
A Polynomial Quantum Algorithm for Approximating the Jones

Polynomial

Dorit Aharonov ∗ Vaughan Jones † Zeph Landau ‡

November 10, 2005

Abstract

The Jones polynmial, discovered in 1984 [17], is an important knot invariant in topology.

Among its many connections to various mathematical and physical areas, it is known (due to re-

sults by Witten [33]) to be intimately connected to Topological Quantum Field Theory (TQFT).

The works of Freedman, Kitaev, Larsen and Wang [10, 11] provide an efficient simulation of

TQFT by a quantum computer, and vice versa. These results implicitly imply the existence

of an efficient quantum algorithm that provides a certain additive approximation of the Jones

polynomial at the fifth root of unity, e2πi/5, and moreover, that this problem is BQP-complete.

Unfortunately, this important algorithm was never explicitly formulated. Moreover, the results

in [10, 11] are heavily based on deep knowledge of TQFT, which makes the algorithm essentially

inaccessible for computer scientists.

We provide an explicit and simple polynomial algorithm to approximate the Jones polynomial

of an n strands braid with m crossings at any primitive root of unity e2πi/k, where the running

time of the algorithm is polynomial in m,n and k. It is likely that analogies can be drawn

between our algorithm for the case of k = 5, and the results of [10], but we were unable

to do that. Our algorithm is based, rather than on physical results from TQFT, on known

mathematical results (specifically, the path model representation of the braid group and the

uniqueness of the Markov trace for the Temperly Lieb algebra). By the results of [11], our

algorithm solves a BQP complete problem.

The algorithm we provide exhibits a structure which we hope is generalizable to other quan-

tum algorithmic problems. Candidates of particular interest are the approximations of other

downwards self-reducible #P-hard problems, most notably, the important open problem of ef-

ficient approximation of the partition function of the Potts model, a model which is known to

be tightly connected to the Jones polynomial [34].

1 Introduction

Most known quantum algorithms that achieve possible exponential speed-ups [28, 3, 29, 6, 31, 14, 22]

are based on the quantum Fourier transform, and solve problems which are algebraic and number

theoretic in nature. Another technique used in quantum algorithms is based on random walks.

Arguably, the greatest challenge in the field of quantum computation (together with the physical

realization of large scale quantum computers), is the design of quantum algorithms that are based

on substantially different techniques.

∗School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel. doria@cs.huji.ac.il.
†Department of Mathematics, U.C.Berkeley
‡Department of Mathematics, City College, NY

1

In this paper we describe an efficient quantum algorithm that approximates the #P-hard prob-

lem of evaluating the Jones polynomial - which we will define shortly. The best classical algorithm

for this problem is exponential. Our algorithm is significantly different from all previously known

quantum algorithms. First, it solves a problem which is combinatorial rather than algebraic or

number theoretic in nature. Secondly, it does so without using the Fourier transform, but instead,

by exploiting a certain structure of the problem. In some sense, it encodes this structure into

unitary matrices. This abstract idea might be generalizable to other problems. Importantly, the

problem our algorithm solves is known to be hard for BQP. This means that in a well defined sense,

this is the hardest problem quantum computers can attack.

To describe the problem our algorithm solves, we start with some background on topology. A

central issue in low dimensional topology is that of knot invariants. A knot invariant is a function

on knots (or links – namely circles embedded in R3) which is invariant under isotopy of the link, i.e.,

it does not change under stretching, moving, etc., but no cutting. An important knot invariant,

the Alexander polynomial, was defined in 1928 [1]. In 1984, Jones [17] discovered a new knot

invariant, now called the Jones polynomial VL(t), which is a Laurent polynomial in
√
t with integer

coefficients, and which is an invariant of the link L. Since its discovery, the Jones polynomial has

found applications in numerous fields, from DNA recombination [25], to statistical physics [34].

It is easiest to define the Jones polynomial by what is called the Kauffman bracket, which is

related to VL(t) by a factor which is easy to calculate. To do that, present a link L by a link

diagram, namely a projection of the link onto two dimensions. This is a picture which involves

crossings. The Kauffman bracket of the link, denoted by < L >, is a Laurant polynomial in A for

A = t−4. It can be defined in a downward self reducible way, namely, in terms of the Kauffman

brackets of links with one less crossing: < L >= A < L1 > +A−1 < L2 >, where L1 is the link

achieved from L by replacing one of its crossings by (we will refer to this picture as capcup)

and L2 is the same link except that the crossing is replaced by . Also, for L a knot which

contains a loop, < L > is defined to be d = −A2 − A−2 times the Kauffman bracket of the same

knot except that the loop is removed. The parameter d is also called the loop value. Finally, the

Kauffman bracket of the unknot, namely of one loop, is equal to 1.

The Jones polynomial can also be defined via braids. A braid of n strands and m crossings

is described pictorially by n strands hanging alongside each other, with m crossings, each of two

adjacent strands. A braid may be “closed” to form a link by tying its ends together. In this paper

we will be interested in two ways to perform such closures, namely, the trace closure and the plat

closure of the braid (to be defined later on). We will thus consider the Jones polynomial of links

that are trace or plat closures of braids.

From the moment of the discovery of the Jones polynomial, the issue of how hard it is to compute

was important. There is a very simple inductive algorithm (essentially due to Conway in [5]) to

compute it by changing crossings in a link diagram, but, naively applied, this takes exponential

time in the number of crossings. On the other hand the Alexander polynomial [1], can be computed

by almost exactly the same exponential algorithm but can also be computed in polynomial time

using a different definition of the Alexander polynomial. Moreover if the exponential algorithm for

VL(t) is improved a little using some topology, it works much faster in practice on most links [7].

It was a significant step when it was shown [15] that the computation of VL(t) is #P-hard for all

but a few values of t where VL(t) has an elementary interpretation (e.g., VL(−1) is the same as the

2

Alexander polynomial at −1). Thus a polynomial time algorithm for computing VL(t) for any value

of t other than those elementary ones is unlikely. Of course, the #P-hardness of the problem does

not rule out the possibility of good approximations; see [16]. Still, the best classical algorithms to

approximate the Jones polynomial at all but at the trivial points are exponential.

Yet another special feature of VL(t) is its relationship with quantum mechanics. A deep con-

nection was discovered by Witten 20 years ago [33] between the Jones polynomial evaluated at

particular roots of unity, and Topological Quantum Field Theory (based on Chern-Simons the-

ory). In [8, 9] a model of quantum computation was defined, which is based on TQFT and the

Chern-Simons theory. Kitaev, Larsen, Freedman and Wang showed that this model is polynomi-

ally equivalent in computational power to the standard quantum computation model [10, 11]. This

draws a strong connection between quantum computation and the Jones polynomial. In fact, the

result in [10] implicitly implies an efficient quantum algorithm for the approximation of the Jones

polynomial at t = e2πi/5. Unfortunately, this improtant algorithm was never explicitly formulated.

This is particularly unfortunate since it is known that the approximation problem is BQP-hard, by

[11], and a quantum algorithm for this problem is thus of particular importance.

In this paper we provide an efficient, explicit and simple quantum algorithm to approximate

the Jones polynomial at all points of the form e2πi/k. We do this for both the trace and the plat

closures of a braid B, which are denoted B tr and Bpl respectively.

Theorem 1.1 For a given braid B in Bn with m crossings, and a given integer k, there is a

quantum algorithm which is polynomial in n,m, k which with all but exponentially (in n,m, k) small

probability, outputs a result ∈ [ReVBtr (e2πi/k)−εdn−1,ReVBtr (e2πi/k)+εdn−1] where d = −A2−A−2,

and ε is inverse polynomial in n, k,m. The same is true with the imaginary part.

Theorem 1.2 For a given braid B in Bn with m crossings, and a given integer k, there is a

quantum algorithm which is polynomial in n,m, k which with all but exponentially (in n,m, k)

small probability, outputs a result ∈ [ReVBpl(e2πi/k) − εd3n/2/N,ReVBpl(e2πi/k) + εd3n/2/N] where

d = −A2 − A−2 and ε is inverse polynomial in n, k,m (N is an exponentially large factor to be

defined later). The same is true with the imaginary part.

By this we make the connections implied between quantum computation and the Jones polyno-

mial drawn in [10] explicit, and moreover, extend them beyond the fifth root of unity, to all roots of

unity of the form e2πi/k. Most importantly, our algorithm uses different methods than those used

in [10] to simulate TQFT by quantum computation, and in particular, our algorithm and the proof

of its correctness are fairly simple. They are based purely on algebraic results rather than on high

energy physics, Chern-Simons theory and TQFT.

