Experience with RAPID Prototypes

Danny Dolev*
Institute of CS

Jerusalem, Israel
dolev@cs.huji.ac.il

Abstract

The goals of the RAPID environment are (1) to
make the programming of distributed protocols sim-
ple without restricting the protocol relevant choices
of the programmer, (2) to provide encapsulation and
reusability that are at least as powerful as those offered
by object oriented programming, and (8) to provide for
different styles of programming that make RAPID an
easy transstional programming environment between
older and lower level languages and C.

The environment provides and is programmed in the
RAPID-FL subset of the functional language FL. Al-
though the full power of FL is available to the pro-
grammer, & very small number of concepts need to be
learned to program in RAPID-FL. Moreover, restric-
tion to RAPID-FL means that one can have the safety
of a functional language combined with reasonable uses
of assignment.

RAPID makes storage management trivial and re-
duces the complexity of communication management
to handling a few simple commands. The programmer
can arrange for true broadcast or point-to-point com-
munication via either UDP or TCP, without having to
master the details of these communication protocols.

A protocol written in RAPID-FL is compiled to C.
It can run anywhere C can run and interoperate with
other programs written either in C or in RAPID-FL.
So the programmer can build a RAPID prototype and
replace pieces of it with C to provide a test bed for the
development of a C program or for better performance.

In this paper we describe our experience using
RAPID to perform clock synchronization experiments

*This research was supported in part by Yeshaya
Horowitz Association.

1074-6005/94 $3.00 © 1994 IEEE

Ray Strong

IBM Research Division

Hebrew University Almaden Research Center

San Jose, CA 95120-6099
strong@almaden.ibm.com

62

Ed Wimmers

IBM Research Division
Almaden Research Center
San Jose, CA 95120-6099

wimmers@almaden.ibm.com

and to serve as scaffolding for high performance C code
that implements a collective communication protocol
for parallel machines.

1 Introduction

RAPID is a programming environment. It is de-
signed with highest priority given to simplicity and
ease of use. Its programming language is a small, easy
to learn subset of the general purpose functional pro-
gramming language FL [FL 89]. This subset is called
RAPID-FL. While RAPID is not a general purpose
programming language, it has been designed to facil-
itate the rapid prototyping of distributed protocols.
A protocol consists of an initial state together with
a state transition and with an input/output function
that defines how the protocol responds to various in-
put events with changes to its state and the produc-
tion of various outputs. For a distributed protocol, the
events of primary (but not exclusive) focus are the
receipt and generation of messages and the passage
of time. We further distinguish messages generated at
other sites from those originating either at an operator
console or from the local environment (which is pro-
vided by the operating system together with functions
defined in the set of libraries comprising the RAPID
environment). In RAPID-FL a programmer can spec-
ify a distributed protocol by specifying (defining) the
initial state, and handling functions for each of the
distinguished types of input events.

Orn the occasion of each input event to a RAPID
protocol, the RAPID driver (an element of the RAPID
local environment) provides, as input to the protocol
defining function, the protocol state and the specific

State
State
Message
/ Message
Console — | Protocol
/ \ Console
Returns
Other
Commands

Time
Figure 1: A RAPID protocol

set of messages or other input events that have oc-
curred. The protocol defining function provides, as
output, a set of commands to the driver, including
commands to alter the current state. The cycle of
information flow between the driver and the protocol
defining function is the execution of the protocol. The
driver is programmed in FL and in C. AIl FL programs
are compiled to C. The driver part of the RAPID envi-
ronment captures the platform and operating system
dependencies of a RAPID protocol.

Protocol
Input
(including
state commands
and
messages .
) Driver

C and Operating System

Figure 2: Relationship between protocol and driver

The remainder of this paper is organized into sec-
tions covering the style of programming in RAPID-

63

FL, an example clock synchronization program writ-
ten in RAPID-FL, a summary of RAPID features, a
discussion of interoperation between C and RAPID,
a discussion of our experience running clock synchro-
nization experiments in RAPID, and a discussion of
our experience using RAPID as scaffolding for the de-
velopment of high performance C code. The complete
RAPID-FL syntax and set of commands is presented
in [DSW 93] along with a discussion of its relationship
to the general purpose functional language FL.

