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Abstract
Utility programs, which perform similar and largely independent
operations on a sequence of inputs, include such common applica-
tions as compilers, interpreters, and document parsers; databases;
and compression and encoding tools. The repetitive behavior of
these programs, while often clear to users, has been difficult to
capture automatically. We present an active profiling technique in
which controlled inputs to utility programs are used to expose exe-
cution phases, which are then marked, automatically, through bi-
nary instrumentation, enabling us to exploit phase transitions in
production runs with arbitrary inputs. Experiments with five pro-
grams from the SPEC benchmark suites show that phase behavior
is surprisingly predictable in many (though not all) cases. This pre-
dictability can in turn be used for optimized memory management
leading to significant performance improvement.

1. Introduction
Complex program analysis has evolved from the static analysis of
source or machine code to include the dynamic analysis of behavior
across all executions of a program. We are particularly interested in
patterns of memory reference behavior, because we can use these
patterns to improve cache performance, reduce the overhead of
garbage collection, or assist memory leak detection.

A principal problem for behavior analysis is dependence on pro-
gram input. Outside the realm of scientific computing, changes in
behavior induced by different inputs can easily hide those aspects
of behavior that are uniform across inputs, and might profitably
be exploited. Programming environment tools, server applications,
user interfaces, databases, and interpreters, for example, use dy-
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namic data and control structures that make it difficult or impos-
sible for current static analysis to predict run-time behavior, or for
profile-based analysis to predict behavior on inputs that differ from
those used in training runs.

At the same time, many of these programs have repetitive phases
that users understand well at an abstract, intuitive level, even if they
have never seen the source code. A C compiler, SPEC CPU2000
GCC for example, has a phase in which it compiles a single input
function [17]. It runs this function through the traditional tasks of
parsing and semantic analysis, data flow analysis, register alloca-
tion, and instruction scheduling, and then repeats for the following
function.

Most of the applications mentioned above, as well as compres-
sion and transcoding filters, have repeating behavior phases, and
often subphases as well. We refer to such programs as utilities.
They have the common feature that they accept, or can be config-
ured to accept, a sequence of requests, each of which is processed
more-or-less independently of the others. Program behavior differs
not only across different inputs but also across different parts of the
same input, making it difficult for traditional analysis techniques
to find the phase structure embodied in the code. In many cases,
a phase may span many functions and loops, and different phases
may share the same code.1

Figure 1(a) shows the IPC (Instruction Per Cycle) curve of GCC
on input scilab, which comprises the compilation of 274 C func-
tions. Figure 1(b) shows a zoomed view. Vertical lines in the graph
indicate phase boundaries, separating the compilations of different
functions. The Figure suggests that something predictable is going
on: IPC in each phase instance has two high peaks in the middle
and a declining tail. But the width and height of these features dif-
fers so much that an automatic technique may not reliably identify
the pattern[30]. In addition, the phase boundaries found for one ex-
ecution may not exist in executions from other inputs.

Often a user is interested in the memory usage of an application.
Figure 2 illustrates an opportunity provided by behavior phases.
Though the volume of live data in the compiler may be very large

1 Note that different authors define “phase” in different ways. We use it to
refer to a span of program execution whose behavior, while potentially very
nonuniform, is predictable in some important respect, typically because
it resembles the behavior of some other execution span. Some authors,
particularly those interested in fine-grain architectural adaptation, define a
phase to be an interval whose behavior is uniform in some important respect
(e.g., instruction mix or cache miss rate).
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Figure 1. (a) IPC curve of GCC on input scilab and (b) an enlarged random part. Compilation boundaries are shown as solid vertical lines.
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Figure 2. The curve of the minimal size of live data during the ex-
ecution of GCC on input scilab with a circle marking the beginning
of the compilation of a C function. Logical time is defined as the
number of memory accesses performed so far.

while compiling an individual function, it always drops to a rel-
atively low value at function compilation boundaries. The strong
correlation between phases and memory usage cycles suggests that
the phase boundaries are desirable points to reclaim memory, mea-
sure space consumption to predict memory usage trends, and clas-
sify object lifetimes to assist in memory leak detection. Automatic
analysis is difficult because phases differ greatly in both length and
memory usage.

In this paper we introduce active profiling, which addresses the
phase detection problem by exploiting the following observation:
if we control the input to a utility program, we can often force it
to display an artificially regular pattern of behavior that exposes
the relationship between phases and fragments of machine code.
Active profiling uses a sequence of identical requests to induce
behavior that is both representative of normal usage and sufficiently
regular to identify outermost phases (defined in Section 2.1). It then
uses different real requests to capture inner phases and to verify
the representativeness of the constructed input. In programs with
a deep phase hierarchy, the analysis can be repeated to find even
lower level phases. We can also design inputs to target specific
aspects of program behavior, for example, the compilation of loops.

Many automatic techniques have been developed for phase anal-
ysis, as we will review in Section 5. Highly input-dependent pro-
grams challenge some of the basic assumptions in automatic tech-
niques. For example, most profiling methods use a cut-off threshold
to remove from consideration loops and procedures that contain

too few instructions. If the input size may differ by many orders
of magnitude, the threshold may easily be too high or too low for
a particular run. In addition, previous techniques focus on CPU-
centric metrics and look for recurring patterns. It is not always clear
how to include higher-level phenomena like memory allocation and
memory leaks in the analysis. In comparison, active profiling al-
lows a user to target the analysis for specific behavior, it considers
all program instructions as possible phase boundaries, and it uses
multiple inputs to improve the results of the analysis.

