
Context Switch Overheads on Mobile Device Platforms

[Context Switch Measurement Challenge]

Francis M. David
University of Illinois at
Urbana-Champaign
201 N Goodwin Ave

Urbana, IL 61801-2302
fdavid@uiuc.edu

Jeffrey C. Carlyle
University of Illinois at
Urbana-Champaign
201 N Goodwin Ave

Urbana, IL 61801-2302
jcarlyle@uiuc.edu

Roy H. Campbell
University of Illinois at
Urbana-Champaign
201 N Goodwin Ave

Urbana, IL 61801-2302
rhc@uiuc.edu

ABSTRACT
When threads use context switching, they incur an over-
head in addition to the minimum required running time.
The source of this overhead is both direct overhead due to
running the context switch code and indirect overhead due
to perturbation of caches. We calculate indirect overhead by
measuring the running time of tasks that use context switch-
ing and subtracting the direct overhead. We also measure
the indirect overhead impact on the running time of tasks
due to processor interrupt servicing. Experiment results are
presented for the Linux kernel running on a mobile device
platform.

1. INTRODUCTION
Context switching is the fundamental mechanism that is
used to share a processor across multiple threads of exe-
cution. Each thread is associated with a processor state
(program counter, data and status registers, etc.). A con-
text switch is the act of saving the processor state of a thread
and loading the saved state of another thread. If the threads
are run in different virtual address spaces (which in Linux
terminology means they belong to different processes) a con-
text switch also involves switching the address translation
maps used by the processor. Switching address spaces re-
quires that relevant entries in the processor translation cache
(TLB) are invalidated. If the instruction or data caches are
tagged using virtual addresses, they would have to be emp-
tied as well.

Multitasking processes incur a small performance penalty
because of context switching. In addition to the direct
overhead associated with the actual context switching code,
there are several other factors that contribute to this penalty.
The perturbation of processor caches like the instruction,
data, address translation and branch-target buffers results in
an additional indirect overhead. Yet another possible source
of indirect overhead is operating system memory paging. A
context switch can result in an in-use memory page being

moved to disk if there is no free memory, thus hurting per-
formance. In this paper, we do not consider overheads due
to paging and assume that sufficient main memory is present
to avoid thrashing.

We have described a context switch as a mechanism used to
switch between two threads of execution. We do not consider
a system call a context switch. This is like a simple function
call and memory maps are not switched. The transition
back to userspace from the kernel during the return of the
system call is similar to a function call return. On the other
hand, a processor interrupt causes the state of the currently
executing task to be saved while an interrupt service routine
is executed. When the interrupt service routine completes,
the saved state is restored. While memory maps are not
switched during interrupt servicing, it does perturb cache
state and might also contribute some indirect overhead.

In this paper, we measure the indirect overhead of context
switches inside the Linux kernel using two tasks that perform
cooperative multitasking. In a separate set of experiments,
we also measure the indirect overhead introduced due to
processor interrupt servicing.

We do not explore userspace implementations of threads and
userspace context switching in this work. The latest versions
of the Linux kernel support the Native Posix Threading
Library (NPTL) which implements user threads as kernel
threads and context switching happens inside the kernel.

This study targets mobile device architectures and the hard-
ware platform we use in our experiments is the OMAP1610
H2 Software Development Platform [1] cellular phone ref-
erence design from Texas Instruments. The OMAP1610 is
powered by an ARM9 processor core. We discuss the rele-
vant aspects of this architecture in section 2.

The rest of this paper is organized as follows. Section 2
presents a quick introduction to the hardware platform that
we use in our experiments. We discuss the experiment setup
and results in section 3. After exploring some related work
in section 4, we conclude in section 5.

2. EXPERIMENT PLATFORM
ARM is a 32-bit RISC architecture. ARM processors are
widely used in mobile devices because of their low power con-
sumption. In this section, we briefly describe some features



Task 1 Begin

Task 2 Begin

Task 1 End

Task 2 End

Rtotal CS Time

Task 1 Begin

Task 1 End

Task 2 Begin

Task 2 End

R’total

Context Switches = 1 Context Switches = 3

Time

Figure 1: Context Switch Experiment Measurements

of the ARM architecture that are relevant to this research.
Our implementations and experiments have been carried out
on a processor core which belongs to the ARMv5 architec-
ture generation. The ARM926EJ-S core that we use is part
of the OMAP1610 chip from Texas Instruments.