The following theorem stresses the importance of the problem of approximating the Jones

polynomial to quantum computational complexity:

Theorem 1.3 Adapted from Freedman, Larsen and Wang [11] The problem of approxi-

mating the Jones polynomial of the plat closure of the braid at e2πi/k for constant k, to within the

accuracy given in Theorem 1.2, is BQP-hard.

Curiously, the hardness result of Theorem 1.3 is not known to hold (regardless of k) for the

approximation of the trace closure for which we give an algorithm as well. We remark about the

difference between the two problems in the open questions section. We finish the introduction with

an overview of the algorithm and the proof of its correctness, and with some conclusions and open

questions.

3

1.1 Description of the Algorithm

To describe our algorithm, we first need to understand the definition of the Jones polynomial

slightly better. The pictures that one gets by replacing each crossing in the braid of n strands

by one of the two pictures { , }, can be assigned the structure of an algebra, called the

Temperley Lieb algebra, and denoted by TLn. In fact, the map from the crossing to the appropriate

linear combination of the above two pictures defines a representation of the group Bn of braids of

n strands, inside the TLn algebra. The Jones polynomial can be defined as a certain trace function

(i.e., a linear function satisfying tr(AB) = tr(BA)) on the image of the braid in the TLn algebra.

Our goal is thus to design an algorithm that approximates this trace. To this end we use a

very useful fact about this trace: It satisfies some property, called the Markov property; moreover,

any trace function on the TLn algebra (or a representation of it) that satisfies this property is

equal to the above trace! This leads us to the key idea of the algorithm: Suppose we can define a

representation of the TLn algebra by matrices operating on qubits. Suppose moreover that we can

define a trace on this representation which satisifes the Markov property. By the uniqueness of the

Markov trace on the algebra (and on any representation of it), if we could estimate the trace of the

matrices of the representation, we would have estimated the Jones polynomial!

But what is the representation that should be used? If we are set to design a quantum algorithm,

it is best if the representation induced on the braid group be unitary, so that we can hope to

approximate its trace by a quantum computer. The Jones polynomial was in fact discovered [17]

via representations of the braid group. The original representation in [17] was defined on the tensor

product of n copies of the Hilbert space C
2, one for each string in the braid, with the operators

representing the crossings in the braid acting locally in the tensor product of the corresponding

two copies of C
2. This has an obvious structural resemblance to the quantum computation model

which uses n qubits, but unfortunately, this representation is not unitary.

Fortunately, it is in fact possible to give representations of the Temperley Lieb algebra which

induce unitary representations of the braid group. Such representations were constructed in [19, 17]

and are called the path model representations. For an integer k, the kth path model representation

of the braid group Bn is defined using a gadget graph. This graph, denoted Gk, is simply the line

of k − 2 segments. The representation of Bn is then defined on the vector space spanned by paths

of length n on this graph Gk. Each braid is mapped by this representation to a unitary matrix on

this vector space. Some adaptation is required here to make this representation work on the space

of n qubits.

The algorithm now goes as follows. If we want to evaluate the Jones polynomial VL(t) for L

a closure of a braid in Bn, and t = e2πi/k, we use the kth path model representation of Bn and

consider the vector space of paths of length n on Gk, embedded into the Hilbert space of n qubits.

It is not difficult to show that according to our embedding, each generator of the braid group,

namely each crossing, is mapped by the path model representation to a unitary matrix which can

be implemented efficiently by a quantum circuit. In other words, we can apply each crossing by a

quantum circuit using polynomially many elementary quantum gates. The resulting unitary matrix

corresponding to each crossing is no longer local (namely, it operates non trivially on more than

just the two qubits corresponding to the strings in the crossing), but all that matters is that it

can be applied efficiently. We find that the image (by the path model representation) of an entire

braid can be applied efficiently by a quantum computer, where the number of elementary gates

involved would be polynomial in n and in the number of crossings m. Let us call the unitary matrix

4

corresponding to a braid Q(B).

To approximate the Jones polynomial of a trace closure of the braid, it suffices to approximate

the Markov trace of Q(B). This is done using standard quantum algorithmic techniques. The

algorithm for the plat closure builds on similar ideas, though it is not directly stated in terms

of traces. Thus we obtain a polynomial quantum algorithm for the BQP-complete problem of

approximating the Jones polynomial of a plat closure of a braid.

We remark that after we have completed this work, we have learned about a previous inde-

pendent attempt to prove similar results [27] using unitary representations of the braid group.

Unfortunately, the work of [27] is greatly flawed, and in particular claims to provide an exact

solution to the #P -hard problem.

1.2 Conclusions and Further Directions

We have provided a simple algorithm for a BQP complete problem, which is different in its methods

than previous quantum algorithms. In essence, what it does is to isolate a certain local structure

of the problem, and assign gates which somehow exhibit the same local structure. Our hope is that

this more combinatorial direction in quantum algorithms will lead to further progress in the area.

In particular, one very interesting question which seems related to the techniques presented

here, is that of the approximation of the partition function of the Potts model [32]. The Potts

model is tightly connected to the Jones polynomial [34], and the exact evaluation of its partition

function is once again #P-hard [32]. A very important open question in mathematical physics is

the complexity of the approximation of the partition function of the Potts model. We hope that

the results of this paper will lead to progress in this question, or in other questions related to

approximating #P -complete problems.

Another open question is that of the computational complexity of the approximation of the

Jones polynomial of the plat closure of a braid, at points e2πi/k for k which grows polyhnomially

in the number of strands. We believe that these problems are also BQP-complete, but we were

unable to prove this so far. The issue here is that in order to approximate any quantum circuit

by the braid generators, one needs to apply the well known Solovay-Kitaev theorem [24], but this

does not apply to non-constant generators as we get for non-constant k.

Finally, we briefly discuss the relation between the plat and the trace closures problems. It

is known that any plat closure of a braid can be transformed efficiently into a trace closure of

some other braid [30]. The reader might therefore find it curious that one of these problems

is BQP-complete, while the other one is not known to be so. The explanation lies in the fact

that the quality of the approximation in both algorithms depends exponentially on the number of

strands in the braid. The transformation from plat to trace closures requires, in the worst case,

a significant increase in the number of strands. This, unfortunately, degrades the quality of the

approximation exponentially. The computational complexity of the trace closure problem is left as

an open question.

Organization of paper: Section 2 provides the background. Section 3 introduces the unitary

representation of the braid group Bn by operators on n qubits. Finally, in Section 4 we provide the

quantum algorithms to approximate the Jones polynomial of the trace and plat closure of a braid,

and prove their efficiency and correctness. Appendix A contains background on the model of quan-

tum computation. Appendix B provides the necessary background on algebras and representations.

Finally, appendix C contains proofs that were too technical to include in the paper.

5

2 Background

2.1 The Braid Group

Consider two horizontal bars, one on top of the other, with n pegs on each. By an n strand braid

we shall mean a set of n strands such that:

• Each strand is tied to one peg on the top bar and one peg on the bottom bar,

• Every peg has exactly one end attached to it,

• The strands may pass over and under each other,

• The tangent vector of every strand at any point along the path from top bar to bottom bar

always has a non-zero component in the downward direction.

An example of a 4-strand braid:

.

The set of n-strand braids, Bn, has a group structure with multiplication as follows. Given two

n-strand braids b1, b2, place braid b1 above b2, remove the bottom b1 bar and the top b2 bar and

fuse the bottom of the b1 strands to the top of the b2 strands.

The product of the above 4-strand braid with the 4-strand braid is:

.

An algebraic presentation of the braid group due to Artin is as follows [2]: Let Bn be the group

with generators {1, σ1, . . . σn−1} and relations

1. σiσj = σjσi for |i− j| ≥ 2,

2. σiσi+1σi = σi+1σiσi+1.

This algebraic description corresponds to the pictorial picture of braids: σi corresponds to the

pictorial braid

ni1 i+1

, and concatenating such pictures gives a general braid in Bn.

6

2.2 The Temperley-Lieb Algebras

An algebra is a vector space A with a multiplication. The multiplication must be associative and

distributive. We proceed to define a sequence of algebras:

Definition 2.1 Given n an integer and d a complex number we define the Temperley-Lieb algebra

TLn(d) to be the algebra generated by {1, E1, . . . , En−1} with relations

1. EiEj = EjEi, |i− j| ≥ 2,

2. EiEi±1Ei = Ei,

3. E2
i = dEi.

When d is real, as it will be throughout the paper, we define the involution on TLn(d), denoted

by ∗, by (Ei1Ei2 · · ·Eir)
∗ = EirEir−1

· · ·E1, and extend by linearity.

