
Self-Stabilization of Byzantine Protocols

Ariel Daliot and Danny Dolev

School of Engineering and Computer Science, The Hebrew University of Jerusalem,
Israel. {adaliot,dolev}@cs.huji.ac.il

Abstract. Awareness of the need for robustness in distributed systems
increases as distributed systems become integral parts of day-to-day
systems. Self-stabilizing while tolerating ongoing Byzantine faults are
wishful properties of a distributed system. Many distributed tasks (e.g.
clock synchronization) possess e�cient non-stabilizing solutions toler-
ating Byzantine faults or conversely non-Byzantine but self-stabilizing
solutions. In contrast, designing algorithms that self-stabilize while at
the same time tolerating an eventual fraction of permanent Byzantine
failures present a special challenge due to the �ambition� of malicious
nodes to hamper stabilization if the systems tries to recover from a cor-
rupted state. This di�culty might be indicated by the remarkably few
algorithms that are resilient to both fault models. We present the �rst
scheme that takes a Byzantine distributed algorithm and produces its
self-stabilizing Byzantine counterpart, while having a relatively low over-
head of O(f ′) communication rounds, where f ′ is the number of actual
faults. Our protocol is based on a tight Byzantine self-stabilizing pulse
synchronization procedure. The synchronized pulses are used as events
for initializing Byzantine agreement on every node's local state. The set
of local states is used for global predicate detection. Should the global
state represent an illegal system state then the target algorithm is reset.

1 Introduction

On-going faults whose nature is not predictable or that express complex behavior
are most suitably addressed in the Byzantine fault model. It is the preferred fault
model in order to seal o� unexpected behavior within limitations on the number
of concurrent faults. Most distributed tasks require the number of concurrent
Byzantine faults, f , to abide by the ratio of 3f < n, where n is the network
size. See [13] for impossibility results on several consensus related problems such
as clock synchronization. Additionally, it makes sense to require systems to re-
sume operation after a major failure without the need for an outside intervention
and/or a restart of the system from scratch. E.g. systems may occasionally ex-
perience short periods in which more than a third of the nodes are faulty or
messages sent by all nodes may be lost for some time due to a network failure.

Such transient violations of the basic fault assumptions may leave the system
in an arbitrary state from which the protocol is required to resume in realizing its
task. Typically, Byzantine algorithms do not ensure convergence in such cases,
as strong assumptions are usually made on the initial state and thus merely
focus on preventing Byzantine faults from notably shifting the system state
away from the goal. A self-stabilizing algorithm bypasses this limitation by being
designed to converge within �nite time to a desired state from any initial state.
Thus, even if the system loses its consistency due to a transient violation of
the basic fault assumptions (e.g. more than a third of the nodes being faulty,
network disconnected, etc.), then once the system becomes coherent again the

2 Daliot and Dolev

protocol will successfully realize the task, irrespective of the resumed state of
the system. In trying to combine both fault models, Byzantine failures present
a special challenge for designing stabilizing algorithms due to the �ambition� of
malicious nodes to incessantly hamper stabilization, as might be indicated by
the remarkably few algorithms resilient to both fault models.

We present an algorithm for transforming any Byzantine protocol to its self-
stabilizing semi-synchronous counterpart, which is to the best of our knowledge,
the �rst general scheme to do so for arbitrary protocols in the Byzantine fault
model. Our result operates in the semi-synchronous network model typical of
Byzantine protocols, though our scheme will also transform any asynchronous
algorithm into its self-stabilizing semi-synchronous counterpart. Transient fail-
ures can practically be equivalent to the existence of an unbounded number of
concurrent Byzantine failures. No distributed algorithm can reach its goal de-
terministically, in the face of permanent unbounded Byzantine failures, unless
digital signatures are used. In a self-stabilizing paradigm, using digital signa-
tures to counter Byzantine nodes exposes the protocols to �replay-attack� which
might empty its usefulness.

Thus, deterministic protocols that tolerate permanent unbounded Byzantine
failures by using digital signatures do not guarantee operation from arbitrary
states and are thus not self-stabilizing. Hence, in order to self-stabilize and tol-
erate unbounded Byzantine failures it is essential to assume that eventually the
bound on the permanent number of Byzantine failures is less than a third of the
network. From this arbitrary state our protocol causes the user's target algo-
rithm to converge e�ciently. Therefore our result is stronger than just resilience
to permanent unbounded Byzantine faults.

