
Asimov’s Laws of Robotics Applied to Software

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

Asimov’s Laws of Robotics constrain robots to server their human masters. Minor reword-
ing shows that similar principles are very relevant to software too. These laws of software en-
compass a host of desiderata and tradeoffs that software developers need to keep in mind, and
demonstrate that issues that are typically treated in a fragmented manner are actually strongly
intertwined.

Introduction

In 1940, science fiction writer Isaac Asimov formulated the following three Laws of Robotics:

1. A robot may not injure a human being, or, through inaction, allow a human
being to come to harm.

2. A robot must obey orders given it by human beings, except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does
not conflict with the First or Second Law.

At the time, computers were in their infancy. Even Asimov didnot foresee the prevalence of
computers we see today, and the dominant role of software in governing how these general-purpose
machines are used. Asimov therefore postulated that the Laws be implemented in hardware, by
being embedded in the “positronic brains” of all robots.

Today it is clear that robots are and will be controlled by software. The high level of ab-
straction expressed by the three Laws therefore dictates that they would be implemented in the
software controlling the robots. Indeed, the relevance andsuitability of the Laws to robots and
information technology in general have been discussed extensively in the context of controlling
semi-autonomous systems that operate in the real world [3, 4, 13, 6]. However, it is not this possi-
bility of directly implementing the three Laws that is the topic of this paper.

The original Laws of Robotics are focused on the physical well-being of the robot and its
human masters. But they can also be applied to software in a more abstract manner, not directly

1



related to physical well-being. In this vein, we suggest thefollowing laws of software. While they
are largely a restatement of known principles, uniting themin this way serves to cast a new light
on the contract between humanity and technology.

First Law

The first law is the most difficult to apply to software. If the software is not involved with the phys-
ical well-being of humans, how can it harm them? We thereforesuggest that instead of focusing
on thephysicalpresence of humans in the real world, we focus on human presence in cyberspace.

The most direct manifestation of human presence in cyberspace is the execution of programs by
computer users. Indeed, operating systems do not really know anything about human users — only
about abstract users that run programs. In many cases the system can’t even know if a program
was executed by a human or by another program, because humansare represented by programs in
any case. One might therefore postulate the first law for software as “Software may not harm the
execution of programs by a human”.

However, the important aspect of human computer usage is notthe execution of a program
per se; it is what the program does. For example, when I use a text editor to write this paper, the
specific instance of a process running the text editor is muchless important than the text I type in.
Losing the process, while obviously undesirable, is nevertheless tolerable. Losing the text is much
worse.

Based on such considerations, we can re-formulate the first Law as follows:

1. Software may not harm a human’s work products, or, through inaction,
allow the products of human work to come to harm.

This is in fact the statement of a basic requirement placed byRaskin on humane user interfaces, i.e.
those that really try to serve their human users [11, p. 6]. (Raskin’s precise formulation is slightly
different, attributing the responsibility to the user interface rather to the application in general.)

While this formulation of the first Law is very concise, it hasfar-reaching implications. Some
are naturally discussed in the context of the user interface, which is indeed the window to the
application. Others relate to the internal workings of the software, with an eye to interoperability
issues.

The first implication is the one emphasized by Raskin: user input is sacred, and it is intolerable
to ever lose user input or data. He goes on to give some illuminating examples. One is the typing of
text in a read-only window, or when no window has the focus. The system therefore does not know
which application should receive the input [11, p. 175]. Thesimple way out (used by practically
all current desktop systems) is to discard the input text, while possibly sounding an alarm bell to
alert the user to the fact that the destination of the text is unknown. A better solution would be to
pop up a special window that accumulates the typed text, and when the user subsequently assigns
focus to a certain application, all the accumulated text is piped to that application and the popup
window is discarded.

Another interface-related aspect of saving user data is theoption to undo every command.
Computer systems may not assume that the user is perfect and always knows what he is doing. On

2



the contrary, users may make mistakes. It is unacceptable that making such mistakes will lead to
the irreversible loss of user data [11, p. 107].

At a somewhat more general level, retaining user data implies the support of automatic periodic
saving of input to stable storage [11, p. 6]. This should not just be an option that can be activated
by a knowledgeable user. It should be the default that prevents any user from losing data under any
normal conditions. Taking such precautions meets the requirement that software not allow data to
be lost through inaction.

Taking this to the next logical step, it is actually not enough to storethe data. In addition, the
data needs to beaccessible. This has implications for the format in which the data is saved. Firstly,
it is much better to store data in ASCII format (or possibly Unicode) than in some binary format.
While this may inflate the volume of the data, this is not a realconcern except for the largest
of data sets (which are not generated manually by users). Thebenefit is that the data will likely
be readable on different architectures for many years to come. Binary formats are architecture-
specific, and may be hard to recover after some time has passed.

