The concept index is mirrored in a directory hierarchy, and concept pages are
generated on-line as required by reading the appropriate directory. Thus all up-
dates and changes appear automatically once the underlying directory structure
is modified.

Several problems arise from the fact that the http protocol is stateless, and
provides only limited support for continuous sessions (using cookies). Currently
this causes problems with collecting a list of entries that should be exported
upon demand; when user registration is implemented, we will also need to keep
track of the user. The initial solution was to send the whole export list back and
forth in each transaction. The second version improved on this by keeping the
list in a memory segment shared by all the httpd processes in the server, and
only sending a session ID in each transaction.

Features that are now being implemented as part of the third generation
include

File Edit View Go Bookmarks Options Directory Window

Help

| =|ln| @|lalzlala
Back | Forward| Home Reload | Images Dpen Print. Find

Location: IIhttp - /linonl : 80/database. htnl

What's New?| What's Cuul?| Destinatiunsl Het Search| Peuple| Suftware|

¥
Y R Add Annotation
/ \ Add document Expart
Create External link | Normal mode I.E.ﬂo e ®

Classifications

YU are ind# root S Machines and Frojects / Classifications

=

L:..B Cedicated_machines(2,1,00
Ef] Commercial_machines(3,3,0)
Ef] Parallel_workstationsig,1,3) A X

.‘ L] ! L L]
3 T 7 Back. add toexport list

= Taxonomies
< Mery High—Speed Computing Systems(Flynn, 1968}
¢ The Impact of Classification Schemes on Computer Architecture{Handler, 1977}
o f Taxonomy of Synchronous Parallel MachinesiSnyder, 1988)
o # Taxonomy for Computer Architectures(Skillicorn, 1988}
< A Hierarchical Taxonotnic Systermn for Computer ArchitecturesiDasqupta, 1990}
¢ fin Object—Based Taxonomy for Distributed Computing SysternsiMartin, 1991)

M. . Flynn, "Wery High—Speed Computing Systems”, In Proc, 1EEE, 54{12), pp. 1901—-13909, Dec 1966,
{flynnEE)

Users dnnotations:

(feit@cs)
The commponents and operations needed in a fast scientific
computer are identified.
The important definition of SIMD and MIMD, even though the paper
actually deals with SISD machines.
LastUpdate = Thu Nov 28 1931,

i Add to export list

Wolfgang Handler, "The Impact of Classification Schemes on Computer Architectura”, Intl. Conf. Parallel
Processing, pp. 7——15, Aug 1977, (handler?7)

Users dnnotations:
(feit@cs)
Architectures are described by a triplet where the first

4

-3 - I

= 1]

Fig. 4. Example of concept page from the prototype information space on parallel
systems. It includes links to sub-topics with an indication of user feedback, a listing of
entries that belong in this page, and then the entries themselves, including bibliographic

information and annotations.

— Mechanization of the citation format to enable better identification of dupli-
cate entries. In particular, journal and proceedings titles should come from
a menu.

— Control over the structure of the concept index with an XML-based format.

— Provision of an automated listing of suggested concept pages, where a newly
inserted entry may be indexed. This is generated based on similarity between
the new entry and entries that are already indexed and linked to these pages.

5 Conclusions

The main idea behind DyRIs is that users can and should cooperate to improve
the quality and usefulness of an information space. We designed and implemented
one way of doing so, which is based on minimal active participation by users:
they are invited to (but not forced to) add annotations and links to concept
pages, and can provide feedback by using back-with-feedback buttons. This was
a basic design decision, based on the fear that more extensive features such as
feedback forms will go unused. We hope that the annoyance for users with our
minimal design will be small enough that they will actually use these features.
We intend to make the prototype information space on parallel systems publicly
available once version 3 is ready, in order to test it in a real world setting.

Acknowledgements

This research was supported in part by the Ministry of Science. The first versions
of the prototype were implemented by David Er-El and Roy Peleg.

References

1. H. Chen, J. Martinez, A. Kirchhoff, T. D. Ng, and B. R. Schatz, “Alleviating search
uncertainty through concept association: automatic indexing, co-occurrence analy-
sis, and parallel computing”. J. Am. Soc. Inf. Sci. 49(3), pp. 206-216, 1998.

2. S. H. Kim and C. M. Eastman, “An experiment on node size in a hypermedia
system”. J. Am. Soc. Inf. Sci. 50(6), pp. 530-536, 1999.

3. J. M. Kleinberg, “Authoritative sources in a hyperlinked environment”. In 9th
ACM-SIAM Symp. Discrete Alg., pp. 668-677, Jan 1998.

4. S. Lawrence, C. L. Giles, and K. Bollacker, “Digital libraries and autonomous cita-
tion indexing”. Computer 32(6), pp. 67-71, Jun 1999.

5. R. W. Lucky, “New communications services — what does society want?”. Proc.
IEEE 85(10), pp. 1536-1543, Oct 1997.

6. R. E. Schapire and Y. E. Singer, “BoosTexter: a boosting-based system for text
categorization”. Machine Learning 39(2/3), pp. 135-168, May 2000.

7. B. R. Schatz, “Information retrieval in digirtal libraries: bringing search to the net”.
Science 275(5298), pp. 327-334, Jan 17 1997.

8. L. W. Wright, H. K. Grosetta Nardini, A. R. Aronson, and T. C. Rindflesch, “Hi-
erarchical concept indexing of full-text documents in the unified medical language
system information sources map”. J. Am. Soc. Inf. Sci. 50(6), pp. 514-523, 1999.