The algorithm assumes the existence of a module that delivers synchronized
pulses to all the nodes. The function of the pulse synchronization is to align the
activities of the participating nodes in a self-stabilizing and fault-tolerant man-
ner. The use of an external pulse module subjects the protocol to a single point of
failure. This necessitates an internal pulse mechanism in order to guarantee con-
tinuous function of the system at times that the external pulse is missing, which
obliterates the bene�t of circumventing any internal mechanisms with external
ones. The only distributed internal protocols that delivers periodic synchronized
pulses in a self-stabilizing manner tolerant to Byzantine faults are [7, 8].

The idea of the algorithm, in a bird's-eye view, is to run at each node, in
the background, the self-stabilizing Byzantine protocol that periodically invokes
tightly synchronized pulses. Subsequent to a pulse, the node initiates Byzan-
tine agreement on its local application state. This ensures that following some
bounded time there is consensus on the local state of every node (inclusive of
faulty nodes). All correct nodes then evaluate whether this global application
snapshot corresponds to a legal state of the basic program and, if required,
collectively reset it at the next pulse.

The overhead of our protocol is O(f ′) communication rounds, where f ′ is
the actual number of permanent faults, in addition to the time complexity of
the transformed non-stabilizing algorithm. We utilize a Byzantine Agreement
protocol that works in a time-driven manner that we have presented in [9], which
makes the agreement procedure progress as a function of the actual message
transmission times and not the upper bound on the message transmission times.
Consequently, the additional overhead can in e�ect be very low.

We postulate that the semi-synchronous network model is a very realistic and
ubiquitous model that is essentially the underlying setting of overlay networks
and even the internet. Our result implies that the semi-synchronous network
model allows for a very extensive treatment of di�erent models of fault tolerance.

Self-Stabilization of Byzantine Protocols 3

2 Related Work

There are very few speci�c protocols that tolerate both transient failures as
well as permanent Byzantine faults. In this section we survey most of them.
Towards the end of the section we describe a few general schemes that aim at
stabilizing arbitrary asynchronous non fault tolerant algorithms. To the best of
our knowledge our result is the only general scheme that transforms an arbitrary
Byzantine algorithm into a multitolerant program that is self-stabilizing in the
presence of permanent Byzantine failures.

The concept of multitolerance is coined by Kulkarni and Arora [2, 17] to
describe the property of a system to tolerate multiple fault-classes. They present
a component based method for designing multitolerant programs. It is shown how
to step-wise add tolerance to the di�erent fault-classes separately. They design as
an example a repetitive agreement protocol tolerant to Byzantine failures and to
transient failures. Similarly, mutual exclusions for transient and permanent (non
Byzantine) faults is designed. In [16] a multitolerant program for distributed
reset is designed that tolerates transient and permanent crash failures. It is
not shown how the method can be utilized for designing arbitrary algorithms,
rather, particular problems are addressed and protocols are speci�cally designed
for these problems using the method.

Nesterenko and Arora [20] de�ne and formalize the notion of local tolerance
in a multitolerant fault model of unbounded Byzantine faults that eventually
comply with the 3f < n ratio. Local tolerance refers to the property of faults
being contained within a certain distance of the faulty nodes so that nodes
outside this containment radius are able to eventually attain correct behavior.
They present two locally tolerant Byzantine self-stabilizing protocols for the
particular problems of graph coloring and the dining philosophers problem.

Other examples are the two randomized self-stabilizing Byzantine clock syn-
chronization algorithms presented by Dolev and Welch [12]. Both protocols have
exponential convergence time. Our deterministic self-stabilizing Byzantine clock
synchronization algorithm in [6] converges in linear time1.