There is a well known geometric description of TLn(d) due to Kauffman [20]. It uses the notion of

Kauffman n-diagrams, which is best explained by an example, e.g., a Kauffman 4-diagram:

In general, a Kauffman n-diagram is a diagram as above, with n top pegs and end bottom pegs,

and no crossings and no loops. More formally:

Definition 2.2 Let Dn be a rectangle with n marked points on the top of the boundary and n

marked points on the bottom. We define a Kauffman n-diagram to be a picture sitting inside Dn

consisting of n non-intersecting curves that begin and end at distinct marked boundary points. We

will consider two such diagrams equal if they are isotopically equivalent (keeping the boundary fixed).

We define a vector space over these diagrams:

Definition 2.3 Let Kn be the vector space of complex linear combinations of Kauffman n-diagrams.

Multiplication of these diagrams is done just like in the case of braids. To multiply a diagram k1

with a diagram k2 we stack k1 on top of k2, and fuse the matching ends of the strands. However, the

resulting diagram may contain loops, which means it is not in Kn. Hence, the loops are removed,

but the resulting diagram is multiplied by dm (where m is the number of loops removed). For

example, a multiplication of the above Kauffman 4-diagram with the Kauffman 4-diagram

results in:

7

d

This gives us a multiplication defined on the vector space Kn, and thus, we have an algebra.

This algebra is denoted gTLn(d). More formally:

Definition 2.4 Let gTLn(d) denote the algebra consisting of the vector space Kn with multiplica-

tion of two Kauffman diagrams k1 and k2 as follows:

Stack k1 on top of k2 so that the bottom n marked points points of k1 align with the top n marked

points of k2. Connect the strands of k1 ending at the bottom of k1 to the corresponding strands of

k2 starting at the top of k2. The resulting picture may have some closed loops; let m be the number

of such loops. Erasing the closed loops yields a Kauffman diagram k3 with boundary the top of k1

and the bottom of k2. Define the product k1 · k2 = dmk3.

For a Kauffman n-diagram k, define k∗ to be the Kauffman n-diagram that is the reflection of

k along a horizontal line. Extend the ∗ map conjugate linearly to all of gTLn(d).

The algebras TLn(d) and gTLn(d) are isomorphic:

Theorem 2.1 The map ψ : TLn(d) → gTLn(d) given by the homomorphic extension of ψ(Ei) =
ni1 i+1

is an isomorphism.

Proof: It is a simple exercise to check that the image of the relations given in definition 2.1 are

relations in gTLn(d). All that remains then is to show that ψ is onto and that the dimensions of

TLn(d) and gTLn(d) are equal. (The details can be found in []). 2

It is clear that the subalgebra of gTLn(d) consisiting of linear combinations of only those

Kauffman n diagrams with a vertical rightmost strand (i.e. diagrams where the top rightmarked

point is connected to the bottom right marked point by a vertical time) is isomorphic to gT ln−1(d).

We see then that there is a natural nesting of the algebra inclusions gT l1(d) ⊂ gTL2(d) ⊂ · · · ⊂
gT ln(d). These are exactly the image by the map ψ of the natural algebra inclusions T l1(d) ⊂
TL2(d) ⊂ · · · ⊂ T ln(d).

2.3 Representing the Braid Group Inside the Temperley Lieb Algebra

We define a mapping from the braid group to the Temperley-Lieb algebra:

8

Definition 2.5 ρA : Bn 7→ TLn(d) is defined by

ρA(σi) = AEi +A−1I.

Claim 2.1 For a complex number A which satisfies d = −A2 − A−2, the mapping ρA is a repre-

sentation of the braid group Bn inside TLn(d).

Proof: We need to check that the relations of the braid group are satisfied by this mapping.

1. For |i− j| > 1, ρA(σi) commutes with ρA(σj) since Ei commutes with Ej.

2. We need to show ρA(σi)ρA(σi+1)ρA(σi) = ρA(σi+1)ρA(σi)ρA(σi+1). Opening up the first

expression we get A3EiEi+1Ei+AEi+1Ei+AE
2
i +A−1Ei+AEiEi+1+A−1Ei+1+A−1Ei+A

−3.

The second expression gives A3Ei+1EiEi+1 + AEiEi+1 + AE2
i+1 + A−1Ei+1 + AEi+1Ei +

A−1Ei +A−1Ei+1 +A−3. We remove similar terms, and using the relations of the TLn(d) it

remains to show that (A−1 + Ad + A3)Ei = (A−1 + Ad + A3)Ei+1. This holds because the

constants are 0 due to the relation between d and A.

2

From now on we set d = −A2 −A−2.

2.4 Tangles

For this paper, we define a tangle to be a braid in which some of its crossings have been replaced

by a picture of the form { }. Both braids and Kauffman diagrams are tangles.

2.5 From Braids to Links

We can connect up the endpoints of a braid in a variety of ways to get links. We single out two

such way:

Definition 2.6 The trace closure of a braid B shall be the link achieved by connecting the tops of

the braids around to the right to the bottom of the braid. We denote it by B tr.

Definition 2.7 The plat closure of a 2n-strand braid shall be the link formed by connecting on

the top (respectively on the bottom) the strands beginning at the odd numbered pegs (respectively the

strands ending at the odd numbered pegs) to the neighboring peg immediately to the right.

Examples of the trace closure and the plat closure of the same 4-strand braid are:

.

We note that the above defined closures are also well defined for tangles.

9

To define the Jones polynomial, one considers an oriented version of the above links. An

oriented link is a link with one arrow on each connected component of the link. By convention, the

orientation of the link Btr is given by assigning the downwards direction to every strand. One can

easily convince oneself that this gives a consistent orientation to each loop in the resulting link,

and so this results in an oriented link. There is no natural way to assign an orientation to the plat

closure of a link. For the definition of the Jones polynomial of the plat closure we thus consider

an arbitrary orientation. In fact, the Jones polynomial turns out to be almost independent of the

orientation (up to a factor which is easy to calculate).

2.6 The Jones Polynomial

A definition of the Jones polynomial VL(t) due to Kauffman [20] is as follows. We start by defining

the Kauffman bracket < L > as a polynomial in A for A such that A−4 = t (this is an equivalent

definition to the one given in the introduction).

Definition 2.8 Consider a link L, given by a link diagram. A state σ of L shall mean a choice,

at each crossing of L, from the set { , }. To a state σ of a link L we associate the

following expression σ(L): Let σ+ (σ−) be the number of crossings for which σ chooses (

). Let |σ| be the number of closed loops in the diagram gotten by replacing each crossing by the

choice indicated by the state σ. Define σ(L) = Aσ+−σ−
d|σ|−1. The Kauffman bracket polynomial,

also called the bracket state sum, for a link, is defined to be

< L >=
∑

all states σ

σ(L).

The connection between the Jones polynomial and the Kauffman bracket is given by a notion

called the writhe:

Definition 2.9 The writhe of an oriented link L is defined as follows. To each crossing that looks

like this we assign the value +1, whereas to each crossing that looks like this: we assign

the value −1. The writhe of an oriented link is the sum over all the crossings of these signs.

Definition 2.10 The Jones polynomial of an oriented link L is defined to be VL(t) = VL(A−4) =

(−A)3w(L)· < L > where w(L) is the writhe of the oriented link L, and < L > is the bracket state

sum of the link L, ignoring the orientation.

Thus, the Jones polynomial is a scaled version of the bracket polynomial. Moreover, the writhe

of a link can be easily calculated from the link diagram, and hence the problem of calculating the

bracket sum polynomial is equivalent in its complexity to that of calculating the Jones polynomial.

2.7 The Markov Trace

We define the following trace on gTLn(d).

10

Definition 2.11 The Markov trace tr : gTLn(d) → C is defined on a Kauffman n-diagram K as

follows. Connect the top n labelled points to the bottom n labelled points of K with non-intersecting

curves that loop around to the right of K. In this way the rightmost labelled points on top and

bottom get connected as do the second rightmost etc. (see picture 2). Let a be the number of loops

of the resulting diagram. Define tr(K) = da−n. Extend tr to all of gTLn(d) by linearity.

We include an example of the trace of the Kauffman 4-diagram given above:

tr() = d−4 = d−2

Since TLn(d) and gTLn(d) are isomorphic, tr induces a trace on TLn(d); for simplicity we shall

denote this map by tr as well.

