Experimental Approaches in Computer Science

Dror Feitelson
Hebrew University

Lecture 12 – Experimental Algorithmics
Case studies

- Online scheduling
- Matrix multiplication
- Maximum flow
Online scheduling
Problem definition: Given n jobs with known processing times assign them to m identical machines so as to minimize the makespan.

- Graham's list scheduling [1966]: assign each job to the machine with the least assigned load so far.

- Claim: Graham's simple greedy algorithm is $(2 - \frac{1}{m})$-competitive.

Online: assign each job before you know about subsequent jobs.
Proof:
Let c^* denote the optimal makespan then $c^* \geq p_{\text{max}}$ [accommodate longest job]
and $c^* \geq 1/m \sum p_j$ [accommodate total processing needed]

assume job k is the last one to terminate then it starts no later than $1/m \sum_{j \neq k} p_j$
because no machine is idle before all jobs start
Its termination time is then no later than its start time + processing time:

\[c_k \leq \frac{1}{m} \sum_{j \neq k} p_j + p_k \]
\[\leq \frac{1}{m} \sum_j p_j + (1 - \frac{1}{m})p_k \]
\[\leq c^* + (1 - \frac{1}{m})c^* \]
\[= (2 - \frac{1}{m})c^* \]
Worst case: many small jobs followed by one long job

Improvements:

- Bartal et al. [1995]: 1.986-competitive algorithm
- Karger et al. [1996]: 1.945-competitive algorithm
- Albers [1997]: 1.923-competitive algorithm
- All use various conditions to sometimes select a machine that is not the least loaded for short jobs (leaving the least loaded for the long job)
- Question: is this generally good, or does it just avoid certain pathological cases?
Experimental evaluation:
[Albers & Schroder, J. Exp. Alg. 7(3), 2002]

- Use real-world job sizes
 - Parallel machines (MPPs at CTC, KTH)
 - Vector machine (Cray at PSC)
 - Workstation (Sun in Germany)
- Use distributions
- Create sequences of 10000 jobs, and tabulate running ratio of achieved makespan to optimal for m=10
Results KTH:

relatively low variance, so ratio stabilized after some fluctuations; Graham is best
Results Cray:

Occasional big job similar to average so far.

Graham suffers because loads are balanced, and one machine will need to work much more; others leave machines less loaded in anticipation of such jobs.
job sizes have a heavy tail: some are so big they dominate the average. This causes both the online algorithm and the optimal makespan to be essentially equal, and the ratio drops to 1
Exponential:

Relatively low variability leads to quick convergence.

Similar results for uniform, Erlang, and hyperexponential with various parameter values
Effect of number of machines (m):

- All previous results were for $m=10$
- When m grows, it takes longer for ratios to stabilize, because more jobs are needed to fill the machines
- Also, the effect of jobs that are similar to the average load is changed – given that the load is distributed on more machines, these jobs now look huge, and their effect is to reduce the ratio rather than to enlarge it
The bottom line: it depends on the workload

- Graham's simple greedy algorithm is best when job variance is low
- Other algorithms, mainly Albers and Bartal, may reduce sensitivity to large jobs
- When the variance is extremely big due to a heavy tail, the algorithm has little effect
Matrix Multiplication
Problem definition:

- Use the straightforward n^3 algorithm
- Take into account the memory hierarchy
 - Cache capacity
 - Cache associativity
 - Contention for the system bus
 - Memory latency
- An instance of algorithm engineering

[0x et al. J. Exp. Alg. 4(3), 1999]
Idea 1: use tiling

- Use tiles that fit into the cache, to avoid capacity misses
- Retain ratio of multiple operations per given data
Idea 2: use prefetching

- In each phase prefetch the data needed in the next phase
- If all data is in the cache, computation does not use the system bus at all
- Bus is therefore free for use by prefetching
- Need to time the prefetches so as to avoid evicting needed data (assumes LRU cache replacement)
Tile size constraints