Secondly, it is preferable to use an open format rather than aproprietary one. When using a
proprietary format, your data is at the mercy of the company that owns the format. Commercial
interests may then prevent the creation of tools that support porting the data to systems from an-
other vendor. This is especially problematic if the original vendor ceases to support the products
used to store the data, e.g. if the vendor becomes insolvent.While such considerations are often
overlooked, they are extremely important for the long term retainment of data in a world that is
constantly changing [8, 2].

Thirdly, the data should be stored in a safe manner, protected from viruses and other malware
that might corrupt it. These issues are discussed again below. In a related vein, user privacy should
be protected. Thus the data should be stored in an accessiblemanner, but accessible only to the
user, not to anyone. Reconciling long-term accessibility with restricting access by others seems to
pose a non-trivial tradeoff.

An even wider interpretation of the First Law is that not onlyuser data but also userexperience
should be protected. The word “experience” has two distinctmeanings that are applicable here:
experience as in knowledge about a procedure that is gained by repeatedly performing it, and
experience as in the perception of how pleasant or easy it wasto use the system.

The first meaning of experience is related to learning to use asoftware product. Today’s soft-
ware products are often quite complex and packed with features. It takes a long time to discover
all of them, what they do, and how to use them. This investmentis often lost when the next version
of the software is released, both because functionality mayhave changed, and because the same
things may now look differently than they did before. The changes may seem small to the devel-
opers, who spend considerable time considering the best ways to perform various tasks. But they
can be devastating to users who just want to perform their work with as little hassle as possible.
As is often said, a good interface is one that disappears and is used with no apparent effort.

changing the interface makes is re-appear, and should only be done if the original interface is
truly lacking, and never for cosmetic reasons. The impact oncomputer usability may be much
larger than anticipated by the developers, and not necessarily for the better. The effect may be
especially severe for the elderly, who were only introducedto computers at a relatively advanced

3



age. Children who learn to use computer applications by the same trial-and-error approach that
helps them master computer games do not have difficulties with mastering new interfaces. I can
sometimes help family members to perform some computer tasknot because Iknowhow it is done,
but because — having some experience in computer science andprogramming — I can enter the
mindset of the software’s developers andguesshow it is done, or at least where to look. But
people without the relevant background, and especially theelderly, may lack sufficient experience
to figure it out.

The problem of changing interfaces is aggravated by the factthat interfaces tend to be bloated
and counter-intuitive to begin with. Alan Cooper, in his book The Inmates are Running the Asylum,
attributes this to design by engineers, favoring features over simplicity [5]. The result may over-
whelm users who actually don’t want so many features, and would prefer to focus on the simple
and basic functionality.

The other type of experience that should be protected is the work experience. Productive work
requires concentration, and it may take considerable time to “get into” the work at hand. Software
should make every attempt not to interfere with this condition once it is attained.

For example, I sometimes hold down the shift key for some timewhen thinking exactly how
to phrase the next sentence (which will start with a capital letter). In Windows, doing this for 8
seconds brings up a popup that explains about a feature called FilterKeys. Pressing the “cancel”
button removes the popup, but sometimes also cancels the effect of the shift key, so when I finally
decide what to write I find I cannot start the sentence with a capital letter. Restoring this takes
some fiddling; by the time I get it to work, I typically have no idea what the sentence was supposed
to be about. At the same time, the task bar contains an icon of two little computers with screens
that flash on and off representing my wireless connection. A few minutes ago a popup appeared
out of the blue announcing that new updates are available formy computer, and would I like to see
them now. These are also distractions that make it harder to focus on the work at hand — writing
this paper.

Second Law

The application of the Second Law to software may seem quite straightforward. In essence, it
simply states that

2. Software must obey orders given it by its users.

These orders, of course, come from the repertoire of what thesoftware is expected to do. In
other words, this law simply states that software should function according to its specs. While
the requirement that software do what it is supposed to do seems trivial, if not circular, there are
actually some non-trivial implications. Two major ones aredetermining what the software should
do in the first place, and who the user is.

Large and complex systems are notorious for their voluminous documentation, which is often
hard to read and may also contain contradictions. Contrast this with typical user behavior, which

4



shuns reading any manuals, even short ones. Thus a broader interpretation of the Second Law is
that software should be easy and intuitive to use — the holy grail of user interface design.

