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1. MOTIVATION
Experimental systems combines theoretical science with

the creativity and skills needed to translate good ideas into
useful systems that work in realistic settings. This approach
is central to the research process, both as the ultimate vali-
dation for new theories and methods, and as a way of explor-
ing tunable parameters and understanding new emergent
behavior. I believe this experimental approach is essential
to an undergraduate education, and may help reverse the
declining skillsets and competitiveness of U.S. computer sci-
ence and engineering undergraduates.

Adopting an experimental approach in education is a chal-
lenging task for instructors as it requires us to integrate and
balance the theoretical foundations and practical aspects of
the topic at hand in a relatively short period of time. In op-
erating systems, for example, the instructor is normally left
with two unsatisfactory options: either to superficially focus
on one small aspect of a complex but real OS, or to target a
more thorough understanding of a “toy” one. The complex-
ity of the systems under study is partially to blame. They
are large, involved beasts of thousands to millions of lines
of code, implementing various, tightly interconnected, sub-
systems.1 A single academic term is simply not enough to
understand, let alone modify, such complex systems in any
meaningful way. The task is not made simpler by highly het-
erogeneous student pools that may comprise a wide range
of skills, maturity levels and motivations.

Many instructors seem to favored the second, toy-based,
model for introductory operating system courses. Following
this model, 90% of the term is dedicated to the classical
topics of processes, memory, storage and protection and,
if time permits, one or two lectures browse on security and
distributed systems topics. Typical projects in these courses
range from writing a tiny shell or adding a simple system
call to an existing OS, to comparing kernel memory allo-

1Windows XP is over 40 millions source lines of code
(SLOC), while RedHat Linux 7.1 and Sun Solaris are about
30 million and 10 million SLOC.
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cators or implementing a small file system on a virtualized
disk. By the end of the term most students have a good un-
derstanding of key concepts such as processes and threads,
synchronization and virtual memory. Challenged, however,
with a more systemic question that looks at the odd inter-
actions between those concepts, and the majority of them
will be at a loss.

2. AN INTERACTIVE LAB MODEL
I argue that a promising approach to this challenge is to

adopt a lab-like, hands-on interactive environment not un-
like those in physical-chemistry courses. Armed with a good
understanding of a system’s components and provided with
a carefully crafted set of exercises built on a tool for dy-
namic system instrumentation, students will be better able
to create useful mental models of the complex systems in-
teractions – a level of understanding virtually impossible to
attain in most traditional, term-long courses. Such a lab-
oratory could also serve as a perfect environment where to
introduce students to rigorous experimental methods and
emphasize the experimental origins of scientific knowledge
and development.

2.1 Dynamic Instrumentation as a Building
Block

Students in these labs will experiment with systemic be-
havior in real operating systems using a set of exercises built
on a tool for dynamic system instrumentation.

There has been a large body of work on dynamic system
instrumentation. From Miller et al.’s Paradyn tool [3, 4] to
more recent work on Linux’ DProbe [5]. Dynamic instru-
mentation has proved to be useful for debugging [1] and
performance optimization [2]. However, until the relatively
recent release of Solaris 10, most tools were poorly supported
and/or part of research focused projects.

DTrace [2] is a new tool for instrumentation of produc-
tion system, made publicly available as part of Solaris 10.
DTrace allows for dynamic instrumentation of both user-
and kernel-level software, in a unified and safe fashion. By
relying only dynamic instrumentation, DTrace has zero probe
effect when not explicitly enabled. The tool includes a C-
like high-level control language, D, that allows users to in-
teractively define predicates and actions associated with any
given point of instrumentation. D allows access to the ker-
nel’s native types and global variables, includes support for
all ANSI C operators, and offers several kind of user-defined
variables such as thread-local variables and associative ar-
rays. D programs have a very simple structure that resem-



syscall::read:entry
{

self->t = timestamp;
}

syscall::read:return
/self->t/
{

printf(‘‘%d/%d spent %d nsecs in read\n’’,
pid, tid, timestamp - self->t);

}

Figure 1: A simple DTrace script example from [2].
The script outputs the amount of time a thread
spends in a read(2) system call.

bles awk(1). Each program consists of one or more clauses
that describe the instrumentation to be enabled by DTrace.
Each clause has the form:

probe-descriptions

/predicate/

{

action-statements

}

Where probe-descriptions specify the set of probes to in-
strument (e.g. syscall::entry, all entries to a syscall),
action-statements is a list of statements that could be as
simple as a printf, while /predicate/ acts as a filter to limit
the execution of action statements (e.g. /execname = “foo”/
will restrict the action to those syscall::entry for an exe-
cutable named “foo”). Figure 1 shows a simple example of a
script for computing the time a thread spends in a read(2)

system call.

2.2 Interactive Labs in Operating Systems
Clearly the proposed idea of interactive labs for under-

standing the complex interactions among the components of
a large system could be applied to variety of courses, from
architectural design to distributed systems. Still, I believe
that its use in operating systems has the potential for wider
impact within our field. Operating systems is, after all, a
commonly required course and one of the toughest classes in
most programs. Northwestern is not exception. Operating
systems (EECS 343) is currently a required course for Com-
puter Engineering and a “strongly” recommended course for
Computer Science. It is also one of those courses students
forums advise to take only in a very lightly loaded term. Stu-
dents come to it with some understanding of computer ar-
chitectures, a bit of assembly languages, and different levels
of C programming experience. They are expected to leave
from it with not only a high-level understanding of operating
systems concepts and common algorithms, but also with a
solid grasp of the OS components’ complex interactions and
quite a bit of system-level programming experience. All in
the term of 10 weeks.

I am currently exploring with different models for the in-
clusion of labs in an existing course. A fairly straightforward
alternative is to include them as part of a capstone project
based, for example, on the performance debugging of a sys-
temic problem.2 Another, more involved model, could rely

2Cantrill et al. [2] offer an interesting experience report in
the context of a production SunRay server.

on labs as the discussion starter for each of the core operat-
ing systems topics.

3. CONCLUSIONS
Adopting an experimental approach in education is a chal-

lenging task for instructors as it requires us to integrate and
balance the theoretical foundations and practical aspects of
the topic at hand in a relatively short period of time. I ar-
gue that a promising approach to this challenge is to adopt
a lab-like interactive environment similar to those found in
more traditional science courses. Armed with a good un-
derstanding of a system’s components and provided with a
carefully crafted set of exercises built on a dynamic instru-
mentation tool, students will be better able to create useful
mental models of complex systems interactions – a level of
understanding virtually impossible to attain in most tradi-
tional, term-long courses.
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