
Quantitative Methods and Experimental Design in CS
A Required Course for a Ph.D. in CS

Executive Summary

Daniel A. Menasce
Department of Computer Science

George Mason University
The Volgenau School of IT & Engineering

Fairfax, VA, USA
menasce@cs.gmu.edu

1. MOTIVATION
Several years ago, our department created its Ph.D. in Com-
puter Science program. We had several discussions about
the structure of the program and requirements and exam-
ined other Ph.D. in CS programs in the country for guidance.
In designing the program, we also recognized that Computer
Science involves many different areas (e.g., artificial intelli-
gence, software engineering, operating systems, databases,
data mining, computer communication networks, computer
graphics, distributed systems, and many others) which, like
engineering, are aimed at building systems and/or algo-
rithms to solve a given problem in an efficient manner. Most
of the research work in these areas follows a common paradigm:
design and evaluate a new system, method, or algorithm.
We also noticed that most Computer Science curricula do
not emphasize or teach techniques and methods for evaluat-
ing and comparing systems and methods.

It is also not uncommon to see published papers that display
experimental results in an inadequate manner. For example,
some may display average values of some performance met-
ric obtained through experimentation or simulation without
confidence intervals being computed and reported. More of-
ten than not, two systems are compared based on how they
perform on average without any consideration to confidence
intervals.

Based on these observation, we decided that our Ph.D. stu-
dents should be equipped to design and conduct experiments
that met sound scientific standards. That lead to the design
of the only required course in our Ph.D. in CS program: CS
700 - Quantitative Methods and Experimental Design in CS.

2. DESIGNING THE COURSE

We had the following criteria in mind when designing the
course:

1. Example-driven. The course should be example-driven
with all examples taken from computer science situa-
tions. The approach to teach a technique should follow
the steps of a) presenting a motivating example, b) in-
troducing a technique to solve the problem, c) solving
the problem at hand, and d) presenting similar prob-
lems for the students to solve.

2. Hands-on. The course should be taught in a way that
provides students with hands-on experience in apply-
ing the techniques taught in class. To achieve this goal,
the course is taught in a classroom in which each stu-
dent has a computer connected to the Internet. The
instructor has a console from which he/she can se-
lect any student’s computer monitor to be displayed
at all computer monitors and projected to the entire
class. Using this environment, the instructor assigns a
problem to be worked on in class using previously pre-
pared input data made available at the course’s web
site. Then, the instructor randomly selects a student
to show to the class how he/she solved the problem
using the technique just learned. This leads to inter-
esting and interactive discussions.

3. Emphasis on Practice. The course should emphasize
the practical aspects of the methods presented and
stress the assumptions under which they can be used
rather than going into details about their theoretical
underpinning. It would not be possible to teach a one-
semester course covering such a wide range of topics
and allowing for significant in-class problem solving
while at the same time delving into the theory behind
the topics.

4. Relevance to Doctoral Research. Students should see
an immediate application of the techniques learned
to their area of doctoral research. To that end, as
part of the course, each student must develop a large-
scale project that involves using the methods taught in
the course to evaluate a system, method, or algorithm
that they are dealing with in their doctoral research.



Projects are presented to the class in workshop style
at the end of the semester. Students are encouraged
to take this course during the early stages of their doc-
toral research as soon as they have identified a research
topic.

The course as designed provides an integrated treatment to
the models and practices of experimental computer science.
Topics covered include scientific evaluation methods applied
to computing, workload characterization, forecasting of per-
formance and quality metrics of systems, uses of analytic
and simulation models, design of experiments, interpretation
and presentation of experimental results, hypothesis testing,
and statistical analyses of data. More specifically, the course
covers the following topics:

• Review of basic concepts in Probability and Statistics.

• Summarizing measured data.

• Computing confidence intervals for the mean, variance,
proportion, and a future value.

• Comparing systems using sample data and confidence
intervals.

• Hypothesis testing.

• Single and two-factor ANOVA.

• Simple linear regression models.

• Curvilinear regression and transformations.

• Design of experiments: factorial experiment design and
one-factor experiments.

• Distribution fitting methods.

• Discrete event simulation

• Analysis of simulation results.

• Basic concepts in performance modeling.

• Basic single queuing systems: various M/G/1 results
and G/G/1 approximations.

• Multiclass open queuing networks and single-class closed
queuing networks.

3. EXPERIENCE WITH THE COURSE
I developed and taught this course for the first time in the
Spring 2001. Since then, I have alternated in teaching it with
my colleague Sanjeev Setia. The experience in teaching the
course has been most rewarding. We have seen many of the
course projects turn into conference papers of high quality
due to the care and scientific approach to evaluation.

We have also seen an interesting variety of projects devel-
oped by students for the course. A small sample of topics
follows:

• Evaluation of bi-directional routing in Chord

• Performance of a genetic programming based inten-
sional query systems

• Analysis and comparison of four image compression
techniques

• Recognizing hand gestures from silhouettes

• Quantitative analysis of battery charging algorithms
for a real-time embedded system

• Statistical analysis of vector comparison functions

• The analysis of Hamming distance in genetic algo-
rithms and FCBE algorithms

• Comparison of agent and machine learning methods a
quantitative analysis

• A comparison of precision targeting techniques in im-
age analysis

• A performance comparison of data access mechanisms
for the migration from legacy to Web applications

• Performance Evaluation of the FC-EDF algorithm for
real-time systems

• Analysis of flash mobs in BitTorrent

4. CONCLUDING REMARKS
The CS 700 course has instilled a culture of sound experi-
mental Computer Science in our Ph.D. students. After tak-
ing this course, our students have a better understanding of
a) why adequate experimental design is important in eval-
uating their new designs, methods, and techniques; b) how
measurement data should be treated, summarized, and ana-
lyzed; c) existing analytic performance models; and d) how
simulation should be used and how the results should be
analyzed and reported.

We fill that the hands-on nature of the course and its rel-
evance to the student’s research area through the project
help incorporate the tools and techniques presented in the
course into the research arsenal of our doctoral students.