Claim 2.2 tr satisfies the following three properties:

1. tr(1) = 1

2. tr(XY) = tr(Y X) for any X,Y ∈ TLn(d)

3. If X ∈ TLn−1(d) then tr(XEn−1) = 1
d tr(X).

Proof: It is straightforward to verify this by examining the appropriate pictures in gTLn(d). 2

Of particular importance is the third property, which is referred to as the Markov property.

These three properties uniquely determine a linear map on TLn(d):

Lemma 2.1 [18] There is a unique linear function tr on TLn(d) (and on any representation of it)

that satisfies properties 1 − 3.

Proof: By a reduced word w ∈ TLn(d) we shall mean a word in the set {1, E1, . . . En−1} that is

not equal to cw′ for any c a constant and w′ a word of smaller length. We now show that a reduced

word w ∈ TLn(d) contains at most one En−1 term.

We induct on n. Clearly the only reduced words in T l2(d) are 1 and E1. Assume the statement

is true for reduced words in T ln−1(d). Suppose there exists a reduced word w ∈ TLn(d) containing

more than one En−1 term. Write w = w1En−1w2En−1w3 with w2 a word without En−1. Since w2

must be reduced and is in T ln−1(d), the induction hypothesis implies w2 contains at most one En−2

term. If w2 does not contain a En−2 term, w2 ∈ T ln−2(d) and it commutes with En−1 so we have

w = w1w2En−1En−1 which shows that w was not reduced. Otherwise we can write w2 = vEn−2v
′

with v, v′ both words in TLn−2(d). It follows therefore that v and v ′ commute with En−1 and thus

w = w1vEn−1En−2En−1v
′w3 which again shows that w was not reduced. We conclude that any

reduced word in TLn(d) contains at most one En−1 term.

Given w ∈ TLn(d)\T ln−1(d) a reduced word we write w = w1En−1w2 with w1, w2 ∈ T ln−1(d).

Then tr(w) = tr(w2w1En−1) = dtr(w2w1), the first equality by property 2. The second by property

3. Thus for any word w ∈ TLn(d) we can reduce the trace computation to the trace of a word

11

w2w1 ∈ T ln−1(d). Iterating this process, (and using the fact that tr(1) = 1), we see that the trace

of a word in TLn(d) is uniquely determined by the relations 1.-3. Since the trace is linear, the

result follows. 2

We have the following convenient description of the Jones polynomial in terms of the Markov

trace.

Lemma 2.2 Given a braid B, then

VBtr(A−4) = (−A)3w(Btr)dn−1tr(ρA(B)).

Proof: By Definition 2.10, we need to show that < B tr >= tr(ρA(B))dn−1. We observe that

there exists a one to one correspondence between states that appear in the bracket sum < B tr >,

and Kauffman n-diagrams that appear in ρA(B). The weight of an element in the bracket state

sum corresponding to the state σ is Aσ+−σ−
d|σ|−1. We observe that the corresponding Kauffman

n-diagram appears in ρA(B) with the weight Aσ+−σ−
. Hence, by linearity of the trace, it remains

to show that for each σ, the trace of the Kauffman diagram corresponding to σ, times dn−1, equals

to the the remaining factor in the contribution of σ to the bracket state sum, d|σ|−1. This is true

since by the definition of the trace of a Kauffman diagram, it is exactly d|σ|−n. 2

In fact, this lemma applies also if the braid B is replaced by a tangle C.

2.8 The Hadamard Test

Suppose a unitary matrix U can be applied efficiently by a quantum circuit Q. Consider a vector

|α〉 which we can generate efficiently. The following fact is standard in quantum computation.

There exists an efficient quantum circuit whose output is a random variable ∈ {−1, 1}, and whose

expectation is the real (imaginary) part of 〈α|U |α〉. This is very similar to the usual SWAP test

often used in quantum computation.

Initialize the quantum computer with the two-register state 1√
2
(|0〉 + |1〉) ⊗ |α〉. Now, apply

the gates in Q one by one, on the second register, conditioned that the first qubit is in the state

|1〉. Since each gate is replaced by a gate on one more qubit, this operation is efficient. This gives

the state 1√
2
(|0〉 ⊗ |α〉 + |1〉 ⊗ QA(B)|α〉. Apply a Hadamard gate on the first qubit, measure, and

output 1 if the measurement result is |0〉, −1 if the measurement result is |1〉. The expectation of

the output is exactly Re〈α|U |α〉.
To get a random variable whose expectation is the imaginary part, start with the state 1√

2
(|0〉+

i|1〉) ⊗ |α〉, and apply instead of the Hadamard gate, the gate which takes |0〉 to 1√
2
(|0〉+ i|1〉), and

|1〉 to 1√
2
(|0〉 − i|1〉).

3 Unitary Representation of Bn

Here we define a unitary representation of the braid group. To do this we start with a definition

of a representation of the Temperley Lieb algebra TLn(d), and this induces a representation of the

braid group Bn, via the mapping defined in Definition 2.5. The representations we use here are

essentially the path model representations due to Jones [], except that these representations were

not defined originally to apply to strings of n bits, which we need in order to apply them later on

n qubits. The adaptation is fairly straight forward. We start by defining a representation of the

Temperley Lieb algebra TLn(d), and proceed to derive the representation of the braid group.

12

3.1 The Representation of TLn(d)

The representation of TLn(d) is defined only if d = 2cos(π/k), for some integer k > 2. We consider

the graph Gk which is a line of k − 2 edges, namely, of k − 1 sites:

k−1 vertices

.

A string of n bits (a computational basis state) represents a path of n steps on Gk, if when we

read the bits from left to right, and interpret 0 to be “left” and 1 to be “right”, then the resulting

path starting at the left most site of Gk remains inside Gk all the time.

We shall interpret a string of n bits to be a sequence of instructions, where a 0 shall mean take

one step to the left and a 1 shall mean take one step to the right. We shall restrict our attention to

those n bit strings that describe a path that starts at the leftmost vertex of Gk and remains inside

Gk at each step. From here on when we say “path” we actually mean the bit string that represents

the path.

Definition 3.1 We define Pn,k,` to be the set of all paths p on Gk of n steps which start at the left

most site and end at the `’s site. We define the subspace Hn,k,` ⊂ Hn to be the span of |i〉 over all

i ∈ Pn,k,`. In a similar way, we define Pn,k to be all paths with no restriction on the final point,

i.e., Pn,k = ∪k
l=1Pn,k,l, and we define Hn,k to be the span of the corresponding computational basis

states.

We define a representation Φ as a homomorphism from TLn(d) to matrices operating on the

subspace Hn,k.

To define Φ it suffices to specify the images of the Ei’s, Φ(Ei) = Φi (Φ is then extended to the

entire algebra by the multiplication property of a representation, and by linearity). To uniquely

define Φi on Hn,k, it suffices to define what it does to each basis element, namely, to |p〉 for p ∈ Pn,k.

We need some notation. Define the following tridiagonal k − 1 by k − 1 matrix:

Mk =

0 1 · · · 0

1 0 1

1
...

. . .

0 1

0 · · · 1 0

(1)

Claim 3.1 The (k − 1)-dimensional vector λ defined by λ` = sin(π`/k) for ` ∈ {1, ..., k − 1} is an

eigenvector of Mk, with eigenvalue d = 2cos(π/k).

Proof: See Appendix C. 2

We set λ` = sin(π`/k)) for ` ∈ {1, ..., k − 1}. We also need the following notation:

Definition 3.2 Let p|i denote the restriction of a path p to its first i−1 coordinates. Given a path

z on Gk, we denote by `(z) ∈ {1, ..., k − 1} the location in Gk that the path z reached in its final

site. Denote zi = `(p|i).

13

We can now define the operation of Φi on a path p. Φi is defined as an operation on the first

i+ 1 coordinates in p:

Φi|p|i00〉 = 0 (2)

Φi|p|i01〉 =
λzi−1

λzi

|p|i01〉 +

√

λzi+1λzi−1

λzi

|p|i10〉

Φi|p|i10〉 =
λzi+1

λzi

|p|i10〉 +

√

λzi+1λzi−1

λzi

|p|i01〉

Φi|p|i11〉 = 0

To apply Φi on the n-bit string |p〉 we tensor the above transformation with identity on the last

n−i−1 qubits. For dealing with the edge cases, we use the convention λj = 0 for any j 6∈ {1, .., k−1}.

Claim 3.2 Φ is a representation of TLn(d).

Proof: The proof involves checking that all the relations of the algebra are satisfied. We use the

fact that λ is an eigenvector of Mk, with eigenvalue d. The proof is fairly technical and is given in

Appendix C. 2

3.2 Unitary Representation of the Braid Group

We use the representation of the braid group inside the TLn(d) algebra (Definition 2.5) to derive

a unitary representation of Bn.