Utility programs are the ideal target for this study because they
are widely used and commercially important, and because users
naturally understand the relationship between inputs and top-level
phases. Our technique, which is fully automated, works on pro-
grams in binary form. No knowledge of loop or function structure
is required, so a user can apply it to legacy code. Because users
control the selection of regular inputs, active profiling can also be
used to build specialized versions of utility programs for different
purposes, breaking away from the traditional “one-binary-fits-all”
program model.

We evaluate our techniques on five utility programs from the
SPEC benchmark suites. The analysis shows different types of be-
havior variation in these commonly used programs. We also com-
pare with phases based on static program structure (functions and
loop nests) and on run-time execution intervals. Finally, we demon-
strate the use of phase information to monitor memory usage, im-
prove the performance of garbage collection, and detect memory
leaks.

2. Active Profiling and Phase Detection
2.1 Terminology
Program phases have a hierarchical structure. For utility programs,
we define an outermost phase as the processing of a request, such as
the compilation of a function in a C compiler, the compression of a
file in a file compressor, or the execution of a query on a database.
An inner phase is a computation stage in the processing of a re-
quest. Compilation, for example, typically proceeds through pars-
ing and semantic analysis, data flow analysis, register allocation,
and instruction scheduling. A phase marker is a basic block that is
always executed near the beginning of that phase, and never other-
wise.

2.2 Constructing regular inputs
In utility programs, phases have variable length and behavior as
shown in Figure 1. We can force regularity, however, by issuing a
sequence of identical requests—in GCC, by compiling a sequence
of identical functions, as shown in Figure 3. Solid and broken ver-
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Figure 3. IPC curve of GCC on an artificial regular input, with
top-level (solid vertical lines) and inner-level (broken vertical lines)
phase boundaries.

tical lines indicate outermost and inner phase boundaries, identi-
fied by our analysis. The fact that behavior repeats a predetermined
number of times (the number of input requests) is critical to the
analysis.

A utility program provides an interface through which to make
requests. A request consists of data and requested operations. The
interface can be viewed as a mini-language. It can be as simple as a
stream of bytes and a small number of command-line arguments,
as, for example, in a file compression program. It can also be
as complicated as a full-fledged programming language, as for
example, in a Java interpreter or a simulator used for computer
design.

To produce a sequence of repeating requests, we can often just
repeat a request if the service is stateless—that is, the processing
of a request does not change the internals of the server program.
File compression, for example, is uniformly applied to every input
file; the compression applied to later files is unaffected by the
earlier ones. Care must be taken, however, when the service stores
information about requests. A compiler generally requires that all
input functions in a file have unique names, so we replicate the
same function but give each a different name. A database changes
state as a result of insertions and deletions, so we balance insertions
and deletions or use inputs containing only lookups.

The appropriate selection of regular inputs is important not only
to capture typical program behavior, but also to target analysis
at subcomponents of a program. For example, in GCC, if we are
especially interested in the compilation of loops, we can construct
a regular input with repeated functions that have nothing but a
sequence of identical loops. Phase detection can then identify the
inner phases devoted to loop compilation. By constructing special
inputs, not only do we isolate the behavior of a sub-component of
a service, we can also link the behavior to the content of a request.
We will discuss the use of targeted analysis for a Perl interpreter in
Section 3.2.

2.3 Selecting phase markers
Active profiling finds phase markers in three steps. The first step
searches for regularity in the basic-block trace induced by a regular
input. The second and third steps use real inputs to check for
consistency and to identify outmost and inner phases.

Using a binary instrumentation tool, we modify the application
to generate a dynamic trace of basic blocks. Given a regular input
containing f requests, the trace should contain f nearly identical
subsequences. The phase markers must be executed f times each,
with even intervening spaces.
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Figure 5. GCC inner-phase candidates with inner-phase bound-
aries.

We first purify the block trace by selecting basic blocks that
are executed f times. Not all such blocks represent actual phase
boundaries. A block may happen to be executed f times during ini-
tialization, finalization, memory allocation, or garbage collection.
We therefore measure the mean and standard deviation of distance
between occurrences, and discard blocks whose values are outliers
(see Figure 4).

The remaining code blocks all have f evenly spaced occur-
rences, but still some may not be phase markers. In GCC, for exam-
ple, the regular input may contain a single branch statement. Code
to parse a branch may thus occur once per request with this input,
but not with other inputs. In step two we check whether a block
occurs consistently in other inputs. We use a real input containing
g (non-identical) requests. We measure the execution frequency of
the candidate blocks and keep only those that are executed g times.
Usually one real input is enough to remove all false positives, but
this step can be repeated an arbitrary number of times to increase
confidence. We pick the last block in the remaining block sequence
as the outmost phase marker.

The rest blocks, always occurring exactly once per outermost
phase, may actually mark interesting points within an outermost
phase. Compilation, for example, typically proceeds through pars-
ing and semantic analysis, data flow analysis, register allocation,
and instruction scheduling. We call these inner phases. Each is
likely to begin with one of the identified blocks.

In step three we select inner phases of a non-trivial length and
pick one block for each phase boundary. Figure 5 shows a trace
of GCC on regular input. Each circle on the graph represents an
instance of a candidate inner phase marker. The x-axis represents
logical time (number of memory accesses); the y-axis shows the
identifier (serial number) of the executed block. We calculate the
logical time between every two consecutive circles: the horizontal
gaps in Figure 5. From these we select the gaps whose width is
more than 3 standard deviations larger than the mean. We then
designate the basic block that precedes each such gap to be an
inner-phase boundary marker.