2 RAPID-FL Style

The RAPID environment includes many useful fea-
tures that are automatically provided to facilitate pro-
gramming. In addition, templates are included for
the functions and definitions that are protocol specific
and must be provided by the RAPID-FL programmer.
These are summarized in the following table.

RAPID features
Automatic storage management
Simple network communication
Easy to learn
Flexible structure of programs
Interoperates with C
Snapshot debugging

Templates Completed by User
Input Specification
Initial Protocol State
Statistics Specification
Message Handler
Console Handler
Driver Return Handler
Timeout Handler

The Input Specification serves as a repository for
declarations of RAPID-FL identifiers. In RAPID-FL
the scope of these defined identifiers is global and any
temporary variables that will be used anywhere in the
protocol must be declared here with an accompanying
type. However, in addition to simple type declarations
like isint (integer), isreal (real), and isseq (sequence),
RAPID-FL allows a declaration of isval that allows
identifier so declared to refer to any FL value. Thus
a single temporary variable will suffice for multiple
uses. An example temporary variable A is provided
with the template. The part of the template to be
filled in by the programmer is the part that specifies
the protocol state. The other parts of the protocol

input are already supplied.

In addition to specifying the identifiers that refer to
parts of the protocol state, the programmer must build
an initial state that satisfies these specifying declara-
tions out of constants. A RAPID-FL character string
or numerical constant is preceded by the symbol ~, as
in ~"abc"or ~ 0.

The Statistics Specification can be used to collect
measurements, statistics, or debugging information.

The heart of the protocol consists of the four han-
dler templates for remote messages, messages from the
local console, general messages from the local driver,
and timeouts. Each handler is designed to be pro-
grammed in the style represented by the following
schema:

def Handler ==

Event; — Response;;
Event, — Responses;

Event; — Responses;

Event, — Response,;

Else: Response

The Event; parts of the schema are predicates spec-
ifying input events. Event, is checked first. The right
arrow represents if ... then. while the semicolon rep-
resents else.

3 Example Clock Synchroniza-
tion Program

The following example is typical of the simple pro-

totypes with which we have recently experimented.

It is based on a clock synchronization protocol of

Halpern, et. al. ([DHSS 84]). The program is bro-
ken into eight small files:

input a set of type declarations and an initial state
for the protocol,

message the external message handler,

console the handler for input from the console,

64

return the handler for returns from driver com-
mands issued by the protocol,

timeout the timeout handler,

stats a declaration for each statistic gathered by the
protocol,

protocol RAPID-FL code that controls the use of
the handlers (this code is supplied as a template
but modifiable by the protocol developer),

driver RAPID-FL code that calls the RAPID li-
brary functions to support the protocol (this file
is given type .fl and the other files are given type
.nc and included in the driver file for compiling).

Generic code from the templates is displayed in nor-
mal type, while protocol specific code is displayed in
bold type.

All of our clock synchronization prototypes make
use of an object called a logical clock. A logical clock
is a way of maintaining a synchronized time service
in software without touching the underlying hardware
clock on which it depends. The details of logical clock
functioning are beyond the scope of this paper. In
this example, we will illustrate our interoperation with
C by calling a logical clock implemented in C (see
section 4). The methods for operating on a logical
clock are represented by the functions F1Time (which
reads the logical time), F1Set (which sets the logical
time), and FILCInit (which creates a logical clock).
The clock synchronization protocol is invoked every
period (P), and is controllable by the prototype user.

Figure 3 presents the first (input) part of the pro-
gram. The flexibility of RAPID allows the program-
mer to specify the structure of the state the protocol
maintains. In this example, the protocol state consists
of three numbers (lines 7-9) but arbitrarily complex
states (with named substates) can be expressed. The
code beginning with line 1 defines the input to the pro-
tocol, which includes the State (beginning on line 4),
the current hardware clock time in seconds (line 11), a
sequence of external Messages (line 12), a sequence of
messages from the Console (line 13), and a sequence
Ret of returns from driver commands (line 14). Note
that most of the code is supplied from the template.
There are only three places where the protocol devel-
oper supplies code: (1) the specification of the state
from line 7 to line 9, (2) matching initial values from
line 19 to line 21, and (3) the initial value for the
sequence of driver commands on line 23. Line 25 in-
cludes code that links the program to the libraries of
the RAPID environment.