Many papers have been published that seek to �nd a universal technique
to convert an arbitrary asynchronous protocol into a self-stabilizing equivalent.
Thus these works have very limited handling of faults besides the transient faults.
The concept of a self-stabilizing extension of a non-stabilizing protocol is brought
by Katz and Perry [15]. They show how to compile an arbitrary asynchronous
protocol into a self-stabilizing equivalent by centralized predicate evaluation.
A self-stabilizing version of Chandy-Lamport snapshots that is recurrently ex-
ecuted is developed. The snapshot is evaluated for a global inconsistency and
a distributed reset is done if necessary. This is improved by the local checking
method of Awerbuch et al., [4]. Kutten and Patt-Shamir [18] present a time-
adaptive transformer which stabilizes any non-stabilizing protocol in O(f ′) time
but on the expense of the space and communication complexities. A stabilizer
that takes any o�-line or on-line algorithm and �compiles� a self-stabilizing ver-
sion of it is presented by Afek and Dolev [1]. The stabilizer has the advantage
of being local, whereby local it is meant that as soon as the system enters a
corrupt state, that fact is detected and second that the expected computation
time lost in recovering from the corrupted state is proportional to the size of the
corrupted part of the network. In a seminal paper by Arora and Gouda [3] a dis-
tributed reset protocol for shared memory is presented which tolerates fail-stop

1 Note that the pulse synchronization procedure used in [6] has a �aw, as pointed
out by Mahyar Malekpour from NASA LaRC and Radu Siminiceanu from NIA. A
correct version can be found in [8].

4 Daliot and Dolev

failures. Note that the fail-stop failure assumption (as opposed to the sudden
crash faults) makes the protocol non-masking and thus doesn't truly tolerate
permanent faults. Moreover it has a relatively costly convergence time.

Gopal and Perry [14] present a framework for unifying process faults and
systemic failures, i.e. ongoing faults and self-stabilization. Their scheme works
in a fully synchronous system and is a �compiler� that creates a self-stabilizing
version of any fault-tolerant fully synchronous algorithm. They assume the non-
stabilizing algorithm works in synchronous rounds. Assuming a fully synchronous
system is a strong assumption as it obliterates the need to consider the loss of
synchronization of the rounds following a transient failure. Their scheme only
assumes the loss of agreement on the round number itself. To overcome this
following a systemic (transient) failure, at each round some sort of �agreement�
is done on the round number. They assume the register holding the round number
is unbounded, which is not a realistic assumption. In a self-stabilizing scheme a
transient failure can cause the register to reach its upper limit. Thus they do not
handle the over�ow and wrap-around of the round number which is a major �aw.
The permanent faults that the framework tolerates are any corruption of process
code. This may seem very similar to Byzantine faults but the di�erence hinges
on a subtle but signi�cant dissimilarity. It is assumed that corruption of process
code cannot result in malicious or two-faced behavior whereas Byzantine failures
allow for any adversary behavior. This di�erence results in the FLM result [13]
for Byzantine behavior, in which at least 3f + 1 nodes are required to mask f
failures. Conversely, corruption of process code imposes no such bound on the
number of concurrent failures.

Note that being in an illegal global state is a stable predicate of the system
state of a non-stabilizing program as otherwise it would either be self-stabilizing
or not have the closure property that is required of any �rational� non-stabilizing
algorithm (i.e. if in a legal state then stay in a legal state). A more general way
of presenting our scheme is as a self-stabilizing Byzantine method for detection
of stable predicates in semi-synchronous networks (see [21] for non fault-tolerant
predicate detection in semi-synchronous networks). Distributed reset is just one
particular action that can be done upon the detection of a certain predicate.
Examples of other predicate detection uses are deadlock detection, threshold
detection, progress detection, termination detection, state variance detection
(e.g. clock synchronization), among others.

3 Model and De�nitions

The environment is a semi-synchronous network model of n nodes that com-
municate by exchanging messages. We assume that the message passing allows
for an authenticated identity of the senders. The communication network does
not guarantee any order on messages among di�erent nodes. Individual nodes
have no access to a central clock and there is no external pulse system. The
hardware clock rate (referred to as the physical timers) of correct nodes has a
bounded drift, ρ, from real-time rate. When the system is not coherent then
there can be an unbounded number of concurrent Byzantine faulty nodes, the
turnover rate between faulty and non-faulty nodes can be arbitrarily large and
the communication network may behave arbitrarily.

De�nition 1. A node is non-faulty at times that it complies with the following:

1. Obeys a global constant 0 < ρ << 1 (typically ρ ≈ 10−6), such that for every
real-time interval [u, v] :
(1− ρ)(v − u) ≤ `physical timer'(v)− `physical timer'(u) ≤ (1 + ρ)(v − u).