The phases of a utility program may also nest. For example, the
body of a function in the input to a compiler may contain nested
statements at multiple levels. This nesting may give rise to deeply
nested phases, which our framework can be extended to identify,
using a sequence of identical sub-structures in the input. In the
case of the compiler, we can construct a function with a sequence
of identical loop statements, and then mark the portions of each
inner phase (compilation stage) devoted to individual loops, using
the same process that we used to identify outermost phases in the
original step of the analysis.
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Data Structure
innerMarkers : the set of inner phase markers
outerMarker : the outermost phase marker
traceR : the basic block trace recorded in the regular training run
traceI : the basic block trace recorded in the normal (irregular) training run
RQSTR : the number of requests in the regular input
RQSTI : the number of requests in the normal input
setB : the set of all basic blocks in the program
setB1, setB2, setB3 : three initialy empty sets
bi : a basic block in setB
timeR(bi, j) : the instructions executed so far when bi is accessed for the jth time
Vi =< Vi

1, Vi
2, . . . , Vi

k > : the recurring distance vector of basic block bi in traceR, where Vi
j = timeR(bi, j + 1) − timeR(bi, j)

Algorithm
step 1) Select basic blocks that appear RQSTR times in traceR and put them into setB1.
step 2a) From setB1, select basic blocks whose recurring distance pattern is similar to the majority and put them into setB2.
step 2b) From setB2, select basic blocks that appear RQSTI times in traceI and put them into setB3.
step 3) From setB3, select basic blocks that are followed by a long computation in traceR before reaching any block in setB3

and put those blocks into innerMarkers; outerMarker is the block in innerMarkers that first appears in traceR.
Procedure Step2a()
// M and D are two initially empty arrays

for every bi in setB1 {
Vi = GetRecurringDistances(bi, traceR);
mi = GetMean(Vi);
di = GetStandardDeviation(Vi);
M .Insert(mi);
D.Insert(di);}

if (!IsOutlier(mi,M ) && !IsOutlier(di,D)){
setB2.AddMember(bi);}

End

Procedure IsOutlier(x, S)
// S is a container of values

m = GetMean(S);
d = GetStandardDeviation(S);
if (|x − m| > 3 ∗ d) return true;
return false;

End

Figure 4. Algorithm of phase marker selection and procedures for recurring-distance filtering.

3. Evaluation
We test six programs, shown in Table 3, from the SPEC95 and
SPEC2K benchmark suites: a file compression utility, a compiler,
two interpreters, a natural language parser, and an object-oriented
database. Three other utility programs—two more compression
utilities—exist in these two suites. We have not yet experimented
with them because they do not contribute a new application type.
All test programs are written in C. Phase analysis is applied to the
binary code.

We construct regular inputs as follows. For GCC we use a file
containing 4 identical functions, each with the same long sequence
of loops. For Compress, which is written to compress and decom-
press the same input 25 times, we provide a file that is 1% of the
size of the reference input in the benchmark suite. For LI, we pro-
vide 6 identical expressions, each containing 34945 identical sub-
expressions. For Parser, we provide 6 copies of the sentence “John
is more likely that Joe died than it is that Fred died.” (That admit-
tedly nonsensical sentence is drawn from the reference input, and
not surprisingly takes an unusually long time to parse.) The regular
input for Vortex is a database and 3 iterations of lookups. Since the
input is part of the program, we modify the code so that it performs
only lookups but neither insertions nor deletions in each iteration.

We use ATOM [32] to instrument programs for the phase anal-
ysis on a decade-old Digital Alpha machine, but measure program
behavior on a modern IBM POWER4 machine through its hard-
ware performance monitoring facilities. POWER4 machines have a
set of hardware counters, which are automatically read every 10ms.
Not all hardware events can be measured simultaneously. We col-
lect cache miss rates and IPCs (in a single run) at the boundaries of
program phases and, within phases, at 10ms intervals.

The phase detection technique finds phases for all 6 bench-
marks. GCC is the most complex program and shows the most

Benchmark Description Source
Compress UNIX compression utility SPEC95Int
GCC GNU C compiler 2.5.3 SPEC2KInt
LI Xlisp interpreter SPEC95Int
Parser natural language parser SPEC2KInt
Vortex object oriented database SPEC2KInt
Perl Perl interpreter SPEC2KInt

Table 1. Benchmarks

interesting behavior. Perl has more than one type of phase. We de-
scribe these in the next two subsections, and the remaining pro-
grams in the third subsection.

3.1 Behavior variation in GCC
GCC comprises 120 files and 222182 lines of C code. The phase
detection technique successfully finds the outermost phase, which
begins the compilation of an input function. We also find 8 inner
phase markers. Though the analysis tool never considers the source,
we can, out of curiosity, map the automatically inserted markers
back to the source code, where we discover that the 8 markers
separate different compilation stages.