—_ b e S e
o > w N = o

16.
17.
18.
19.
20.
21.
22.

23.

24.
25.

© @ N @ e AW N

{ { type Input ==
fl
IS.1sval ,
State.[|
Alisval
CommandSeq.isseq ,
ET.isreal ,
P.isreal ,
L.isint
.
HardwareTime.isreal ,
Messages.isseq ,
Console.isseq ,

Ret.isseq

1

def InitProtocolState ==
(1.
InitCommands ,
~0.0 ,
~300.0 ,
~0 ,

J

def InitCommands ==
[[~Open,[]]]}

where

include " /afs/alm/cs/rapid/grapid.inc” }

Figure 3: INPUT.INC

65

—

ad

w

10.
11.

12.
13.
14.
15.

16.
17.

18.

19.

20.
21.

{ export (HandleMessage) {

def Link == s1 @ s1 @ Messages
def Message == s2 @ s1 @ Messages

def Tag == s1 @ Message
def T == s2 @ Message

def HandleMessage ==

Not @ isseq @ Message
— Discard ;

Not @ ((len @ Message) = ~2)
— Discard ;

((Tag = ~"Time") And
(T geET))

— Execute:<

A /gets [~UpdateStats ,
[~||diﬁ\v,
T- (FlITime @ [])]],

CommandA ,
A /gets (FlSet @ [T]),
ET /gets (T + P),

A /gets [~Send , [L, [
~"Time", T1]1],

CommandA ,

A /gets [~Wakeup ,
HardwareTime + P],

CommandA > ;
Else: Discard

def Discard == id }

where ... }

Figure 4: MESSAGE.INC

Figure 4 contains the code that describes how to
handle a single external message (first in the sequence
Messages). Note the ease with which commands can
be interspersed with assignments in lines 13-20. Line 1
says that the only function visible outside this file
is HandleMessage, so we don’t need to worry about
defining functions already defined elsewhere in the
program. Operator sl selects the first element in a
sequence; operator s2 selects the second element; etc.
The sequence Messages always consists of pairs, the
first of which is a link number indicating the origin of
the message, and the second of which is the message
body. Lines 2 through 5 define some handy abbrevi-
ations in terms of these operators. However, lines 4
and 5 assume that the body of the message is a se-
quence with two elements (a tag Tag and a time T);
so lines 7 and 8 are tests for these assumptions. If the
message passes the tests of line 9, then the block of
code from line 10 through line 18 is executed.

The driver command UpdateStats in line 11 causes
the value of T - (FITime @ []), which is the difference
between the time on the message and the current read-
ing of the logical clock, to be added to the statistics
being collected by the program under the tag “diff”
(see figure 8).

The function CommandA in lines 12, 16, and 18
has the effect of appending the command in A to the
sequence CommandSeq of commands to be passed to
the driver. CommandA is defined in RAPID-FL by

def CommandA == CommandSeq /gets (ar @
[CommandSeq , A]).
where the operator ar means “append right.”

The operator /gets is a simple and safe assignment.
Ouly variables defined in the input file (figure 3) are
allowed on its left hand side. The value of the expres-
sion on its right hand side is computed and used to
replace the current value of the variable on the left.
The function Discard is defined in line 20 as the iden-
tity function (id) which makes no change to the state
of the protocol. It could instead be defined to dis-
play the message at the console or count the number
of such messages. We have deleted the code from the
template that includes the appropriate other files in
line 21.

Figure 5 displays the code for handling a single con-
sole message from the sequence Console. Console mes-
sages are character strings. The program terminates
according to line 4 if “quit” is entered at the con-
sole. If either “?” or “help” is entered, then the pro-
gram displays a menu according to line 5 and lines 14
through 19. Note that most of the menu is supplied by
the template. Included in the template is the function

10.
11.
12.

13.

14.
15.
16.

17.
18.
19.

20.

{ export (HandleConsole) {
def C == s1 @ Console

def HandleConsole ==

(C = ~”quit") — Stop @ ~"Thanks
for using RAPID."