- Computation per tile multiplication is $O(P_1 P_2 P_3)$
- Data to prefetch is $O(P_1 P_2 + P_2 P_3 + P_1 P_3)$
- Also need to write back C tile of $P_1 P_3$
- Enough time if $P_1 P_2 P_3 > P_1 P_2 P_3 + 2P_1 P_3$
- Enough space if $2(P_1 P_2 + P_2 P_3 + P_1 P_3) < C$
- Can reduce prefetching/writeback by reusing C tile for full row of A tiles and column of B tiles
Idea 3: copy to avoid conflicts

- Copy tiles to different addresses so that they fall in different cache associativity sets
- Assuming k-way associativity, ensure that each set is used only $k/2$ times
- Simple example:
 - 2-way associativity
 - Interleave tiles from the different matrices
 - Use offset that is a multiple of the way size
 - Being 2-way allows 2 tiles from each matrix to be cache resident
Implementation:

- IBM PowerPC model 604
- Use fma (floating multiply-add) instruction, which is ideal for matrix/vector multiplication
 - Theoretical peak of 266 MFLOPS
- Don't use dcbt (data cache block touch) instruction for prefetching, but rather a register load
 - dcbt doesn't work when TLB misses
 - Can't be triggered from source level
Performance:
better and more predictable than highly tuned code
Maximum Flow
Problem definition:

given a graph \(G = (V, E) \),
with two distinguished nodes \(s \) and \(t \),
where each edge \(e \) has capacity \(c(e) \),
find the maximum possible flow from \(s \) to \(t \)

we'll focus on unit capacity (\(c(e) = 1 \) for all edges)
Flow definition:

A flow is a function \(f : V \times V \rightarrow \mathbb{R} \) such that

- \(f(u, v) \leq c(u, v) \) [capacity constraint]
- \(f(u, v) = -f(v, u) \) [anti-symmetry]
- \(\sum_v f(u, v) = 0 \) [conservation constraint]

(holds for all \(u \) except \(s \) and \(t \))

The value to maximize is \(\sum_v f(s, v) \)
Main algorithms:

- Path augmentation
- Preflow push-relabel
Path augmentation

- Invariant: always maintain a legitimate flow
- Start with a 0 flow
- At each step
 - Find a path from s to t that has capacity to spare
 - Add a flow along this path
- Terminate when no additional paths can be found
- Complexity: $O(E \ |f|)$ with integer capacities, $|f|$ is max

Variants: BFS? DFS?
Preflow push-relabel

- Invariant: maintains a preflow (allow excess input to a node)
- Initially s is at level $|V|$, t and all others at 0
- For all overflowing nodes (starting with s) fill outgoing links to nodes at lower level to capacity
- If all unsaturated outbound links are to nodes at same or higher level, relabel the node to level one higher than lowest unsaturated neighbor
- At end, nodes with excess flow will migrate to above the source and push the excess

- Complexity: $O(V^2 E)$

Variants: order of push and relabel ops, use of optimizations
Optimizations:

• Global relabel
 – Push and relabel are local operations
 – State may drift away from global optimum
 – Optimization is to do a global scan and relabel all nodes consistently in one sweep

• Gap heuristic:
 – If there are no nodes with label d, all those with higher labels return excess to s
 – Saves the need to raise their level by single steps to above $|V|$
Experimental questions:

• Augment or push?

• What is the effect of variants and optimizations?

• How does this depend on different input graph instances?

[Cerkassky et al. J Exp. Alg. 3(8), 1998]
Methodology: use random graphs from various different families
Experimental results

Table 1. Summary of results. Blank is good, o is fair, and • is poor.

<table>
<thead>
<tr>
<th></th>
<th>DFS</th>
<th>BFS</th>
<th>LDS</th>
<th>AR</th>
<th>FIFO</th>
<th>LO</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>fewg</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manyg</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hi-lo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>grid</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hexa</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>zipf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>karz</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>rmfuC</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rmfuL</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rmfuW</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blow</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>puff</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>saus</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>squa</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wave</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental results

Plots for graph families
Lines for algorithms
Conclusions:

- No single algorithm is best for all graph types.
- Both BFS and DFS (path augmentation) are not robust, with bad performance for many graph families.
- The best push-relabel methods are generally more robust than the best augmented flow.
- The added heuristics are important for the achieved performance.