The first marker is at the end of function “loop optimize”, which
performs loop optimization on the current function. The second
marker is in the middle point of function “rest of compilation”,
where the second pass of common sub-expression elimination com-
pletes. The third and fourth markers are both in function “life
analysis”, which determines the set of live registers at the start
of each basic block and propagates the life information inside the
basic block. The two markers are separated by an analysis pass,
which examines each basic block, deletes dead stores, generates
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auto-increment addressing, and records the frequency at which a
register is defined, used, and redefined. The fifth marker is in func-
tion “schedule insns”, which schedules instructions block by block.
The sixth marker is at the end of function “global alloc”, which al-
locates pseudo-registers. The seventh marker is in the same func-
tion as the fifth marker, “schedule insns”. However, the two mark-
ers are in different branches, and each invocation triggers one sub-
phase but not the other. The two sub-phases are executed through
two calls to this function (only two calls per compilation of a
function), separated by the sixth marker in “global alloc” among
other function calls. The last marker is in the middle of function
“dbr schedule”, which places instructions into delay slots. These
automatically detected markers separate the compilation into 9 ma-
jor stages. Given the complexity of the code, manual phase mark-
ing would be extremely difficult for someone who does not know
the program well. Even for an expert in GCC, it might not be easy
to identify sub-phases that occupy large portions of the execution
time, of roughly equal magnitude.

GCC behavior varies with its input. Regularity emerges, how-
ever, when we compare the average IPC across the three inputs. As
shown by Figure 7, the IPC of 9 sub-phases ranges from below 0.5
to over 1.2 but the difference from input to input is less than 0.1 for
the same sub-phase. The average of the whole execution is almost
identical. Note that this is the average for all phase instances. We
will show the distribution later in Figure 8.

Temporal patterns also become visible when we cut the execu-
tion into phases. Figure 6(a) shows the same curve as Figure 1(b)
(in the introduction section) with markings for outermost (solid)
and inner (broken) phases. Both outermost and inner phases show
similar signal curves across phase instances. The IPC curves of
GCC on other inputs have a related shape, shown in Figure 6(b)–
(d). This shows that GCC displays a recurring execution pattern—
the same complex compilation stages are performed on each func-
tion in each input file. The outermost phase and inner phase markers
accurately capture the variation and repetition of program behav-
ior, even when the shape of the curve is not exactly identical from
function to function or from input to input. Note that while we have
used IPC to illustrate behavior repetition, the phase marking itself
is performed off-line and requires no on-line instrumentation.

Next we examine the relation between the length of the phase
instances and the IPC. Figure 8 shows the histogram of the length
(in a logorithmic scale) and the histogram of the IPC (in a linear
scale) for the 246 instances of the input scilab.i in the top two
graphs, the 211 instances of the input 200.i in the middle two
graphs, and the 11 instances of the input 166.i in the bottom two

graphs. The execution length ranges from 6 million instructions
to 10 billion instructions, while the IPC ranges between 0.5 and
1.0. The center of the distribution is similar, showing that most
functions in the input file take around 30 million instructions to
compile and have an IPC of 0.7.

Figure 9 shows the phase behavior in a lisp interpreter, Li, and
an English parser, Parser. Unlike GCC, the two programs do not
have clear sub-phases with a different IPC. The 271 phase instances
of Li have highly varied length and IPC, but the 43 instances of
Parser has mostly the same length and the same IPC. Finally,
Figure 10 show the IPC curves of Compress and Vortex, showing
two sub-phases in the former and 13 sub-phases in the latter.

We note that such analysis would not be possible without know-
ing the phase markers. Without them we cannot tell for example
that a period of 6 million instructions is repeating the same behav-
ior cycle as a period of 10 billion instructions. If we just measure
the average behavior of the execution, we would effectively mea-
sure only the behavior of the few largest processing steps and not
the behavior variation of all steps. The same limitation holds for
sampling-based techniques, if they do not know the phase markers.

3.2 Perl
Though our active analysis tool is usually employed in a fully
automated form (the user provides a regular input and a few real
inputs, and the tool comes back with an instrumented binary), we
can invoke the sub-tasks individually to explore specific aspects of
an application.

As an example, consider the Perl interpreter. The installed ver-
sion in our system directory has 27 thousand basic blocks and has
been stripped of all debugging information. Perl interprets one pro-
gram at a time, so it does not have outermost phases as other pro-
grams do. In hopes of exploring how the interpreter processes func-
tion calls, however, we created a regular 30-line input containing 10
identical calls. Given this input, the regularity checking tool (step
1 of Section 2.3) identified 296 candidate marker blocks. We then
created a 10-line irregular program containing three calls to two
different functions. The consistency checking tool (step 2) subse-
quently found that 78 of the 296 candidates appeared consistently.
Choosing one of these blocks at random (number 5410, specifi-
cally), we tested a third input, written to recursively sum the num-
bers from 1 to 10 in 11 calls. Block 5410 was executed exactly 11
times. This experience illustrates the power of active profiling to
identify high-level patterns in low-level code, even when subsumed
within extraneous computation.

Such phase markers can be used to analyze how well the current
implementation handles procedure calls and other features that
a user is interested in. It would enable subsequent analysis for
measuring the average time and memory overhead, monitoring for
resource consumption, and detecting patterns and anomalies.

3.3 Comparison with procedure and interval phase analysis
In this section, we compare the ability of different analysis tech-
niques—active profiling, procedure analysis, and interval analysis—
to identify phases with similar behavior. In Section 4 we will con-
sider how to use these phases to optimize memory management.
Different metrics—and thus different analysis techniques—may be
appropriate for other forms of optimization (e.g., fine-grain tuning
of dynamically configurable processors). It should be noted that
better prediction accuracy on some metrics does not imply a bet-
ter program or a better system. Depending on the use, one type of
phase may be better than another type.