Self-Stabilization of Byzantine Protocols 5

2. Operates according to the instructed protocol.
3. Processes any message of the instructed protocol within π real-time units of

arrival time.

A node is considered faulty if it violates any of the above conditions. We
allow for Byzantine behavior of the faulty nodes. A faulty node may recover
from its faulty behavior once it resumes obeying the conditions of a non-faulty
node. For consistency reasons, the �correction� is not immediate but rather takes
a certain amount of time during which the non-faulty node is still not counted
as a correct node, although it supposedly behaves �correctly�2. We later specify
the time-length of continuous non-faulty behavior required of a recovering node
to be considered correct.

De�nition 2. The communication network is non-faulty at periods that it
complies with the following:

1. Any message sent by any non-faulty node arrives at every non-faulty node
within δ real-time units;

2. All messages sent by a non-faulty node and received by a non-faulty node
obey FOFI order.

Basic notations:

� d ≡ δ + π. Thus, when the communication network is non-faulty, d is the
upper bound on the elapsed real-time from the sending of a message by a
non-faulty node until it is received and processed by every correct node.

� A �pulse� is an internal event targeted to happen in tight synchrony at
all correct nodes. A Cycle is the �ideal� time interval length between two
successive pulses that a node invokes, as given by the user. The actual cycle
length has upper and lower bounds and can be shortened to cyclemin by
faulty nodes. (see [8] for the details of the pulse synchronization).

� σ represents the upper bound on the real-time between the invocation of the
pulses of di�erent correct nodes (tightness of pulse synchronization)3.

� pulse_conv represents the convergence time of the underlying pulse synchro-
nization module.

� agreement_duration represents the maximum real-time required to complete
the chosen Byzantine consensus/agreement procedure4.

Note that n, f and Cycle are �xed constants and thus non-faulty nodes do
not initialize with arbitrary values of these constants. It is required that Cycle is
chosen s.t. cyclemin is large enough to allow our protocol to terminate in between
pulses.

A recovering node should be considered correct only once it has been con-
tinuously non-faulty for enough time to enable it to go through a complete
�synchronization process�. This is the time it takes, from any state, to complete
two concomitant pulses that are in synchrony with all other correct nodes.

De�nition 3. A node is correct following pulse_conv+2 ·Cycle+σ real-time
of continuous non-faulty behavior.

2 For example, a node may recover with arbitrary variables, which may violate the
validity condition if considered correct immediately.

3 The speci�c pulse synchronization used ([8]) achieves σ ≤ 3d.
4 We di�erentiate between consensus on an initial value held by all nodes and agree-
ment on an initial value sent by a speci�c possibly faulty node.

6 Daliot and Dolev

De�nition 4. The system is said to be coherent at times that it complies with
the following:

1. At least n− f of the nodes are correct, where n ≥ 3f + 1;
2. The communication network has been continuously non-faulty for at least

pulse_conv + 2 · Cycle + σ real-time units.

The reference to correct instead of non-faulty nodes circumvents the ability
of the turnover rate between faulty and non-faulty behavior of nodes to hinder
the system from ever converging to a legal state. Hence, if the system is not
coherent then there can be an unbounded number of concurrent faulty nodes;
the turnover rate between faulty and non-faulty nodes can be arbitrarily large
and the communication network may behave arbitrarily. When the system is
coherent, then the network and a large enough fraction of the nodes (n−f) have
been non-faulty for a su�ciently long time period for the pre-conditions for con-
vergence of the protocol to hold. The assumption in this paper, as underlies any
other self-stabilizing algorithm, is that eventually the system becomes coherent.
Note that being coherent does not imply that the system is in a legal state.

The self-stabilization paradigm assumes that all variables and program reg-
isters are volatile and thus prone to corruption or can initialize with arbitrary
assignments. Conversely, it assumes that the code (the instructed protocol) is not
dynamic and can thus be stored on non-volatile or non-corruptible storage. Fur-
thermore, it is assumed in the paradigm that any access to an external module
utilized by the system is eventually restored. E.g., any dependency on continu-
ous time correlated to real-time without access to an external time source, can
not be handled in the context of self-stabilization as no algorithm can restore
the reference to external time without access to the external time source.