((c = ~n?n) Or (C = ~uhe|pn)) —
Execute:< A /gets [~Display ,
MainMenu] , CommandA > ;

(C = ~"reset") — Execute:< A /gets
[~ResetStats , []],
CommandA > ;

(C = ~"report”") — Report ;

(((len @ C) ge ~8) And
(~"period "= [81,82,33,
84,85,86,37]@ C)) —

P /gets (/p @ (/d:~"New
Period") @ string2real
@th@[~7,C]);

Else:id

def Report == Execute:<

A /gets [~ReportStats , []],
CommandA ,

A /gets [~Record, State] ,
CommandA >

def MainMenu == |
~"Welcome to RAPID" ,

~" At any time enter one of the
following commands:" , ~"" ,

~"help or ? for this message" ,
~"quit to terminate protocol” ,

~"period # # must be real
to set period in sec", ~""]}

where ... }

Figure 5: CONSOLE.INC

1. { export (HandleRet) {
2 def TagRet == s1 @ s1 @ Ret
3. def ArgRet == s1 @ s2 @ s1 @ Ret
4. def ValRet == s2 @ s2 @ s1 @ Ret
5. def HandleRet ==
6. (TagRet = ~"Wakeup") —
HandleTimeout ;
7. (TagRet = ~"Open") —
Execute:<
8. L /gets ValRet ,
9. A /gets FILCInit @ [~0, ...
1>
10. Else:id }
11. where ... }

Figure 6: RETURN.INC

Report, defined from line 11 to line 13. This function
arranges to display the statistics that have been gath-
ered by the program (see figure 8) and to display the
current state of the protocol (State).

The program allows a user to enter a new period
{(P) from the console. The value for the new period in
seconds is converted from a character string to a real
by the FL library function string2real in line 9. The
/d operator has the effect of displaying its immediate
argument at the console while it passes the new value
of P to the /p operator. The /p operator displays its
argument (of any type) at the console and passes it
on. We refer to /p as the snapshot operator because it
allows the programmer to take a snapshot of any data
structure without interrupting the computation, and
also without having to compute, declare, or specify
the type of that data structure. Snapshots are very
useful in debugging, as well as in communicating with
the console operator.

Figure 6 displays code for processing driver returns.
Notice the event-response style of coding allows the
protocol to be expressed at a high level in lines 6-
10. In this program the only return of interest (be-
sides timeout returns from driver command Wakeup)
is the return from the intial command Open (see fig-

67

—

{ export (HandleTimeout) {
def ArgRet == s1 @ s2 @ s1 @ Ret
3. def ValRet == s2 @ s2 @ s1 @ Ret

i

4 def T == ET - (FITime @ [])

5. def HandleTimeout ==
6. (T le ~0) — Execute:<
1. A /gets [~Send ,[L, [

~"Time", ET]]],
8. CommandA ,

9. A /gets [~Wakeup ,
HardwareTime + P + T],

10. CommandA > ;

11. Else: Execute:<

12. A /gets [~Wakeup ,
HardwareTime + T],

13. CommandA > }

14. where ... }

Figure 7: TIMEOUT.INC

ure 3). The integer returned from Open is put into
L according to line 8 of figure 6 and the logical clock
is initialized by the call to function FILCInit in line 9
there. We have suppressed the details of the param-
eters passed to FILCInit since they are outside the
scope of the paper. This code illustrates a typical pro-
gramming practice for RAPID prototypes: performing
various initializing operations in response to a return
from an initial driver command.

Figure 7 presents the code for handling timeouts.
Since a timeout is a special case of a return, this code
is called from the code in figure 6 when the tag on the
return is “Wakeup.”

Figure 8 presents the code that defines the data
structure used for collecting statistics. When the
driver command UpdateStats is called in figure 4, the
value has tag “diff” so it is added to the appropriate
bucket of statistics: one bucket takes values greater

1. { export (NStats) {
2. def NStats == [[~"diff", [
~0.0,~0.05]]}}
Figure 8: STATS.INC
1. { export (Protocol) {
2. def Protocol « islnput ==
ExtractCommands @ Execute:<
3. DoWhile:(Not @ isnull @ Messages): <
4. HandleMessage ,
5. Messages /gets (tl @ Messages) >,
6 DoWhile:(Not @ isnull @ Console):<
7 HandleConsole ,
8. Console /gets (tl @ Console) >,
9 DoWhile:(Not @ isnull @ Ret):<
10. HandieRet ,
11 Ret /gets (tl @ Ret) > > }
12. where ... }

Figure 9: PROTOCOL.INC

than or equal to 0.0 but less than 0.05, the other
bucket takes values greater than or equal to 0.05 (50
milliseconds). These statistics are the adjustments
made to the logical clock by the program in response
to external messages. When the command “report” is
issued at the console (see figure 5), the count, mean,
standard deviation, three largest, and three smallest
values from each bucket are displayed in response.
When “reset” is issued at the console, all the buck-
ets are emptied. The protocol developer may define
different numbers of buckets for an arbitrary number
of tags.