Context switches require the saving of 16 general purpose
registers (including the program counter) and one status reg-
ister. A memory management unit (MMU) translates vir-
tual addresses from the processor into physical addresses. A
split (Harvard) memory cache is available in the processor,
providing a 16 kilobyte, four-way set-associative instruction
cache and a 8 kilobyte, four-way set-associative data cache.
There are two TLBs - one for data and one for instructions.
Each TLB holds 64 entries. TLB entries can be locked down
in software, but we do not use any lockdowns for the exper-
iments in this paper.

The clock fed to the processor can be configured during boot
time. A 120 MHz processor clock is used for our experi-
ments. Direct read access to a 32-bit on-chip timer running
at 6 MHz (166.67 nanosecond measurement granularity) is
used to measure time. The data cache is configured for
write-back caching. 32MB of SDRAM with a 32-bit data
path to the CPU is present on the OMAP1610 H2 board.
We clock the SDRAM at the same frequency as the proces-
sor.

Processor performance monitoring counters are not available
on the ARM processor we use. We are, therefore, unable
to report statistics on the number of instructions executed.
Our tests were run on version 2.6.20-rc5-omap1 of the Linux
kernel. We modified the kernel to run our experiments as
described in section 3.

3. EXPERIMENTS
3.1 Context Switching Overhead
We added code into the Linux kernel to measure the running
time of tasks performing deterministic computation with a
controlled number of context switches and without exter-
nal interference such as interrupts. In order to accurately
measure running time and the effects of a context switch,
the task code is built into the kernel and system calls are
not used. We, however, configure the task with a unique

mmu struct to ensure that the page table mappings are re-
set during a context switch. This set up allows us to explore
the impact of cache flushes and TLB invalidation during a
context switch. All measurements are performed starting
with a cold cache and an empty translation cache (TLB).
All data points in the graphs we present are an average over
five measurements. The maximum (over all data points)
coefficient of variation (standard deviation/average) of the
running time measurement is marked in each graph as ’Max
CV’.

In our experiments to measure context switch overhead,
we use two such tasks. The code for the tasks is modi-
fied to context switch between one another similar to co-
operative multithreading. The scheduler is not used and
we directly switch between the tasks by invoking the Linux
context switch function. The minimum possible combined
running time of both tasks (Rtotal) is obtained when the
first task is started and runs to completion, followed by a
context switch to the second task which also runs to comple-
tion. This is illustrated in figure 1. The direct overhead for
a single context switch is constant for all experiments and is
measured as C. This is essentially the time taken to execute
the context switch function with an empty cache. The
Rtotal measurement includes the overhead for one context
switch. Rtotal −C is the running time of both tasks without
this overhead. The total running time of both tasks with n

context switches is measured as R
′

total. R
′

total − (Rtotal −C)
is the total overhead due to the context switching. This con-
sists of two parts. The first part is direct overhead due to
the actual running time of the context switch code (register
set save and restore, MMU switch etc). The second part is
indirect overhead because of memory and translation cache
pollution. The total direct overhead for an experiment with
n context switches is n ∗ C. The indirect overhead experi-
enced by both tasks together due to the n context switches
is then obtained as I = R

′

total − (Rtotal −C)−n ∗C. When
n = 1, R

′

total = Rtotal and therefore, I = 0.

The tasks we chose for our experiments are processor and
memory bound algorithms: bubble sort, deflate compres-
sion, AES encryption and CRC computation. These are
configured to be non-interactive and use no device I/O. The
data set used by the bubble sort algorithm is set to be the



0 20 40 60 80 100
Number of Context Switches

0

2000

4000

6000

8000

10000

O
ve

rh
ea

d 
T

im
e 

(m
ic

ro
se

co
nd

s)

Total Indirect Overhead
Sort Time Inflation
Deflate Time Inflation
Context Switch Time Inflation

Max CV: 0.005 %

(a) bubble-sort and deflate

0 20 40 60 80 100
Number of Context Switches

0

1000

2000

3000

4000

5000

6000

7000

O
ve

rh
ea

d 
T

im
e 

(m
ic

ro
se

co
nd

s)

Total Indirect Overhead
AES Time Inflation
CRC Time Inflation
Context Switch Time Inflation

Max CV: 0.04 %

(b) AES and CRC

0 20 40 60 80 100
Number of Context Switches

0

1000

2000

3000

4000

5000

6000

O
ve

rh
ea

d 
T

im
e 

(m
ic

ro
se

co
nd

s)

Total Indirect Overhead
Sort Time Inflation
CRC Time Inflation
Context Switch Time Inflation

Max CV: 0.008 %

(c) bubble-sort and CRC

0 20 40 60 80 100
Number of Context Switches

0

2000

4000

6000

8000

O
ve

rh
ea

d 
T

im
e 

(m
ic

ro
se

co
nd

s)