Program phase analysis takes a loop, subroutine, or other code
structures as a phase [3, 16, 20, 23, 25, 26]. For this experiment,
we mainly consider procedure phases and follow the scheme given
by Huang et al., who picked subroutines by two thresholds, θweight
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Figure 6. The IPC curves of different GCC runs with phase markers

and θgrain [20]. Assume the execution length is T . Their scheme
picks a subroutine p if the cumulative time spent in p (including
its callees) is no less than θweightT and the average time per
invocation no less than θgrainT . In other words, the subroutine is
significant and does not incur an excessive overhead. Huang et al.
used 5% for θweight and 10K instructions for θgrainT . Georges
et al. made the threshold selection adaptive based on individual
programs, the tolerable overhead, and the need of a user [16].
They studied the behavior variation of the procedure phases for a
set of Java programs. Lau et al. considered loops and call sites in
addition to subroutines, removed the code unit from consideration
if the average size was below a threshold, and then selected code
units whose behavior variation is within the average variation of
all remaining code units [23]. In this experiment, we use the fixed
thresholds from Huang et al.

The extension by Lau et al. may reduce the behavior variation
seen by in our experiments. In fact, the phase markers of Lau et al.
include some of the markers found by active profiling. We are look-
ing into a more direct comparison, which is tricky. Their method
identifies finer phases than active profiling does. Its parameters can
be adjusted to find phases of different granularities, but it is unclear
what parameter values would produce what number of phases and
how the number depends on the training input.

Active profiling allows the user to target the analysis in ways
that may not be possible with some general parameters. In our
test set, the number of outermost phase instances ranges from 3
(corresponding to input queries) in Vortex to 850 (corresponding
to input sentences) in Parser. It seems unlikely that a single set
of thresholds could uncover phases with such wide variation in
number. Without a priori knowledge about the number of phase
instances, how would one set θgrain? Finally, active profiling can
identify phases in memory reference behavior that have no obvious
pattern. Such phases can be valuable for memory management, as
we show in Section 4.

Interval analysis divides an execution into fixed-size windows,
classifies past intervals using machine or code-based metrics, and
predicts the class of future intervals using last value, Markov, or
table-driven predictors [3, 13, 15, 31]. Most though not all past
studies (with the exception of [4]) use a fixed interval length for
all executions of all programs, for example, 10 million or 100 mil-
lion instructions. For purposes of comparison, we select the interval
length for each program in our experiments so that the total num-
ber of intervals equals the number of inner behavior phase instances
identified by active profiling. Space limitations do not permit us to
consider all possible prediction and clustering methods. We cal-
culate the upper bound of all possible methods using this interval
length by applying optimal partitioning (approximated by k means
in practice) on the intervals of an execution. We further assume
perfect prediction at run-time—we assume knowledge of the num-
ber of clusters, the behavior, and the cluster membership of each
interval before execution.

Though phases are not in general expected to have uniform in-
ternal behavior, different instances of the same phase should have
similar average behavior. In our experiments we consider cache hit
rate and IPC as measures of behavior. Quantitatively, we compute
the coefficient of variation (CoV) among phase instances. Statisti-
cally CoV is the measure of how widely spread a normal distri-
bution is relative to its mean, calculated as the standard deviation
divided by the mean. If one uses the average of a phase’s instances
as its behavior prediction, the CoV is the expected difference be-
tween the prediction and the actual value of each phase. The results
from our hardware counters are not accurate for execution lengths
shorter than 10ms, so we excluded phase instances whose lengths
are shorter than 10ms.

Figure 11(a) shows the CoVs of cache hit rates. Each program
is shown by a group of floating bars. Each bar shows the CoV of a
phase analysis method. When a program has multiple inner phases,
the two end points of a bar show the maximum and minimum and
the circle shows the average. The four bars in each group show
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Figure 8. The number of instructions and the average IPC for the phase instances occurred in the three inputs, which have 246, 211, and
11 phase instances respectively. The numbers have similar ranges, and the distributions, although not identical, have their peaks in the same
range.

the CoVs of behavior phases, procedure phases, intervals with no
clustering (all intervals belong to the same group), and intervals
with k-means clustering (the best possible prediction given the
number of clusters).

Unlike the other methods, the results for procedure phases are
obtained via simulation. Since some of the procedures are library
routines, we would require binary instrumentation to obtain equiv-
alent results from hardware counters. We use simulation because
we lack an instrumentation tool for the IBM machine.

GCC has 9 behavior sub-phases, with a CoV between 0.13%
and 12% (average 4.5%). The CoV for procedure phases ranges
from 1.2% to 32% with an average of 4%. When cutting the execu-
tion into the same number of fixed length intervals as the number
of inner phase instances, the CoV is 16%. When the intervals are
clustered into 9 groups, the CoV ranges from 1% to 22% with an
average of 2.7%. The average CoV for procedure phases and inter-
val phases is lower than that of the behavior phases. However, the

procedure phases do not cover the entire execution, and the inter-
val results assume perfect clustering and prediction. In addition, the
behavior phase that has the highest consistency (0.13% CoV) is the
4th subphase, which represents 8% of the program execution. The
boundaries of this sub-phase are not procedure boundaries.

Compress has two sub-phases. The cache hit rate is always 88%
for instances of the first sub-phase and 90% for those of the second
sub-phase, despite the fact that the instances have different lengths,
as shown in Figure 10(e). The relative length ratio is constant. In
each outermost phase, the first sub-phase takes 88% of the time
and the second takes the remaining 12%. The CoVs of the two
sub-phases are 0.15% and 0.21%, barely visible in Figure 11 (a).
When divided into two clusters, the smallest and average CoV from
interval phases is 0.7% and 0.9%. This program shows the value
of variable-length phases: even the ideal clustering of fixed length
intervals cannot be as accurate.
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Vortex has less behavior variation than the previous two pro-
grams. The best case procedure and interval phase results are 0.3%
CoV, better than the 0.7% minimum CoV of behavior phases. The
highest CoV, 8.9%, occurs in a procedure phase. For predicting the
cache hit rate, the behavior phase information is not very critical.
A carefully picked interval length may capture a similar stable be-
havior. However, behavior phases still have the advantage of not
needing to pick an interval length.