Figure 9 consists of three loops that exhaust the in-
put to the protocol of external messages, console mes-
sages, and returns from the driver. The function Ex-
tractCommands takes the commands that have been
placed in CommandSeq by the operation of the pro-

68

1. Driver where {

2. def Driver == DoForever @
(/d: ~"Welcome...Enter ? for menu.")
@ InitExtState @
3. [uninput @ Initinput , ExtractCommands

@ Initinput , NStats , InitlOStatus |

4. def DoForever « ext.isExtState ==
DoForever @ Execute:<

5. DoCommands ,

6. WaitForNext |

1. Commands /gets (Protocol @ mkinput
@ Inner) , > }

8. where ...

Figure 10: DRIVER.FL

tocol and passes them to the driver as the output of
the function Protocol. Note that figure 9 and figure 10
have no protocol specific code, though they are written
in RAPID-FL and available for modification.

4 Interoperation with C

Interoperation between FL and C is greatly facil-
itated by the fact that FL is translated into C. FL
operates by maintaining a large C data structure that
is used to implement a heap. When programming
strictly in FL, this heap is entirely hidden from the
programmer and garbage collection is performed when
needed. Furthermore, the internal C data structures
that FL uses to represent its entities are also hidden
from the FL programmer. However, when calling C
from FL, the programmer needs to convert FL rep-
resentations of entities into normal C representations.
In addition, the programmer needs to be concerned
about garbage collection issues since if new data is
added to the heap, a garbage collection might be ini-
titated.

Usually it is the case that the C programmer is
not interested in manipulating FL data structures and
simply wants to write a C program with the FL data

converted into usual C format. Fortunately, RAPID
provides an easy and uniform mechanism for convert-
ing FL data to C format and vice versa. Essentially
the C programmer can use a C macro that defines a C
function that is callable directly from FL. This new
function automatically converts the FL data struc-
tures into standard C format and then calls the C
function specified in the macro call.

For example, suppose the programmer wished to
call the trigonometric C function sin. The programmer
would write the following piece of code:

CALL_C1(FISine,real,sin,real)

This invocation of the CALL_C1 macro defines a new
C function FlSine. The function FlSine can be called
directly from FL with an argument of type real (FL
format). FlSine converts this argument which is a real
in FL format into a real (i.e. a double) in C format.
Next FlSine calls the C library function sin. Finally,
Fl1Sine converts the answer of type double returned by
sin into the FL format for reals and returns this value
to FL. FlSine also manages garbage collection issues
so the C programmer need not worry about them.

More formally, the CALL_Cn macro has the follow-
ing format:

CALL_Cn(FIName,AnsType,CFname,T1,...,Tn)
where FIName is the name of the newly defined C
function that is directly callable from FL, CFnrame
is the name of the C function that is to be called,
AnsType is the type returned by the function CF-
name, and T1,..,Tn are the types of the argument
to CFname. The function FIName must be applied
(in FL) to a sequence of length n whose FL types
correspond to the C types T1,..,Tn. The function
FlName converts each of the n arguments from FL for-
mat to C format and then calls the C function CFname
with these arguments. Finally, the function FlName
coverts the answer returned by CFname (which is of
type AnsType) into FL format and returns this value.

5 Experience with Clock Syn-
chronization Prototypes

We have recently completed a number of clock syn-
chronization experiments in the RAPID environment.
Since it only takes a few days to write a simple clock
synchronization program like that of section 3, we were
easily able to try many variants of protocols in the lit-
erature. The goal of this work was to compare the
performance of various protocols in different environ-
ments, especially via broadcast communication media.
However, much as the high level nature of RAPID-

FL contributes to speed in coding and debugging, it
also contributes to a very poor performance. Thus
a RAPID prototype cannot hope to predict the ac-
tual performance attainable by a protocol. Instead
it can try to provide relative performance measure-
ments, comparing programs written in the same style
of RAPID-FL and operating under the same load.
Moreover, the slowdown due to RAPID (as compared,
for example, with highly tuned C code) appears to be
superlinear in the size and complexity of the program;
so we are limited to comparing protocols that can be
realized with about the same size and complexity of
RAPID-FL code.