Claim 3.3 Let A = ie−π/2k. Define the map ϕ by specifying its operation on the generators σi of

Bn to be ϕ(σi) = ϕi = Φ(ρA(σi)) = AΦi +A−1I. The map ϕ is a unitary representation of Bn.

Proof: The fact that Φ is a representation of the braid group follows from 3.2, and from the fact

that the braid group is represented inside the TLn(d) algebra, by Claim 2.1. To prove unitarity,

we first prove:

Claim 3.4 Φi = Φ†
i .

The proof appears in Appendix C. The unitarity follows by simple verification, using the fact

that Φi is Hermitian by Claim 3.4, and the fact that |A| = 1 and so A−1 = A∗. We have

Φ(ρA(σi))Φ(ρA(σi))
† = (A−1I +AΦi)((A

−1)∗I +A∗Φ†
i) = I +A−2Φi +A2Φi + dΦi = I. 2

The map ϕ can be extended to operate on tangles in the obvious way: Each crossing is mapped

by ρA to a TL algebra element, and then Φ is applied.

4 The Quantum Algorithm

We are now ready to write down the quantum algorithm that provides an additive approximation

of the Jones polynomial, for both the plat closure of a briad or the trace closure of a braid. For this

we first show that the unitary representation of each crossing, namely, the unitary matrices ϕi, can

be implemented efficiently. The matrices ϕi are defined so far only on Hn,k which is a subspace of

the Hilbert space of n qubits. We arbitrarily define their extension to the rest of the Hilbert space

to be the identity.

14

Claim 4.1 For all i ∈ {1, ..., n}, ϕi can be implemented on the Hilbert space of n qubits using

poly(n, k) gates.

Proof: A path is a sequence of 0’s and 1’s, each such bit corresponds to going right or left. Consider

a path p in Pn,k, and an i between 1 to n. We can easily calculate zi = `(p|i−1 (which is a number

between 1 and k − 1), and write it down on O(log(k)) ancilla qubits. To do this we initialize a

regiter of log(2k) qubits to 0. We then apply a local gate so that the last qubit in the register is

1. This initilaize the register which counts the location on Gk to 1. Now, we apply the following

unitary transformation on the first qubit in the path and the extra register:

|b〉|`〉 7→ |b〉|`+ (−1)bmod2k〉.

Since this is a unitary operation on log(2k) + 1 qubits, it can be applied using polynomially in k

many elementary quantum gates. We now move to the next qubit in the path and apply the same

transformation; We do this on all the qubits in the path up to the i− 1th qubit, from left to right.

We end up with the extra register carrying `(p|i−1).

Now, Φi, depends only on the location `(p|i−1) and on the i and i+1 qubits. Hence, once again

we have a unitary transformation which operates on logarithmically in k many qubits, and so we

can implement it in polynomially in k many quantum gates.

After we apply Φi, we erase the calculation of `(p|i−1) by applying the inverse of the first

transformation which wrote the location down. 2

As a corollary, we can deduce that

Corollary 4.1 For every braid B ∈ Bn, with m crossings, there exists a quantum circuit QA(B)

that applies ϕ(B) on n qubits, using poly(m,n, k) elementary gates.

Proof: Order the crossings in the braid in topological order, and apply the corresponding unitary

matrix of each crossing, ϕi, one by one, in that order. Each crossing takes poly(n, k) elementary

gates by Claim 4.1, and there are m of them. 2

We can now describe the two algorithms. The input for both is a braid of n strands and m

crossings, and an integer k.

—————————————————————————

Algorithm Approximate-Jones-Plat-Closure

• Repeat for j = 1 to poly(n,m, k):

1. Generate the state |α〉 = |1, 0, 1, 0, . . . , 1, 0〉
2. Output a random variable xj whose expectation value is Re〈α|Q(B)|α〉 using the Hadamard

test.

• Let r be the average over all xj achieved this way. Output (−A)3w(Bpl)dn−1r.

—————————————————————————

Algorithm Approximate-Jones-Trace-Closure

• 1. Classically, pick a random path p ∈ Pn,k with probability Pr(p) ∝ λ`, where ` is the index

of the site which p ends at. This can be done to within exponentially good precision, in

polynomial time.

15

2. Repeat for j = 1 to poly(n,m, k): Output a random variable xj whose expectation value

is Re〈p|Q(B)|p〉 using the Hadamard test. Let r be the average over all xj.

3. Output (−A)3w(Btr)dn−1r.

—————————————————————————

Claim 4.2 The above two quantum algorithms can be performed in time polynomial in n,m, k.

Proof: Algorithm Approximate-Jones-Plat-Closure is clearly efficient, because the Hadamard test

can be applied efficiently using Corollary 4.1. To perform the first step of the second algorithm

efficiently, we use the following claim.

Claim 4.3 Given n, k, `, there exists a classical probabilistic algorithm which runs in time polyno-

mial in n and k, and outputs a random path in Pn,k,` according to a distribution which is exponen-

tially close to uniform.

Proof: (We thank O. Regev for a discussion that lead to this variant [26].) We first define the

following n × k array A, such that Ai,j = Pi,k,j (the number of path on Gk of i steps that end at

j). Ai,j can be calculated recursively efficiently, using the recursive formula:

Pn,k,` = Pn−1,k,`−1 + Pn−1,k,`+1,

where if the third argument in P (n, k, `) is less than 1 or larger than k − 1 we count the value of

Pn,k,` as 0. We initialize P1,k,1 = 1 and P1,k,` = 0 if ` is different than 1, so that all paths start at

the leftmost site.

To pick a random path ending at `, we will pick the values of an array p from the last cite of

the path to the first, one by one, as follows. Initialize the last site to be p(n) = `. Now choose

P (n−1) randomly with the correct weight according to Ai,j. Namely, we decide if P (n−1) = `−1

or P (n − 1) = ` + 1 according to the ratio Pn−1,k,`−1 : Pn−1,k,`+1. To make this decision, we toss

a random coin with the correct bias. We can now repeat the same procedure but for paths of

length n − 1. The random choices can be done with exponentially good accuracy, and hence we

can approximate the distribution exponentially close. 2

The overall distribution is now sampled by picking a random ` ∈ {1, . . . , k}, with probability

proportional to λ`, and then using the above claim. We note that our calculations involve irrational

numbers, λ`, but these can be approximated to within an exponentially good precision efficiently.

2

Theorem 4.1 Algorithm Approximate-Jones-Trace-Closure approximates the Jones polynomial of

Btr at A−4 = e2πi/k, to within the precision specified in Theorem 1.1.

Proof: We will need the following definition.

Definition 4.1 Define Trn(U) for every U in the image of ϕ(Bn) to be:

Trn(U) =
1

N

k−1
∑

`=1

λ`Tr(U |`)

where by reducing a matrix to ` we mean the restriction of U to the subspace Hn,k,`, and Tr denotes

the standard trace on matrices. The renormalization is N =
∑

` λ`dim(Hn,k,l) where the sum is

taken over all `s such that Pn,k,` is non empty.

16

This definition makes sense because we want to apply the trace to matrices in the image of ϕ,

and indeed, such matrices are block diagonal, with the blocks indexed by `, the last site of the

paths:

Claim 4.4 For any B ∈ Bn, ϕ(B)Hn,k,` ⊆ Hn,k,`.

Proof: (Of Claim 4.4) It is easy to see that Φi cannot change the final point of a path since it only

moves 01 to 10, which does not change the end point. 2

Hence, the above trace function simply gives different weights to these blocks (and gives zero

weights on strings that aren’t paths).

Claim 4.5 The trace Trn(ϕ(B)) satisfies the three properties in Claim 2.2.

Proof: (Of Claim 4.5) We start by verifying that Tr(Φ(1)) = 1. The braid 1 is simply the n strands

with no crossings. The path model representation takes it to the identity on the set of the legal

paths, Pn,k. Hence, this property follows from the renormalization.

The fact that Trn(U) satsifies the second property follows from Claim 4.4 plus the fact that the

standard trace on matrices satisfies this property, so Trn(U) satisfies it on each block separately.

We now turn to the Markov property. We have to show that ifX ∈ TLn−1(d)) then tr(Φ(X)Φ(En−1)) =
1
dtr(Φ(X)). We note that for any X ∈ TLn−1(d), Φ(X) can be written as a linear combi-

nation of terms of the form |p〉〈p′| ⊗ I, with p, p′ ∈ Pn−1,k and the identity operates on the

last qubit. By linearity, it suffices to prove the Markovian property on such matrices. Writing

|p〉〈p′| ⊗ I = |p0〉〈p′0| + |p1〉〈p′1| we require:

tr(|p0〉〈p′0|Φn−1 + |p0〉〈p′0|Φn−1) =
1

d
tr(|p0〉〈p′0| + |p0〉〈p′0|).