LI shows very few performance changes, as seen in Fig-
ure 10(g). Except for procedure phases, all methods have a CoV
of less than 1%. The worst procedure, however, shows an 11%
CoV. Parser is similar. The CoV is below 2% except for procedure
phases, which have a CoV of 3% on average and 26% in the worst
case. The two programs show that the behavior variation for a pro-
cedure can be large even for a program with relatively constant
overall behavior.

The results also show the difficulty of setting thresholds in pro-
cedure and interval phase analysis. A CoV of 1% may be too large
for LI but too small for programs such as GCC. The techniques
of Lau et al. [24] and Georges et al. [16] are adaptive based on the
average CoV of all candidate phases in a program. Their best possi-
ble result is shown by the lower bound CoV in Figure 11. However,
these techniques may still run into a problem if the program has
two types of phases that have very different CoVs.

The CoVs of the programs’ IPC are shown in Figure 11(b). We
do not include the procedure-based method for IPC since it is based
on simulation and therefore could not be directly compared to the
real measurement of IPCs in the other three cases. Between the
behavior and interval phases, the qualitative results are the same
for IPC as for the cache hit rate. On average across all programs,
the CoV is 4.9% for behavior phases and 7.1% for intervals with
optimal clustering and prediction.

The five programs show a range of behavior. Compress is at one
extreme, with behavior that is highly varied but consistent within
sub-phases. LI is at the other extreme, with behavior that is mostly
constant and that does not change between phases.

4. Uses of Behavior Phases
Active profiling allows a programmer to analyze and improve high-
level behavior of a program. In this section, we describe our prelim-
inary results on preventive memory management, memory usage
trend analysis, and memory leak detection.

4.1 Preventive memory management
A behavior phase of a utility program often represents a memory
usage cycle, in which temporary data are allocated in early parts of

a phase and are dead by the end of the phase. This suggests that
garbage collection will be most efficient when run at the end of a
behavior phase, when the fraction of memory devoted to garbage
is likely to be highest. Conversely, garbage collection should run
in the middle of a phase only if the heap size reaches the hard up-
per bound on the available memory. This new “preventive” scheme
differs from typical reactive schemes, which invoke garbage collec-
tion (GC) when the heap size reaches a soft upperbound. By using
phase information, preventive GC adapts to the natural needs of an
application without requiring empirical thresholds.

We have implemented preventive garbage collection, applied it
to the Lisp interpreter LI, and tested the performance on an Intel
Pentium 4 workstation (2.8 GHz CPU and 1GB memory). We used
both the training and the reference inputs. The execution time of
the entire program is shown in Table 2. Using preventive GC, the
program outperforms the version using reactive GC by 44% for
the reference input and a factor of 3 for the training input. For the
reference input, the faster execution time is due mainly to fewer GC
passes. Preventive GC passes are 3 times fewer than reactive ones
for the training input and 111 times fewer for the reference input.

To be fair, we note that the (111 times) fewer GC passes in the
reference input leads to (on average 36 times) more memory usage,
as shown by the column “avg” in Table 2. Existing reactive garbage
collectors may yield similar performance by giving the program as
large a heap size. Still, the preventive scheme is simpler because
it does not use empirically tuned thresholds. It is based on the
high-level program behavior pattern. The training input shows an
intriguing potential—the program runs 50% faster with preventive
GC (despite its 47 collection calls) than it does without any GC.
The faster execution is achieved with less than half of the memory,
possibly due to better locality as a result of preventive GC.

The results in this and the following two Subsections were
presented at a workshop in mid 2005 [14]. Later that year Buytaert
et al. published a systematic scheme they called garbage collection
hints [8]. By profiling SPECjvm98 programs, they inserted GC
hints at the Java methods whose invocation corresponds to the
recurring local minima in the size of live data, measured using
the Merlin trace analyzer [18]. They used a cost model to decide
when to invoke the garbage collection and reduced the garbage
collector time by up to 30X, resulting in overall execution time
improvement of more than 10%. The study shows the need for
more sophisticated methods than our preventive GC but at the same
time it demonstrates that behavior phases are valuable for memory
management.

Buytaert et al. used procedure based phase analysis. The live-
data curves of SPECjvm98 showed a regular recurring pattern. This
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program GC exe. time (sec) per-phase heap size (1K) total total mem. (1K)
inputs methods Pentium 4 max avg GC calls visited by GC

ref. preventive 13.58 16010 398 281 111883
reactive 19.5 17 11 31984 387511
no GC 12.15 106810 55541 0 0

train preventive 0.02 233 8 47 382
reactive 0.07 9 3 159 1207
no GC 0.03 241 18 0 0

Table 2. Comparison of the execution time between preventive and reactive GC

is not the case for our programs under default inputs. Indeed, as
shown in Section 3, procedure phases do not capture the recurring
cache and IPC behavior as well as active profiling does. We believe
that active profiling can be used to augment their system and to
improve garbage collection for a broader class of applications. It
helps to bridge the gap between high-level program information
and dynamic memory management. In the late ’80s, Wilson et.
al. [33] observed that at compute-bound phase boundaries, the
amount of live data is likely to be relatively small, and proposed
scavenge scheduling, but without a quantitative evaluation.