To make such comparisons as fair as possible, when
the communication network is not dedicated to our ex-
periments, we arranged for the RAPID environment to
allow concurrent, non-interfering communication for
several distributed systems consisting of sets of pro-
cesses running RAPID-FL code. This means that we
could run several prototypes independently and they
would each experience an identical load on the net-
work (because they were all running concurrently). To
accomplish this concurrency, each RAPID prototype
holds an initial dialogue with the console in which it
establishes its host id and an offset to the default port
addresses used for communication. Each independent
system of processes uses the same offset. Then all pro-
cesses in a system can communicate without interfer-
ing with the communication of processes in any other
system, except in that each message in any system
contributes to the total network load.

Here we report on a comparison of three well known
clock synchronization protocols:

HAL, a slighlty more complex variant of the code
presented in section 3 [DHSS 84],

MAR, a variant of the protocol that appears in K.
Marzullo’s dissertation [M 84] and is the basis
for the peer synchronization protocol of the DCE
time service [DCE 91], and

PCS, a variant of Probabilistic Clock Synchroniza-
tion [C 89).

Fixing the network as a single broadcast medium,
there are two important performance criteria for clock
synchronization protocols:

precision, roughly speaking, the worst case differ-
ence in simultaneous clock readings, and

message efficiency, the average number of broad-
cast messages per second needed to attain a given
precision.

In our comparison studies, we concentrated on finding
the best precision attainable by each protocol.

The basic protocol presented in section 3 is a peer
protocol, in the sense that no one clock is taken as the
standard. This has certain fault tolerance advantages,
although we have not implemented the fault tolerance
parts of the protocol as given in [DHSS 84]. However,
the protocol presents a problem for comparison pur-
poses because it does not measure, estimate, or predict
its own precision. It was easy to remedy this defect
by adding a periodic round trip synchronization (the
basis of PCS) to the protocol. This adds to the num-
ber of messages and the complexity of the code; but
makes HAL more directly comparable with MAR and
PCS, each of which estimates its own precision as part
of the protocol.

MAR is a peer protocol that operates by making
round trip synchronizations and using a complex in-
terval intersection method for deriving a time adjust-
ment and new precision estimate from the previous
time and precision estimates of all the participants.
We simplified the protocol, slightly weakening its fault
tolerance properties, by arranging to do the interval
intersections one at a time, obtaining a new time and
precision estimate after each round trip, rather than
waiting for round trip communication with each par-
ticipant. If there are only two participants, this sim-
plification makes no difference.

PCS is a master-slave protocol: one clock is deemed
the master and the others synchronize to it. The pro-
tocol presented in [C 89] is presented as if it has al-
ready been tuned to its best operating characteristics:
the distribution of round trip delays is assumed known
and the protocol tries repeated round trip synchro-
nizations until it satisfies a given precision constraint
(with high probability) or fails after a fixed number of
trials. Allowing the protocol to try forever to satisfy
a given precision constraint does not work well when
the constraint is close to the best possible precision
attainable by the protocol. We tried several different
modifications and settled on one that makes a small
number of attempts to meet its given constraint and
then relaxes the constraint by a small amount. RAPID
gave us the luxury of experimenting with a number of
different versions, rather than guessing which one to
try.

Unlike HAL, which does periodic resynchroniza-
tion, MAR and PCS are driven to resynchronize when
their current precision estimates exceed given thresh-
olds. Their precision estimates grow at a rate corre-
sponding to a worst case drift rate between hardware
clocks in the network. As a side effect of our work

70

with HAL, we measured the actual drift rate between
clocks in our network. The worst case drift rate used
for estimates as part of all three protocols is signifi-
cantly larger than the measured rate.