We consider two cases. First, p 6= p′. In this case the right hand side is 0. As for the left hand

side, 〈p′0|Φn−1 has a zero component on 〈p0|. To see this, we check the two cases: if p′ ends with 0

then 〈p′0|Φn−1 = 0, otherwise p′ ends with 1. 〈p′0|Φn−1 is then a sum of two terms, one equals to

〈p′0| and is therefore different than 〈p0|, and the other ends with 01 and is thus also different from

〈p0|. The same argument works to show that 〈p′1|Φn−1 has a zero component on 〈p1|. Hence, the

left hand side is also 0.

It is left to check the equality in the case p = p′. We require

tr(|p0〉〈p0|Φn−1 + |p1〉〈p1|Φn−1) =
1

d
tr(|p0〉〈p0| + |p0〉〈p0|).

Suppose `(p) = `. Then the right hand side is equal to 1
d(λ`−1 + λ`+1) = λ`, using the properties

of the eigenvector λ as in Claim 3.1. To see that the left hand side is the same, we again divide

to cases. Suppose first that p ends with 0. In this case 〈p0|Φn−1 = 0. As for the other term,

〈p1|Φn−1 = λ`

λ`+1
〈p1|, using the definition of Φn−1 and the fact that p without its last step ends in

`+ 1. The weight in the trace of the left hand side is λ`+1, and so the left hand side is equal to λ`

too. The argument is similar in the case that p ends with 1. 2

By the uniqueness of the Markov trace, Lemma 2.1, we have that Trn(ϕ(B)) = tr(ρA(B)).

Hence, using Lemma 2.2, we have that for any braid B ∈ Bn

Lemma 4.1

VBtr(A−4) = (−A)3w(Btr)dn−1Trn(ϕ(B)).

17

Due to Lemma 4.1, the correctness of the algorithm follows trivially from the following claim.

Claim 4.6 With all but exponentially small probability, the variable r used in the algorithm is

∈ [ReTrn(ϕ(B)) − ε,ReTrn(ϕ(B)) + ε] for ε which is inverse polynomial in n, k,m.

Proof: The Hadamard test indeed implies that the expectation of xj for a fixed p is exactly

Re〈p|ϕ(B)|p〉. The expectation of the variable xj taken over a random p is thus

∑

`,p∈Pn,k,`
λ`Re(〈p|ϕ(B)|p〉)

∑

`,p∈Pn,k,`
λ`

=

∑

` λ`Re(Tr(ϕ(B)|`))
∑

` λ`dim(Hn,k,l)
= Re(Trn(ϕ((B)))).

Since r is the average of polynomially many i.i.d random variables, each taking values between 1

and −1, the result follows by the Chernoff-Hoeffding bound. 2

This completes the proof of Theorem 4.1. 2

Theorem 4.2 Algorithm Approximate-Jones-Plat-Closure approximates the Jones polynomial of B pl

at A−4 = e2πi/k, to within the desired precision as in Theroem 1.2.

Proof: By the correctness of the Hadamard test, and by the Chernoff-Hoeffding bound, the algo-

rithm outputs a number which is with exponentially good confidence within δ = 1/poly(n,m, k)

from Re〈α|ϕ(B)|α〉. The main point now is the following observation:

Claim 4.7

|α〉〈α| = Φ1Φ3 . . .Φn−1/d
n/2.

Proof: We show that Φ1Φ3 . . .Φn−1 applied to any path except for |α〉 gives 0, and when applied

to |α〉 it gives the desired factor. To see this, recall that the operators Φi commute if their indices

are more than one apart. We first apply Φ1. Since the path starts at the left most site, Φ1 turns

out to simply apply the following rescaled projection: d|10〉〈10| on the first two coordinates. This

projection forces the first two coordinates to be 10, and if they are indeed equal to 10, a factor

of d is assigned. otherwise the state is sent to 0. Hence, if the state was not sent to zero, then

the path must start at the left most state when it starts its third step. So it is back to the same

position it was in its first step. Hence, a similar argument applies when we apply Φ3 on the next two

coordinates. Φ3 would thus operate as if it is the same rescaled projection d|10〉〈10|. By induction,

we get the desired result. 2

We thus have, using Definition 4.1 and the above claim:

〈α|ϕ(B)|α〉 = Tr(ϕ(B)|α〉〈α|) =
N

λ1
Trn(ϕ(B)|α〉〈α|) =

N

λ1
Trn(ϕ(B)Φ1Φ3 . . .Φn−1/d

n/2). (3)

The matrix φ(B)Φ1Φ3 . . .Φn−1 = Φ(ρA(B))Φ1Φ3 . . .Φn−1 is equal to ϕ(C) for C the tangle

achieved by concatenating the braid B with n/2 capcups. We have that

〈α|ϕ(B)|α〉 =
N

λ1
Trn(ϕ(C)).

To complete the proof, we relate Trn(ϕ(C)) to VBpl , similarly to what was done in the proof

of Theorem 4.1. By the uniqueness of the Markov trace, Lemma 2.1, we have that Trn(ϕ(c)) =

tr(ρA(c)) for any tangle c. Hence, using Lemma 2.2, we have that for our tangle C,

VCtr(A−4) = (−A)3w(Ctr)dn−1Trn(ϕ(c)).

18

We now observe that as links, the trace closure of C is isotopic to the plat closure of B, by

simply pulling up the lower halfs of the capcups through the right side of the picture. Hence,

VCtr(A−4) = VBpl(A−4). We get that the quantity 〈α|ϕ(B)|α〉 which the algorithm approximates

relates to the Jones polyonomial of the plat closure of the braid with the correct factor, and the

approximation is indeed as required. This completes the proof of Theorem 4.2. 2

5 Acknowledgements

We thank Alesha Kitaev for the clarification regarding the difference between the plat and the trace

closure. We are greatful to Umesh Vazirani for helpful remarks regarding the presentation.

References

[1] Alexander, J. W. Topological invariants of knots and links. Trans. Amer. Math. Soc. 30 (1928),

no. 2, 275–306.

[2] Artin, E. (1947). Theory of braids. Annals of Mathematics, 48 101–126.

[3] Bernstein E and Vazirani U, 1993, Quantum complexity theory, SIAM Journal of Computation

26 5 pp 1411-1473 October, 1997

[4] Birman, J. (1974). Braids, links and mapping class groups. Annals of Mathematical Studies,

82.

[5] J.H. Conway An enumeration of knots and links, and some of their algebraic proper-

ties.Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) (1970) 329–358

[6] W. van Dam and S. Hallgren, Efficient quantum algorithms for shifted quadratic character

problems. In quant-ph/0011067.

[7] B. Ewing and K.C. Millett, A load balanced algorithm for the calculation of the polynomial

knot and link invariants. The mathematical heritage of C. F. Gauss, 225–266, World Sci.

Publishing, River Edge, NJ, 1991.

[8] M. Freedman, P/NP and the quantum field computer, Proc. Natl. Acad. Sci., USA, 95, (1998),

98–101

[9] M.Freedman, A.Kitaev, M. Larsen, Z. Wang, Topological quantum computation. Mathematical

challenges of the 21st century (Los Angeles, CA, 2000). Bull. Amer. Math. Soc. (N.S.) 40

(2003), no. 1, 31–38

[10] M. H. Freedman, A. Kitaev, Z. Wang S imulation of topological field theories by quantum

computers Commun.Math.Phys. 227 (2002) 587-603

[11] M. H. Freedman, M. Larsen, Z. Wang A modular Functor which is universal for quantum

computation Commun.Math.Phys. 227 (2002) no. 3, 605-622

[12] F.M. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter graphs and towers of algebras,

Springer-Verlag, 1989.

19

[13] L. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.

Letters, July 14, 1997.

[14] S. Hallgren, Polynomial-time quantum algorithms for Pell’s Equation and the principal ideal

problem. STOC 2002, pp. 653–658.

[15] Jaeger, F.(F-INPGAM-DS); Vertigan, D. L.(4-OXMT); Welsh, D. J. A.(4-OX) On the compu-

tational complexity of the Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc.

108 (1990), no. 1, 35–53.

[16] Mark Jerrum, Alistair Sinclair and Eric Vigoda, A polynomial-time approximation algorithm

for the permanent of a matrix with non-negative entries, In STOC ’01: Proceedings of the

thirty-third annual ACM symposium on Theory of computing, 712–721, 2001

[17] V.F.R Jones, A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math.