Moreover, software systems should have reasonable defaults and behave as expected even if
nothing is said explicitly; they should do the right thing ina given context without this being
spelled out (this may be the main major point missing in Asimov’s original stories). In particular,
many things are taken for granted and should just work as any reasonable user would expect. For
example, when you type text you expect it to appear as you typed it, and this is indeed the case
in the vast majority of cases. But some advanced word processors may modify your text, based
on certain patterns, e.g. putting you in numbered list mode if a sentence starts with a numeral.
Undoing this or turning off this behavior is typically much more involved than producing the
original effect, and may be quite frustrating to novice users.

As another example, it is still very common today that text written in a combination of two
languages with opposite directions (e.g. English and Hebrew) comes out garbled and requires
extensive manual efforts to correct. Likewise, a system that requires a user to enter a date should
be able to accept it in a wide variety of formats: 8/24, 08/24,8.24, Aug 24, and August 24 are all
the same thing, and humans can read them without even noticing which format was used.

But what users expect is actually context sensitive. Thus the date 8/1 would be read as August
1st in the US, but as the 8th of January in Europe — quite a significant difference. In software
development terms, this implies an understanding of the context in which user actions are taken
— not only context sensitive help, but also context sensitive operations. But note the important
distinction between context and modes of operation. Modes are a part of the system state that
causes the same user inputs to have different effects. This is bad because the user must remember
what mode the system is in [11]. In contrast, context is gathered from user actions, and therefore
is part of the user’s mindset to begin with.

An even higher level of anticipation would be adaptive systems that learn common usage pat-
terns and can repeat them. This is already a topic for AI and software agents. But in the context of
simpler systems, we note that when such intelligent behavior is unattainable, the software should
at least provide intelligent and informative error messages. User commands need not be a one-
way stream, but can be fashioned as a dialog until mutual understanding of what has to be done is
reached.

Related to the issue of executing commands is verifying thatthe user is allowed to issue them in
the first place. Obviously, considerable advances have beenmade in security since the days when
desktop systems simply assumed that anyone with access to the machine is allowed to do anything.
But on the bottom line, this often boils down to passwords. The proliferation of passwords, coupled
with requirements that they be hard to guess and be changed often, leads to situations in which
users need to write them down to remember them — essentially relocating the vulnerability but
not preventing it.

The situation is even worse in distributed and wireless systems. Maintaining security is indeed
a constraint that may limit what can be done. Developers are notorious for preferring features over
security, and in many cases relegating security to second class citizenship, only implemented as
an afterthought. This is becoming increasingly unacceptable as the cost of breaches in security
becomes prohibitive.

5



the issue of obeying orders can also be considered at a more basic level — that of reaching the
state of being able to accept orders at all. In the context of software, this refers to the notorious
issues of installation and configuration. The truth be told,much progress has been made in this
area in recent years, with “installation wizards” that often automate the whole procedure. But this
is typically limited to the vanilla, default case. Any deviation may lead to unexpected options and
difficulties that are typically not explained in any reasonable manner.

The situation with open-source software is, if anything, even worse. Open source is typically
developed by very knowledgeable people, who find it hard to imagine users who know much
less than themselves. They therefore tend to fall into the trap of assuming the user has sufficient
background to fill in the gaps. Moreover, testing is largely limited to the developer’s environment,
ignoring possible variations and their effect. An illuminating example is given by Eric Raymond,
who recounts his experiences in trying to configure CUPS, thecommon Unix printing system; it
required a few hours and large doses of experience from othersystems that required similar setups.
He therefore suggests that a safer approach for a developer is to imagine his aunt Tillie trying to
install and configure the software, and to try not to leave hertoo far behind [12].

An interesting question is raised by the second clause in theoriginal Second Law, which reads

Except when such orders conflict with the First Law.

In principle, this wording applies equally well to software. It implies that software should resist
causing damage. For example, if a virus infects a computer and instructs the system software
to delete a user’s files, the system software should resist and ignore these instructions. This is a
very tall order, as it requires the system to distinguish between malicious and legal behavior that
may look very similar. It would seem unreasonable to expect such judgment to be successfully
administered by any software system. But at a more basic level, this is related to the security
considerations discussed above.

Third Law

The software-oriented version of the Third Law is also quitestraightforward:

3. Software must protect its own existence.

In other words, the software should be stable and should not crash. The fact that the user provided
illegal input is no excuse.

In fact, most software is nowhere near as stable as we would like it to be. A striking demon-
stration of this situation is provided by Bart Miller’s “fuzz” experiments [9]. In these experiments,
various basic system utilities are given random inputs to see what will happen. In a distressingly
large fraction of the cases, the utility crashes or hangs. Even worse, repeating the experiments five
years later showed that many of the problems publicized in the first round had not yet been fixed
[10].