To summarize the results of our experiments, we
found that HAL and MAR performed similarly: at-
taining best precisions near 30 milliseconds in our en-
vironment. With coaxing, PCS was able to attain a
better precision by a factor of 2, at the cost of lower
message efficiency. MAR can also be a master-slave
protocol. Operating in this manner, its best precision
was a few milliseconds worse than the best for PCS.
It should be emphasized that only the relative per-
formance results are meaningful and that small differ-
ences are not significant and may not be reproduced
if the protocols are programmed in better perform-
ing code. The relative simplicity of PCS may give
it a performance advantage over MAR (acting as a
master-slave protocol).

Detailed comparison results are beyond the scope
of this paper. Here we stress the flexibility and speed
with which we can program and modify clock synchro-
nization protocols in RAPID-FL in order to perform
meaningful experiments. We used the results of these
experiments to design and test new protocols and to
discover weaknesses of the existing protocols. This
work is ongoing, but has already resulted in several
new inventions in this area. Without the luxury of
being able to design, code, and debug a new proto-
col in a few weeks, we would not have attempted this
investigation, and would not have made the discover-
ies that led to new invention. Of course much more
than a few weeks work went into the development of
RAPID; but our experience with clock synchroniza-
tion protocols shows that this work has a significant
payoft.

6 Experience with RAPID as
Scaffolding

Another current application of the RAPID environ-
ment is its use as scaffolding for high performance
C code. In ongoing work reported in [BDHOS 93],
we wrote a driver in RAPID-FL for a new transport
layer that is intended to provide reliable UDP broad-
cast communication for a standardized set of opera-
tions in parallel computing called collective commu-
nication. The transport layer provides initialization,
send, and receive interfaces. Our RAPID scaffolding
was designed to read a script (corresponding to the
collective communication calls of a parallel program)

from a file, make appropriate calls to the transport
layer, and measure the real time elapsed per call.

The original scaffolding was written in one person
week and debugged in a second week. It allows for
numerous tuning parameter changes and even script
changes on the fly. The console operator, sets up the
experiment by executing the RAPID-FL code on each
participating network node. After the experiment has
reached a steady state, the operator resets the RAPID
statistics using the command “reset” as in the example
of figure 5. Then after a suitable duration, the opera-
tor requests output using the command “report”. The
experiment may be stopped at this point, continue, or
temporarily halt for a switch in script.

Two methods are used to estimate the contribution
of the transport layer to the measured elapsed time of
the experiment. One method involves extrapolating
this time by plotting the time per call as we increase
the number of calls to the transport layer in an inner
loop of RAPID-FL that does not incur most of the
overhead of RAPID because it stays in the handler
program and does not return to the driver to check
for console messages. The other method involves op-
erating the code in a disabled mode in which all of
the RAPID-FL code executes but the calls to the
transport layer are disabled and take no time. The
difference between operating in enabled and disabled
modes represents the time contribution of the trans-
port layer. Each method requires that the experiments
be performed in similarly loaded networks, so there is
some possibility for error if the load changes with time.
However, the early experimental results reported in
[BDHOS 93] seem robust and reproducible. Here we
have successfully used RAPID to obtain absolute per-
formance measurements for code that has been written
for high performance.

7 Features Summary

In this section, we summarize the features of
RAPID that make it a good environment for rapid
prototyping.

Foremost of these features is trivial storage man-
agement. The RAPID-FL programmer is not con-
cerned with the management of storage. In our expe-
rience we have observed that storage management ac-
counts for a very significant proportion (perhaps even
a majority) of systems programming bugs. Moreover,
concerns with allocating and managing complex data
structures certainly cost in terms of programming and
debugging time. RAPID-FL data structures are se-

71

quence based. The atomic data types are reals, inte-
gers, Booleans, and character strings. Data structures
can be built from these types by sequence construc-
tion. Elements of sequences may have any type in-
cluding sequence. The programmer need not be con-
cerned with uniformity. For example, a queue can be
implemented using a sequence and append and select
operators. The programmer need not worry about the
type of elements to be put into the queue or whether
they have uniform type.