Total Indirect Overhead
CRC Time Inflation
Deflate Time Inflation
Context Switch Time Inflation

Max CV: 0.01 %

(d) CRC and deflate

0 20 40 60 80 100
Number of Context Switches

0

2000

4000

6000

8000

10000

12000

O
ve

rh
ea

d 
T

im
e 

(m
ic

ro
se

co
nd

s)

Total Indirect Overhead
AES Time Inflation
Deflate Time Inflation
Context Switch Time Inflation

Max CV: 0.03 %

(e) AES and deflate

0 20 40 60 80 100
Number of Context Switches

0

2000

4000

6000

8000

10000

12000

O
ve

rh
ea

d 
T

im
e 

(m
ic

ro
se

co
nd

s)

Total Indirect Overhead
AES Time Inflation
Sort Time Inflation
Context Switch Time Inflation

Max CV: 0.02 %

(f) AES and bubble-sort

Figure 2: Indirect Context Switch Overhead

same size as the data cache and is aligned to fit completely
within the cache. This maximizes data cache locality for
the sort task and allows us to explore the impact of data
cache pollution. All of the other tasks operate on large data
streams and therefore exhibit little data cache locality. The

data set size for each task is chosen such that the task takes
between 3 and 4 seconds to complete. The deflate, AES and
CRC tasks are based on code libraries already inside the
Linux kernel; the bubble sort algorithm was implemented
by one of the authors.



0 10 20 30 40 50
Number of Interrupts

0

100

200

300

400

500

600
In

di
re

ct
 O

ve
rh

ea
d 

T
im

e 
(m

ic
ro

se
co

nd
s)

Max CV: 0.002%

(a) bubble-sort

0 10 20 30 40 50
Number of Interrupts

0

200

400

600

800

1000

1200

1400

In
di

re
ct

 O
ve

rh
ea

d 
T

im
e 

(m
ic

ro
se

co
nd

s)

Max CV: 0.02%

(b) deflate

0 10 20 30 40 50
Number of Interrupts

0

500

1000

1500

2000

2500

3000

3500

In
di

re
ct

 O
ve

rh
ea

d 
T

im
e 

(m
ic

ro
se

co
nd

s)

Max CV: 0.01%

(c) AES

0 10 20 30 40 50
Number of Interrupts

0

500

1000

1500

2000

In
di

re
ct

 O
ve

rh
ea

d 
T

im
e 

(m
ic

ro
se

co
nd

s)

Max CV: 0.02%

(d) CRC

Figure 3: Indirect Interrupt Service Routine Overhead

Figure 2 shows the indirect overhead measurements for dif-
ferent pairs of tasks and different values of n. The total
indirect overhead measurement is broken down into three
components: the indirect overhead of the individual tasks
and the inflation in the context switch time because of the
need to flush dirty cache lines to memory. The “sort” task
measurements have very low variation and show a perfectly
constant rate of overhead increase. The variation in the time
measurements for the other tasks is higher and the plots are
not smooth. However, the general trend for all tasks is an
increase in the indirect overhead as the number of context
switches increases.

The indirect overhead for 99 context switches between bubble-
sort and deflate adds about 10.3 milliseconds to their com-
bined running time of 7.159 seconds (0.14% increase) For
AES and CRC, the indirect overhead adds 6.9 milliseconds
to their combined running time of 6.6 seconds (0.10% in-
crease). The maximum increase we observed was with AES
and deflate (0.18%). An interesting observation is that the
indirect overhead at 99 context switches is larger than the
direct overhead (4.75 milliseconds).

Altogether (direct+indirect), the context switching (99 times)
adds between 0.17% and 0.25% to the running time for the
various pairs of tasks.

3.2 Interrupt Servicing Overhead
In order to measure overheads due to interrupt servicing, we
modify the Linux kernel to run a task with context switch-
ing disabled and only one interrupt enabled. The interrupt
we choose for this set of experiments is a timer interrupt.
The actual hardware timer is disabled. We control the in-
terrupts in this experiment by forcing an interrupt to be
raised. This is done by writing to a memory-mapped regis-
ter on the interrupt controller. The interrupt is processed by
the standard Linux kernel interrupt handling mechanisms.
The handler for the interrupt just increments a counter and
returns.

We first measure the direct overhead involved in servicing
the interrupt as D. The task is configured to periodically
request interrupts while running. If the time taken to com-
plete the task without interrupts is Rtask and the time taken
to complete the task with n interrupts is R

′

task, the indirect



overhead due to the interrupts is obtained by the equation
I = R

′

task − Rtask − n ∗ D.