A local state of a node is comprised of the program counter and an assign-
ment of values to the local variables. A node switches from one local state to
another through a computation step. A global state of a system of nodes is the
set of local states of its constituents nodes and the contents of the FIFO com-
munication channels. A local application state is a subset of the variables of the
local state that are relevant for the application. Two local states are said to
be distinct if they represent local states on di�erent nodes. A global application
state is a collection of all the distinct constituent local application states at a
certain moment. A global application snapshot is any collection of distinct local
application states. An execution of a program P is a possibly in�nite sequence
of global states in which each element follows from its predecessor by the execu-
tion of a single computation step of P. We de�ne E to be the set of all possible
execution sequences of a program P.

De�nition 5. An initial state is said to be normal if the program counter of
each correct node is 0 and the communication channels are empty.

De�nition 6. A normal execution is an execution whose initial state is nor-
mal and has entirely occurred while the system is coherent.

De�nition 7. A global application state is said to be legal if it could occur in
a normal execution.

De�nition 8. A legal execution is an execution that is a non-empty su�x of
a normal execution.

We de�ne NE, (NE ⊂ E), to be the set of normal executions of P (also
denoted NE(P)). Equivalently, we de�ne LE, (LE ⊂ E), to be the set of legal

Self-Stabilization of Byzantine Protocols 7

executions of P (denoted LE(P) respectively). The legal global states and the set
of legal executions are determined by the particular task in the speci�c system
and its respective normal executions. This cannot be characterized in general
terms regardless of the actual problem de�nition that program P seeks to solve.

The self-stabilization of a system is informally de�ned by the requirement
that every execution in E has a non-empty su�x in LE. We adopt the de�nitions
of a self-stabilizing extension of a non-stabilizing program from [15]:

De�nition 9. A projection of a global state onto a subset of the variables and
the messages on the channels is the value of the state for those variables and
messages.

De�nition 10. Program Q is an extension of program P if for each global
state in NE(Q) there is a projection onto all variables and messages of P such
that the resulting set of sequences is identical to NE(P), up to stuttering5.

Note that when one considers only those portions of Q's global state that
correspond to P's variables and messages and if repetitions of states are ignored,
then the legal executions of P and Q are identical. Thus, a state of Q is a legal
state of Q i� the projection onto P is a legal state of P. The program P to be
extended is called the basic program.

De�nition 11. Program Q is a self-stabilizing extension of a program P if
Q is an extension of P and any execution in E(Q) has a non-empty su�x whose
projection onto P is in LE(P).

Thus, informally, if Q is a self-stabilizing extension of P then the projection
of Q onto P is self-stabilizing. Therefore we refer to Q as a stabilizer of P.

4 A Byzantine Stabilizer

Intuitively, the task of stabilizing a program should supposedly be rather straight-
forward: Every period of time, make all nodes report their internal states, then
sift through the collected states and search for a possibly global inconsistency in
the algorithm as emerges from the global snapshot. Upon such an inconsistency
make all nodes reset to a consistent state. Below we display a conceptual view
of the scheme:

At �time− to− exchange− states� do
1. Send local state to all nodes and Byzantine Agree on every node's state;
2. All correct nodes now see the same global snapshot;
3. Check if global snapshot represents a legal state;
4. If not then reset the basic program;
5. If yes but your state is corrupt then repair state;

This greatly simpli�ed scheme does not address the many subtle problems
that surface when facing transient faults and permanent Byzantine faults: How
do you synchronize the point in time for reporting the internal states? How do
you ensure that the global snapshot is concurrent enough to be meaningful?
How do you prevent Byzantine nodes from causing correct nodes to see di�ering
global snapshots? How does the predicate detection mask Byzantine values?

We address the synchronization issue by employing an underlying Byzantine
self-stabilizing pulse synchronization procedure. The pulse is essentially used as

5 When comparing sequences, adjacent identical states are eliminated; this is called
the elimination of stuttering in [15].