A second major feature is simple communica-
tion. The programmer need not learn the intrica-
cies of the underlying UDP and TCP protocols. In-
stead, there are simple driver commands for open-
ing communication and sending messages. RAPID
provides point-to-point communication via TCP/IP.
If the command [~Open , [~"aa@bb.cc"] | is is-
sued, then RAPID attempts to open a TCP/IP con-
nection with a corresponding RAPID process on the
host with internet name aa@bb.cc. This communica-
tion is not limited to the local network. If the com-
mand [~Open , []] is issued, RAPID initializes UDP
broadcast communication on the local network. In
each case the driver returns an integer token that is
used for sending messages and appears on each mes-
sage that arrives via this logical communication link.
Note that any RAPID data structure can be sent on
a message and received at the target. The program-
mer need not worry about formatting or encoding data
structures that are normally implemented as linked
lists and arrays. RAPID handles all data conversions
transparently.

A third {feature of RAPID is that RAPID-FL is
easy to learn because there is a relatively small num-
ber of language elements. The general purpose lan-
guage, FL, contains much more than what the pro-
grammer needs to program in RAPID-FL.

An important feature that FL provides for RAPID
is the ease with which we can adapt RAPID to alter-
native programming styles. The RAPID-FL fea-
tures of assignment (/gets) and loops (DoWhile and
DoUntil) are not natural constructs in FL; but are sup-
ported by higher order FL functions. We added these
features to RAPID as needed by users of RAPID. The
additions were easy to make because they simply in-
volved additional FL programsin the RAPID libraries.
No change to the FL compiler was required. We found
it convenient to use a style of programming that re-
quired temporary global variables. A more functional
style is also available and even more natural in FL.

The feature emphasized in section 3 and section 6
is that RAPID-FL compiles to and interoperates

with C. This feature enables the use of RAPID as
scaffolding in the development of performance critical
systems. It even allows for iterative development in
which a series of prototypes is produced. The func-
tions performed by the prototypes do not change, ex-
cept as required by the designers. But the first proto-
type is coded entirely in RAPID-FL and the final pro-
totype is coded in C, hopefully with ever better per-
formance. Once a RAPID-FL program is compiled to
C, it can be linked with other programs and compiled
to produce an executable object. This object is just
as portable as the C and does not require any further
presence of the RAPID libraries in order to function.
We have experimented with RAPID client-server pro-
totypes operating via the internet from coast to coast
of the U.S. The client prototypes were simply trans-
ferred to hosts at other locations where they could be
executed immediately.

A final feature for this summary is what we call
snapshot debugging using the /p operator. This
operator allows the programmer to take snapshots of
intermediate data structures and display them at the
console during debugging runs of the prototype. There
is no need for the programmer to know the type of the
data structure being displayed.

Our experience suggests that programming and de-
bugging RAPID-FL is an order of magnitude faster
than programming and debugging in a lower level lan-
guage like PL/I or C. The language seems to be ideal
for the rapid prototyping of distributed protocols, as-
suming either that performance is not an issue, or that
the prototype will eventually be replaced by one with
better performance after issues of feasibility and com-
pleteness of design have been resolved.

8 Acknowledgements

The authors would like to thank Alex Aiken and
John Williams for their response to requests for en-
hancements and bug fixes to the FL compiler. Thanks
also to the RAPID users for their suggestions.

References

[FL 89] J. Backus, J. Williams, E. Wimmers,
P. Lucas, and A. Aiken, FL Language
Manual, Parts 1 and 2, IBM Research

Report RJ7100, 1989.

72

[BDHOS 93] J. Bruck, D. Dolev, C. Ho, R. Orni,
and R. Strong, PCODE: An Efficient
and Reliable Collective Communication
Protocol for Unreliable Broadcast Do-
mains IBM Research Report RJ9631,
1993.

[C 89] F. Cristian, Probabilistic Clock Syn-

chronization, Distributed Computing 3,

pp. 146-158, 1989.

[DHSS 84] D. Dolev, J. Halpern, B. Simons, and R.
Strong, Fault-Tolerant Clock Synchro-
nization, Proceedings of the 3rd Annual
ACM Symposium on Principles of Dis-

tributed Computing, 89-102, 1984.

[DSW 93] D. Dolev, R. Strong, and E. Wimmers,
RAPID: An Environment for Rapid
Prototyping of Distributed Prectocols,
IBM Research Report (in progress).

[M 84] K. A. Marzullo, Maintaining time in
a distributed system: An example of
a loosely coupled distributed service,
Ph.D. dissertation, Stanford University,

Stanford, CA, February, 1984.

[DCE 91] Distributed Computing Environment,
Time Service Specification, Version

T1.1.0, June 11, 1991.