Soc. 12 (1985), no. 1 103–111.

[18] V.F.R. Jones, Index for subfactors, Invent. Math 72 (1983), 1–25.

[19] V.F.R. Jones, Braid groups, Hecke Algebras and type II factors, in Geometric methods in

Operator Algebras, Pitman Research Notes in Math., 123 (1986), 242–273

[20] L.Kauffman, State models and the Jones polynomial. Topology 26,(1987),395-407.

[21] Kauffman, Louis H.(1-ILCC-MS) Quantum computing and the Jones polynomial. (English.

English summary) Quantum computation and information (Washington, DC, 2000), 101–137,

Contemp. Math., 305,

[22] G. Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden subgroup

problem, arXiv:quant-ph/0302112.

[23] Markov, A. (1935). Über de freie Aquivalenz geschlossener Zöpfe. Rossiiskaya Akademiya Nauk,

Matematicheskii Sbornik, 1, 73–78.

[24] Neilsen, Chuang, Quantum Computation and Quantum Information, Cambridge press, 2000

[25] Podtelezhnikov, Alexei A.(1-NY-K); Cozzarelli, Nicholas R.(1-CA-DCB); Vologodskii, Alexan-

der V.(1-NY-K) Equilibrium distributions of topological states in circular DNA: interplay of

supercoiling and knotting. (English. English summary) Proc. Natl. Acad. Sci. USA 96 (1999),

no. 23, 12974–129

[26] O. Regev, Private communication, April 2005.

[27] V. Subramaniam, P. Ramadevi, Quantum Computation of Jones’ Polynomials, quant-

ph/0210095

[28] Simon D 1994 On the power of quantum computation, SIAM J. Comp., 26, No. 5, pp 1474-

1483, October 1997

[29] P. W. Shor: Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM J. Comput. 26(5) 1997, pp. 1484–1509.

20

[30] P. Vogel, representation of links by braids: A new algorithm, In Comment. math. Helvetici,

65 (1) pp. 104–113, 1990

[31] J. Watrous: Quantum algorithms for solvable groups. STOC 2001, pp. 60–67.

[32] D. J. A. Welsh, ”The Computational Complexity of Some Classical Problems from Statistical

Physics,” Disorder in Physical Systems, G.R. Grimmett and D.J.A. Welsh, eds., Clarendon

Press, Oxford, 1990, pp. 307-321.

[33] Witten, Edward(1-IASP-NS) Quantum field theory and the Jones polynomial. Comm. Math.

Phys. 121 (1989), no. 3, 351–399.

[34] F. Y. Wu, Knot Theory and statistical mechanics, Rev. Mod. Phys. 64, No. 4., October 1992

A Quantum computation

We have a system of n quantum bits, called qubits. A general state of the n qubits, namely, a

superposition, is a unit vector in the complex Hilbert space C
2 ⊗ C

2 ⊗ · · · ⊗ C
2. We choose an

orthonormal basis for this space, which we call the computational basis: the 2n vectors |i1〉⊗ |i2〉⊗
· · · ⊗ |in〉, where ij ∈ {0, 1}. Denote by |i〉 the basis vector |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉, where i1i2 . . .

is the binary representation of i. A unit vector in the Hilbert space is represented in this basis as
∑2n−1

i=0 ci|i〉 where
∑

i |ci|2 = 1.

A measurement of a qubit in the computational basis, applied to a superposition |α〉, is a

randomized process, the outcome of which is 0 or 1. When applied to the superposition |α〉, the

probability for 0 (respectively, for 1) is the norm squared of the projection of a state |α〉 on the

subspace spanned by all basis states where the measured qubit is in the state 0 (respectively, 1).

After the measurement is applied, the quantum state collapses to the corresponding projection,

renormalized to a unit vector.

A quantum algorithm is specified by a sequence of elementary quantum operations called quan-

tum gates. A quantum gate on k qubits is a unitary 2k × 2k matrix U . To apply this matrix on

the entire system, we tensor product it with the identity on the other qubits. We restrict ourselves

to k = 2, which suffices to provide universal quantum computation.

The initial state of a quantum algorithm is a basis state |i〉, which corresponds to the input for

the computation being the string i. The sequence of gates is then applied on this state, and at the

end of the algorithm, a measurement of a qubit marked as the output qubit is applied on the final

state. The classical outcome of this measurement is the output of the computation.

The running time, or the complexity, of a quantum algorithm is measured in this model in

terms of the number of elementary gates.

More generally, a quantum algorithm can be defined in a hybrid classical-quantum model, in

which a classical computer controls a quantum computer. In this model, the classical computer

decides what the input state for the quantum algorithm is, and what gates are applied. In addition,

it can also apply measurements in the middle of the computation, and use the outcome of the mea-

surement as input to the remaining of its computation. The purely quantum model is polynomially

equivalent to this hybrid quantum-classical model, but the hybrid quantum-classical model is more

convenient to use when designing quantum algorithms. The running time in the hybrid model is

the total number of gates, quantum and classical.

21

B Algebra Background

An algebra is a vector space A with a multiplication. The multiplication must be associative and

distributive.

Definition B.1 A linear function from an algebra to the field of scalars is called a trace if it

satisfies

tr(XY) = tr(XY) (4)

for every two elements X,Y in the algebra.

If an algebra has an identity 1 we may consider representations of a group G inside the algebra.

Such a representation ρ is just a group homomorphisms from G to the group of invertible elements

in the algebra, namely, we require ρ(g1)ρ(g2) = ρ(g1g2) for any two group elements g1, g2 ∈ G.

A representation of G is just a representation inside the algebra of n× n matrices.

We say a representation is reducible if there exists a proper subspace of vectors which is invariant

under the group action. If there is no such subspace, we say the representation is irreducible.

We will also talk about the representation of an algebra. The definition is similar to that of a

representation of a group:

Definition B.2 An r dimensional representation Φ of an algebra is a linear mapping from the

algebra into the set of r × r complex matrices Mr, such that for any two elements X,Y in the

algebra, Φ(X)Φ(Y) = Φ(XY) .

If a group is represented inside an algebra then any representation of the algebra gives a repre-

sentation of the group by composition.

Often, an algebra or a group is defined using a set of generators and relations between them.

In this case, a representation may be defined by specifying the images of the generators, provided

the same relations hold for the images as for the generators.

C Proofs

Proof: (Of Claim 3.1) We need to check that for all ` between 1 and k− 1, (Mkλ)` = 2cos(π/k)λ`.

By direct calculation using the definition of Mk we have:

(Mkλ)` =

λ2 if ` = 1

λk−2 if ` = k − 1

λ`−1 + λ`+1 if otherwise

(5)

For the case ` = 1, we have (Mkλ)1 = λ2 = sin(2π/k). By the trigonometric identity sin(2α) =

2 cos(α) sin(α), this is 2cos(π/k)sin(π/k) which is equal to 2cos(π/k)λ1, as we want. For the case

` = k− 1, we again use the same trigonometric identity and we have (Mkλ)k−1 = λk−2 = sin((k−
2)π/k) = −sin(2π/k) = −2cos(π/k)sin(π/k) = 2cos(π/k)sin((k − 1)π/k) = 2cos(π/k)λk−1, as we

want. As for the other cases, we have (Mkλ)` = λ`−1 + λ`+1 = sin(π(`− 1)/k) + sin(π(`+ 1)/k) =

2sin(π`/k)cos(π/k) = 2cos(π/k)λ` as we wanted. 2

Proof: (Of Claim 3.2) We need to show that the Φi’s satisfy the relations of Definition 2.1. We

show the relations one by one, by showing that the operators are equal on computational states |p〉
for p ∈ Pn,k.

22

1. We want to show that ΦiΦj|p〉 = ΦjΦi|p〉 if |i− j| ≥ 2. Without loss of generality, j > i. Let

p be a path. Note that due to the restriction on i, j, the pairs of bits i, i+ 1 and j, j + 1 are

disjoint. We can thus write p|j = p|ipipi+1q for some string q.

Suppose first that pi = pi+1 = 0. Then Φj(Φi|p〉) = Φj(0) = 0. Also, ΦiΦj|p|jpjpj+1〉 =

Φi(
λzj±1

λzj
|p|i00qpjpj+1〉 +

√
λzj+1λzj−1

λzj
|p|i00qpj+1pj〉). But both paths go to 0 by Φi and so

ΦiΦj|p〉 = 0. The same argument works if pi = pi+1 = 1 and likewise if pj = pj+1 = 0 pr 1.