At a deeper level, protecting itself means that software should also be robust against intended
attacks. This includes two components. The first is resisting attacks by malware that attempt to

6



take over the system. The second is self-healing, i.e. beingable to repair damages automatically
— a property that has been called computer immunology [1].

Back in 1980, Tony Hoare stated in his Turing Award lecture that in any respectable branch of
engineering bounds-checking would long have been requiredby law [7]. Twenty five years later,
buffer overflows resulting from lack of bounds checking are aleading cause of security breaches.
This reflects a carefree culture in which vendors and developers do not take responsibility for the
results of their failures. And indeed, why should they if their customers continue to buy products
based mainly on low perceived immediate price, and not on thepotentially higher price should a
failure occur. It seems that this culture will only change ifand when a massive failure causes large
losses to multiple users.

The original Third Law of Robotics included an additional clause — that the Third Law be
followed provided it does not contradict one of the first two Laws. In software, it seems that the
more common situation is that following the Third Law will bea special case of the first two laws.
If a system allows itself to be taken over by malware, it exposes user data to harm, thus violating the
First Law. If it actually causes harm, it is accepting ordersfrom an unauthorized source, violating
the Second Law. So protecting itself is actually a pre-requisite for protecting human work products
and privacy in cyberspace, and serving the authentic human user.

Summary

In summary, we suggest that Asimov’s Laws of Robotics can be interpreted in ways that are mean-
ingful for general expectations from software systems. These interpretations include the following:

First Law: software should protect humans in cyberspace, including

• Never losing user data

• Protecting user privacy

• Storing user data in an open format in ASCII to allow it to be accessed by other software
on future machines with different architectures

• Providing backward compatibility to protect user investment in learning how to use the
software

• Not interrupting a user’s interaction with an application

Second Law: software should obey commands, and in particular

• Be intuitive and easy to use

• Provide reasonable defaults that can substitute for explicit orders

• Provide informative error messages to guide users towards asolution

• Be easy to install and configure

• Protect against commands from unauthorized individuals

Third Law: software should protect itself, implying

7



• It should be stable and not crash
• It should be secure and resist viruses and other malware

Practically none of this is new; the laws of robotics simply provide a convenient framework to
express all these desiderata and the inherent interactionsand tradeoffs in a concise manner. On the
other hand, much of this is also not common practice. The lawsthus serve to focus attention on
the fact that the software industry has been getting away with too much for too long. It is time for
software developers to be more accountable for their products, and remember that their software is
there to serve its users — just like Asimov’s robots.

References

[1] M. Burgess, “Computer immunology”. In 12th Systems Admin. Conf. (LISA), pp. 283–297,
USENIX, Dec 1998.

[2] S-S. Chen, “The paradox of digital preservation”. Computer34(3), pp. 24–28, Mar 2001.

[3] R. Clarke, “Asimov’s laws of robotics: implications for information technology, part 1”.
Computer26(12), pp. 53–61, Dec 1993.

[4] R. Clarke, “Asimov’s laws of robotics: implications for information technology, part 2”.
Computer27(1), pp. 57–66, Jan 1994.

[5] A. Cooper,The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy
and How to Restore the Sanity. SAMS, 2nd ed., 2004.

[6] D. F. Gordon, “Asimovian adaptive agents”. J. Artificial Intelligence Res.13, pp. 95–153,
2000.

[7] C. A. R. Hoare, “The emperor’s old clothes”. Comm. ACM24(2), pp. 75–83, Feb 1981.

[8] K-D. Lehmann, “Making the transitory permanent: the intellectual heritage in a digitized
world of knowledge”. In Books, Bricks & Bytes: Libraries in the Twenty-First Century,
S. R. Graubard and P. LeClerc (eds.), pp. 307–329, Transaction Publishers, New Brunswick,
NJ, 1999.

[9] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX utili-
ties”. Comm. ACM33(12), pp. 32–44, Dec 1990.

[10] B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl,Fuzz
Revisited: A Re-examination of the Reliability of UNIX Utilities and Services. Technical
Report, University of Wisconsin — Madison, 1995.

[11] J. Raskin,The Humane Interface: New Directions for Designing Interactive Systems.
Addison-Wesley, 2000.

[12] E. Raymond, “The luxury of ignorance: an open-source horror story”. URL
http://www.catb.org/˜esr/writings/cups-horror.html,Jul 2004.

[13] D. Weld and O. Etzioni, “The first law of robotics (a call to arms)”. In 12th Natl. Conf.
Artificial Intelligence (AAAI), vol. 2, pp. 1042–1047, Jul 1994.

8