4.2 Memory usage trend monitoring
For a long running program, it is important to control the cumula-
tive data size, so the memory usage either does not increase linearly
with execution time or increases at a manageable rate. Phase anal-
ysis can be used to estimate the long-term memory usage trend.
Since behavior phases represent a memory usage cycle, one can
measure the heap size at the end of each phase instance to estimate
the amount of permanent heap data. In addition, a user may test
the memory usage of specific behavior, for example, the loading of
files in an editor. The user can use active profiling to target the anal-
ysis to such actions. We illustrate memory usage trend monitoring
using GCC.

The memory usage of the test input of GCC is shown in Fig-
ure 12(a). Using active profiling, we find the compilation of each
function as a phase instance. By measuring the heap size at the end
of each phase instance, we observe that on average the heap size
grows by 58KB for each compiled function. For machines with lim-
ited physical memory we can use this knowledge to estimate the
memory needed to compile a particular program and warn a user
about potential overflow. Alternatively, we may use active profiling
to mark the compilation of loops or data structures and to estimate
the memory usage trend as a function of smaller compilation units.

We also examine whether the long-term memory usage of GCC
might be reduced by eliminating memory leaks. We discuss the
preliminary results of memory leak detection in the next section.
Here we measure the portion of permanent heap data that are
used in later execution. It gives a lower bound on the size of
live data. We note that the lower bound is conservative. A heap
object is live if it may be used by a later request. Our measurement
classifies it as not live if the training input happens not to use the
object. The lower curve of Figure 12(a) shows the size of live data
across phase instances. It shows an increasing trend until a drop
at the end. The trend suggests that the program requires a slowly
increasing amount of data. However, the two curves also show that
the permanent heap data increases at a faster rate. The large gap
may be due to persistent memory leaks.

In comparison, the memory usage trend is perturbed if we mea-
sure by logical time (in particular the number of memory references
in the execution). The first curve in Figure 12(b) shows the size of
the heap measured at every 30000 memory accesses. The steady
growth of heap data is obscured by a series of spikes that are caused
by the allocation and freeing of temporary objects in a handful of

large phase instances. They dominate the time curve because most
of the execution time is spent in these few phases. However, most
of the 274 phase instances contribute to the increase in memory
use. The lower curve shows the size of the live data over time. The
trend is similarly obscured by the time-based measurement.

4.3 Memory leak detection
Based on the results of memory usage monitoring, we experiment
with a scheme for memory leak detection. We classify dynamic
objects as either phase local, if their first and last accesses are
within a (outermost) phase instance, hibernating, if they are used in
a phase instance and then have no use until the last phase instance
of the execution, or global if they are used by multiple phase
instances.

Through profiling, our analysis identifies all allocation sites that
contribute to the long-term memory increase. We rank them by
the rate of their contribution to the memory increase, so that a
programmer can fix the most pressing problems and leave the mild
ones to the run-time monitoring system.

If a site allocates only phase-local objects during profiling, and
if not all its objects are freed at the end a phase, it is likely that
the remaining objects are memory leaks. If a site allocates only
hibernating objects, it is likely that we can avoid storing the object
for more than one phase either by moving the last use early or by
storing the object to disk and reloading it at the end. In addition,
we can group objects that are likely to have no accesses for a
common long period of time and place them on the same virtual
memory page. Object grouping does not reduce the size of live data
but it reduces the amount of physical memory usage because the
unused page can be stored to disk by the operating system. Object
grouping may also reduce energy consumption without degrading
performance when their memory pages are placed in sleep mode.

Following is a sample report that shows a dynamic memory
allocation site identified by its call stack. The middle line shows
the number and size of freed and unfreed objects allocated from this
site and the bottom part shows the object classes. This site allocates
18 objects, with 14 of them reclaimed later. Since all 18 objects are
phase local in this execution, it is likely that the 4 remaining objects
are memory leaks. Reclaiming these four objects would save 16KB
memory without affecting the correctness of this execution. After
testing many inputs, we found that all objects reclaimed by GCC
are phase local objects. If an object is not reclaimed at the end of
its creation phase instance, it will not be reclaimed by the program.

alloc. site: 44682@xmalloc<149684@_obstack_
newchunk<149684@rtx_alloc<
155387@gen_rtx<352158@gen_jump<
84096@proc_at_0x120082260<
83994@expand_goto<4308@yyparse<
45674@proc_at_0x12005c390<
48606@main<390536@__start<

4/16288 unfreed, 14/57008 freed.
freed unfreed

phase local 14/ 57008 4/ 16288
hibernating 0/ 0 0/ 0

global 0/ 0 0/ 0
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Figure 12. The memory usage of GCC on input scilab. The phase-based measurement (on the left) shows the steady growth of the long-live
heap data, while the trend is perturbed by temporary heap data in the time-based measurement.

Monitoring techniques have been used to detect memory leaks
by research and commercial systems. Chilimbi and Hauswirth de-
veloped sampling-based on-line detection, where an object is con-
sidered a possible leak if it is not accessed for a long time [9].
Bond and McKinley used one-bit encoding to trace leaked objects
to their allocation sites [7]. Phase analysis can help these and other
techniques by enabling them to examine not just physical time but
also the stage of the execution. This is especially useful for utility
programs because the length of phase instances may differ by or-
ders of magnitude. In addition, phase-based techniques may help
to recognize and separate hibernating objects, to reduce the size of
active memory a program needs, and consequently to improve data
locality and reduce the resource and energy demand.