Figure 3 shows the indirect overhead measurements for dif-
ferent rates of interrupts. The indirect overhead measure-
ments are low and in the order of hundreds of microseconds.
Unfortunately, even though the coefficient of variation of the
actual measurements is low, the coefficient of variation for
these calculated values of indirect overhead is high and only
a general trend should be interpreted from all the graphs.
A few data points in the graphs have been removed be-
cause the variation was extremely high. The “sort” task
has the lowest variation and is a more accurate representa-
tion of interrupt indirect overhead behavior. For all tasks,
the indirect overhead increases as the interrupt frequency is
increased. Overheads are generally lower than for context
switching because the caches and the TLB are not flushed.

The indirect overhead due to servicing 49 interrupts dur-
ing the execution of “sort” adds 0.01% to its running time
of 3.64 seconds. The values for deflate, AES and CRC are
0.02%, 0.09% and 0.05% respectively. For the interrupt ex-
periments, the direct overhead measurements are larger than
the indirect overhead measurements. We suspect that this
is due to the fact that our timer interrupt experiment does
not significantly perturb the cache or the TLB.

Altogether (direct+indirect), the interrupt servicing exper-
iments add between 0.28% and 0.38% to the total running
time of the tasks for 49 interrupts.

4. RELATED WORK
Others have considered the overhead due to context switch-
ing in the past. In [2], Ousterhout attempted to measure
the overhead associated with context switching by measur-
ing the round trip time for passing a token between two pro-
cesses using a pipe. The creators of lmbench [3] improved
upon this technique by eliminating system call overhead as-
sociated with Ousterhout’s measurements. Additionally, the
in-memory size of the test processes were varied to deter-
mine how processor cache utilization effects context switch-
ing times. The relationship between caches and context
switching (espicially for real-time systems) was examined
in [4] in [5]. Unlike our experiments, none of these experi-
ments attempt to differentiate between the direct cost of a
context switch and the indirect costs of a context switch.

Researchers have also examined the impact of context switch-
ing on branch prediction accuracy and found the effect to be
minimal [6]. This finding implies that branch prediction fail-
ure is not a significant source of indirect context switching
overhead.

Context switching overhead numbers have also been used
to promote new operating systems. The developers of L4
microkernel used lmbench to show that by using hardware
extensions available in the ARMv5 instruction set, the ARM
implementation of L4 has a significantly lower context switch-
ing overhead than Linux running on ARM [7].

5. CONCLUSIONS
The measurements reported in this work are low level mea-
surements of context switch overhead between two threads

inside the operating system kernel and the effect of interrupt
servicing code. A context switch between two userspace
processes involves both a timer interrupt (for an involun-
tary switch) and the low level switch measured in this pa-
per. Overhead measurements for userspace process context
switching are not reported in this paper.

The Linux kernel code used in our experiments is available
on our website at http://choices.cs.uiuc.edu/

6. ACKNOWLEDGMENTS
Part of this research was made possible by grants from Do-
CoMo Labs USA and generous support from Texas Instru-
ments.

7. REFERENCES
[1] Texas Instruments OMAP Platform. http://focus.ti.com/

omap/docs/omaphomepage.tsp.
[2] John K. Ousterhout. Why aren’t operating systems getting

faster as fast as hardware? In USENIX Summer, pages
247–256, 1990.

[3] Larry W. McVoy and Carl Staelin. lmbench: Portable tools
for performance analysis. In USENIX Annual Technical
Conference, pages 279–294, 1996.

[4] Jeffrey C. Mogul and Anita Borg. The effect of context
switches on cache performance. In ASPLOS-IV: Proceedings
of the fourth international conference on Architectural
support for programming languages and operating systems,
pages 75–84, New York, NY, USA, 1991. ACM Press.

[5] Johan Stärner and Lars Asplund. Measuring the cache
interference cost in preemptive real-time systems. In LCTES
’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded
systems, pages 146–154, New York, NY, USA, 2004. ACM
Press.

[6] M. Co and K. Skadron. The effects of context switching on
branch predictor performance. In 2001 IEEE International
Symposium on Performance Analysis of Systems and
Software, pages 77–84, Nov 2001.

[7] L4 Performance. http://ertos.nicta.com.au/research/l4/
performance.pml.

http://focus.ti.com/omap/docs/omaphomepage.tsp
http://focus.ti.com/omap/docs/omaphomepage.tsp
http://ertos.nicta.com.au/research/l4/performance.pml
http://ertos.nicta.com.au/research/l4/performance.pml