It remains to check the cases where pj 6= pj+1, and also pi 6= pi+1. We have four cases to

check. In the first case, The first i+ 1 bit of p are p|i01q01. In this case:

ΦiΦj |p|j01〉 = (6)

Φi(
λzj−1

λzj

|p|i01q01〉 +

√

λzj+1λzj−1

λzj

|p|i01q10〉) =

λzj−1

λzj

(
λzi−1

λzi

|p|i01q01〉 +

√

λzi+1λzi−1

λzi

|p|i10q01〉) +

√

λzj+1λzj−1

λzj

(
λzi−1

λzi

|p|i01q10〉
√

λzi+1λzi−1

λzi

|p|i10q10〉)

where in the last equality we use the fact that zi, the location the path reached after i − 1

steps, does not change if the j and j + 1 bits flip. We get exactly the same expression if we

apply Φj after Φi. This is because of a similar argument: The location the path reached after

j − 1 steps does not change if we swap the i and i+ 1 bits, and hence zj doesn’t change if we

first apply Φi. This implies that Φi commutes with Φj for this case. The argument is similar

in the other three cases.

2. We now check that Φi+1ΦiΦi+1|p〉 = Φi+1|p〉. It is clear that both terms are zero if pi+1 =

pi+2. We check the other four cases by restricting p to its first i+ 2 bits.

(a) The case of p|i001. We have:

Φi+1|p|i001〉 =
λzi+1−1

λzi+1

|p|i001〉+
√

λzi+1+1λzi+1−1

λzi+1

|p|i010〉 =
λzi−2

λzi−1
|p|i001〉+

√

λzi
λzi−2

λzi−1
|p|i010〉

(7)

where we have used the fact that since pi+1 = 0, zi+1 = zi − 1.

We now apply on this expression Φi. |p|i001〉 is sent by this to 0.

Φi|p|i010〉 =
λzi−1

λzi

|p|i010〉 +

√

λzi+1λzi−1

λzi

|p|i100〉 (8)

Finally, we apply on this Φi+1 again. The second term is sent to 0 and we are left with:

Φi+1ΦiΦi+1|p|i001〉 = (9)
√

λzi
λzi−2

λzi−1

λzi−1

λzi

Φi+1|p|i010〉 =

√

λzi
λzi−2

λzi−1

λzi−1

λzi

(
λzi

λzi−1
|p|i010〉 +

√

λzi
λzi−2

λzi−1
|p|i001〉) =

√

λzi
λzi−2

λzi−1
|p|i010〉 +

λzi−2

λzi−1
|p|i001〉

23

Where in the one before last equality we have once again used the fact that the i+ 1th

bit of the path is 0 to express zi+1 in terms of zi. We observe we get the desired equality

between the two operators in this case.

(b) The case of p|i010. We have:

Φi+1|p|i010〉 =
λzi+1+1

λzi+1

|p|i010〉+
√

λzi+1+1λzi+1−1

λzi+1

|p|i001〉 =
λzi

λzi−1
|p|i010〉+

√

λzi
λzi−2

λzi−1
|p|i001〉

(10)

where we have again used the fact that since pi+1 = 0, zi+1 = zi − 1.

We now apply on this expression Φi. |p|i001〉 is sent by this to 0, and Φi|p|i010〉 is as in

Equation 8.

Finally, we apply on this Φi+1 again. The second term in Equation 8 is sent to 0 and

we are left with:

Φi+1ΦiΦi+1|p|i010〉 =
λzi

λzi−1

λzi−1

λzi

Φi+1|p|i010〉 = Φi+1 ketp|i010 (11)

Which implies the equality we are after in this case.

(c) The case of p|i101. We have:

Φi+1|p|i101〉 =
λzi+1−1

λzi+1

|p|i101〉+
√

λzi+1+1λzi+1−1

λzi+1

|p|i110〉 =
λzi

λzi+1
|p|i101〉+

√

λzi+2λzi

λzi+1
|p|i110〉

(12)

where we have used the fact that since pi+1 = 1, zi+1 = zi + 1.

We now apply on this expression Φi. |p|i110〉 is sent by this to 0.

Φi|p|i101〉 =
λzi+1

λzi

|p|i101〉 +

√

λzi+1λzi−1

λzi

|p|i110〉 (13)

Finally, we aply on this Φi+1 again. The second term is sent to 0 and we are left with:

Φi+1ΦiΦi+1|p|i101〉 = (14)

λzi

λzi−1

λzi−1

λzi

Φi+1|p|i010〉 = Φi+1|p|i010〉

which is again the equality we need.

(d) The case of p|i110. We have:

Φi+1|p|i110〉 =
λzi+1+1

λzi+1

|p|i110〉+
√

λzi+1+1λzi+1−1

λzi+1

|p|i101〉 =
λzi+2

λzi+1
|p|i110〉+

√

λzi+2λzi

λzi+1
|p|i101〉

(15)

where we have used the fact that since pi+1 = 1, zi+1 = zi + 1.

We now apply on this expression Φi. |p|i110〉 is sent by this to 0.

Φi|p|i101〉 =
λzi+1

λzi

|p|i101〉 +

√

λzi+1λzi−1

λzi

|p|i110〉 (16)

24

Finally, we aply on this Φi+1 again. The second term is sent to 0 and we are left with:

Φi+1ΦiΦi+1|p|i110〉 = (17)
√

λzi+2λzi

λzi+1

λzi+1

λzi

Φi+1|p|i101〉 =

√

λzi+2λzi

λzi+1

λzi+1

λzi

(
λzi

λzi+1
|p|i101〉 +

√

λzi+2λzi

λzi+1
|p|i110〉) =

√

λzi+2λzi

λzi+1
|p|i101〉 +

λzi+2

λzi+1
|p|i110〉

Where in the one before last equality we have once again used the fact that the i+ 1th

bit of the path is 1 to express zi+1 in terms of zi. We observe we get the desired equality

between the two operators also in this case.

3. We check that Φ2
i |p〉 = dΦi|p〉. It is here that we use the fact that the coefficients are defined

using an eigenvector of M with eigenvalue d.

Once again, the case in which the ith and i+1th bits in p are equal is trivial, since both sides

are equal to 0.

Suppose therefore that pi 6= pi+1. We check the two possible cases simultaneuously.

Φi|p|i01〉 =
λzi−1

λzi

|p|i01〉 +

√

λzi−1λzi+1

λzi

|p|i10〉.

Φi|p|i10〉 =
λzi+1

λzi

|p|i10〉 +

√

λzi−1λzi+1

λzi

|p|i01〉.

We now apply Φi once more:

Φ2
i |p|i01〉 =

λzi−1

λzi

(
λzi−1

λzi

|p|i01〉 +

√

λzi−1λzi+1

λzi

|p|i10〉) + (18)

+

√

λzi−1λzi+1

λzi

(
λzi+1

λzi

|p|i10〉 +

√

λzi−1λzi+1

λzi

|p|i01〉) =

(
λ2

zi−1

λ2
zi

+
λzi−1λzi+1

λ2
zi

)|p|i01〉 +

√

λzi−1λzi+1

λzi

λzi−1 + λzi+1

λzi

|p|i10〉)

The equality Φ2|p|i01〉 = dΦ|p|i01〉 follows from the fact that λzi−1 + λzi+1 = dλzi
due to the

fact that λ is an eigenvector of M with eigenvalue d. The same argument works with |p|i10〉.

2

Proof: (Of Claim 3.4) We use the same notation as in the proof of Claim 3.2. It is here that we

use the fact that all the entries of the eigenvector λ are non-negative. Note that all eigenvectors

other than the principal eigenvector do not satisfy this property.

We show that for any two paths p, p′, 〈p′|Φi|p〉 = 〈p′|Φ†
i |p〉. We only have to check the cases

where p′ is equal to p or is derived from p by swapping the ith and i+ 1th coordinates. For p = p ′

25

the equality is trivial if the relevant bits are equal, since both terms are 0. If the relevant bits are

not equal, we require

〈p|Φi|p〉 =
λzi±1

λzi

= 〈p|Φ†
i |p〉 =

λ∗zi±1

λ∗zi

.

This follows from the fact that the entries of λ are real.

We proceed to the case when p and p′ are different and are derived from each other by swapping

the bits. In this case, the two relevant bits cannot be equal, and so there is just one case to check.

We have

〈p′|Φi|p〉 =

√

λzi−1λzi+1

λzi

=

√

λzi−1λzi+1
∗

λ∗zi

= 〈p′|Φ†
i |p〉

where the middle equality follows from the fact that the entries of λ are non negative. 2

26