5. Other Related Work
Locality phases Early phase analysis was aimed at virtual memory
management and was intertwined with locality analysis. In 1976,
Batson and Madison defined a phase as a period of execution ac-
cessing a subset of program data [6]. Bunt et al. measured the
change of locality as a function of page sizes (called the locality
curve) in hand marked hierarchial phases [27]. Using the PSIMUL
tool at IBM, Darema et al. showed recurring memory-access pat-
terns in parallel scientific programs [12]. These studies did not pre-
dict locality phases. Later studies used time or reuse distance as
well as predictors such as Markov models to improve virtual mem-
ory management. Shen et al. used reuse distance to model program
behavior as a signal, applied wavelet filtering, and marked recur-
ring phases in programs [30]. For this technique to work, programs
must exhibit repeating behavior. With active profiling, we are able
to target utility programs, whose locality and phase length are typ-
ically input-dependent, and therefore not regular or uniform.

Program phases Balasubramonian et al. [3], Huang et al. [20,
25], and Magklis et al. [26] selected as program phases procedures,
loops, and code blocks whose number of instructions exceeds a
given threshold during execution. For Java programs, Georges et
al. selected as phases those procedures that display low variance in
execution time or cache miss rate [16]. It is not easy for a method
that uses fixed thresholds to determine the expected size or behavior
variance for phases of a utility program when one has no control
over the input. For example, instances of the compilation phase
may have very different execution length and memory usage.

Lau et al. considered loops, procedures, and call sites as pos-
sible phase markers if the variance of their behavior is lower than

a relative threshold, which is the average variance plus the stan-
dard deviation [24]. The technique can capture regular repetitions
more efficiently than the wavelet analysis [30]. The use of relative
threshold makes it flexible enough to capture phases with an input
dependent length. It is also fully automatic. The analysis is general,
but it does not target specific behavior cycles such as high-level data
reuses in [30] and user specified behavior in active profiling. Active
profiling relies on user input but also permits a user to target spe-
cific behavior, for example, finding the code marker that signals the
interpretation of a loop in a Perl program.

Allen and Cocke pioneered interval analysis to model a program
as a hierarchy of regions [2]. Hsu and Kremer used program regions
to control processor voltages to save energy. Their regions may
span loops and functions and are guaranteed to be an atomic unit of
execution under all program inputs [19].

In comparison to the above techniques, active profiling does
not rely on the static program structure. It considers all program
statements as possible phase boundaries. We found that in GCC,
some sub-phase boundaries were methods called inside one branch
of a conditional statement. In addition, active profiling permits a
user to target specific behavior such as data reuse and memory
allocation cycles. Finally, active profiling examines multiple inputs
to improve the quality of code markers.

Interval phases Interval methods divide an execution into
fixed-size windows, classify past intervals using machine or code-
based metrics, and predict the behavior of future intervals using
last value, Markov, or table-driven predictors (e.g., [3, 13, 15, 31]).
Balasubramonian et al. [4] dynamically adjust the size of the inter-
val based on behavior predictability/sensitivity. However, since the
intervals don’t match phase boundaries, the result may be an av-
eraging of behavior across several phases. Duesterwald et al. gave
a classification of these schemes [15]. Nagpurkar et al. proposed
a framework for online phase detection and explored the parame-
ter space [28]. A fixed interval may not match the phase length in
all programs under all inputs. Our technique finds variable-length
phases in utility programs. It targets program level transformations
such as memory management and parallelization, so it is designed
for different purposes than interval phase analysis is.

Training-based analysis Balasundaram et al. used microker-
nels to build a parameterized model in a method called training
sets [5]. The model was used to select data partitioning schemes.
Ahn and Vetter analyzed various program behavior metrics through
statistical analysis including two types of clustering, factoring, and
principle component analysis [1]. Different matrics were also cor-
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related with linear models (with non-linear components) by Ro-
driguez et al. [29], queuing models by Jacquet et al. [22], and (logi-
cal) performance predicates by Crovella and LeBlanc [10, 11]. Re-
cently, Ipek et al. combined observations automatically into pre-
dictive models by applying the general multilayer neural networks
on tens to thousands of training results [21]. The model also pre-
dicts the accuracy of the prediction. Active profiling associates pro-
gram points with input-dependent behavior and may use the exist-
ing models to predict the effect of different inputs.

6. Conclusions
The paper has presented active profiling for phase analysis in util-
ity programs, such as compilers, interpreters, compression and en-
coding tools, databases, and document parsers. By reliably mark-
ing large-scale program phases, active profiling enables the imple-
mentation of promising new program improvement techniques, in-
cluding preventive garbage collection (resulting in improved per-
formance relative to standard reactive collection), memory-usage
monitoring, and memory leak detection.

Using deliberately regular inputs, active profiling exposes top-
level phases, which are then marked via binary instrumentation and
verified with irregular inputs. The technique requires no access to
source code, no special hardware support, no user knowledge of
internal application structure, and no user intervention beyond the
selection of inputs. The entire process is fully automated, from the
scripting of profiling runs, through the collection and analysis of
the resulting statistics, to the instrumentation of the program binary
to mark application phases and perform the garbage collection or
memory monitoring.

Beyond the realm of behavior characterization and memory
management, we have used active profiling to speculatively exe-
cute the phases of utility programs in parallel, obtaining nontrivial
speedups from legacy code. As future work we hope to explore
additional optimizations, and to identify additional classes of pro-
grams amenable to profiling with intentionally crafted inputs.
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