8 Daliot and Dolev

the event that helps to determine when to report the local state. The �mean-
ingfulness� of the global snapshot is addressed by the observation that many
algorithms have identi�able events in their executions. In a semi-synchronous
protocol di�erent nodes should execute the same events within a small bounded
time of each other. If all correct nodes report their local states and clock time6

at such an event (denoted sampling point) then the combination of clock time
and the emergent global snapshot can be used for deducing whether the protocol
is in a legal state. As an example, consider that the events are the beginning of a
round, in case the basic program works in rounds. Thus all correct nodes should,
whenever the system is in a legal state, reach the event of a speci�c round within
bounded clock time of each other. By instructing the nodes to report their state
(round number) and clock time at the speci�c round, it can be deduced whether
this event indeed happened within the legal bounded time. If so, then that im-
plies that the global snapshot taken carries meaningful information about the
global state of the system. By evaluating this global predicate a decision can be
made as of the legality of the global state and a reset can be done, if required.
If the reported clock times are �too far� from each other then this is a su�cient
indication that the system is not in a legal state and thus should be reset.

The issue of Byzantine nodes and values are tackled by initiating Byzan-
tine agreement on the reported states. This ensures that all correct nodes have
identical views of the global snapshot.

Our scheme stabilizes any Byzantine protocol that has such events (sampling
points) during the execution, which can be identi�ed by checking the program
counter and local state. Otherwise, it is required that the basic program signals
when to read and report the local state. We argue that this de�nition covers an
extensive set of protocols. Programs that work in round structure is just a speci�c
and easily identi�able example of such protocols. We assume for simplicity that
the sampling points are taken at least 4σ apart on the same node in order to be
able to di�erentiate between adjacent sampling points due to the synchronization
uncertainties. It remains open whether this bound is really required. In Section 5
we give a detailed example of how to extend a speci�c clock synchronization
algorithm that does not operate in a round structure.

Note that we do not aim at achieving a consistent global snapshot in the
Chandy-Lamport sense (see [5]), which is not clearly de�ned in the Byzantine
fault model. For our purposes a projection of the local state to the application
state su�ces in order to detect states that violate the assumptions of the basic
program on its initial states, which rendered it non-stabilizing in the �rst place.

Generally, the extension of the basic program is established through a user-
supplied wrapper function, so called because it �wraps� the basic program and
functions as an interface between the basic program and the stabilizer. Note that
the wrapper procedures must be supplied by the implementor. This is because it
is a semantic matter to determine whether the global application state predicate
indicates an illegal state that violates the assumptions of the basic program. For
the sake of modularity and readability the wrapper is divided into two distinct
modules according to its two main functions. TheGetState_Wrapper() mod-
ule interprets the local state of the basic program and returns the local state at
the sampling points. The EvalState_Wrapper() module evaluates the agreed
global application snapshot and determines whether it is legal with respect to
the application. It also instructs a node how to repair its local application state
as a function of the global application snapshot, should a node detect that its
local application state is inconsistent with the legal global application snapshot.

6 Note that the clock time can be the elapsed time on a node's timer since the pulse.
The synchronization of the pulses implies synchronization of these clocks.

Self-Stabilization of Byzantine Protocols 9

Restrictions on the basic program:

R1: The basic program at all correct nodes can be initialize within at least σ
real-time units apart. The procedure Init_Basic_Program initializes it.

R2: The basic program can tolerate that up to f of the nodes can choose to keep
values from previous incarnations of the basic program (e.g. for replay of
digital signatures).

R3: Has repeated sampling points during execution that can be identi�ed through
the local state. The sampling points are such that if all correct nodes report
their state at the same corresponding sampling point then the global appli-
cation snapshot is �meaningful� with respect to the application.

R4: During a legal execution all the correct nodes' sampling points are within ∆
real-time units of each other. The background pulse algorithm implies that
∆ ≥ σ, because the pulse skew may cause the nodes to reach the sampling
points up to σ real-time units of each other.

R5: There exists a value Σ, such that in every time-window that is at least some
Σ real-time units long every correct node has at least one sampling point.
This value also covers the initialization period of the basic program.

R6: The set of legal application states of the basic program can be determined
by evaluating a predicate on the application state variables. An additional
requirement is that if up to f non-faulty nodes detect that their own local
state is inconsistent with a legal global application snapshot then it can be
repaired without needing a global reset7.

R7: The basic program has a closure property with regards to the legal global
states. I.e. if the system is in a legal state and the system is coherent then
it stays in a legal state as long as the system stays coherent.

To formalize the intuition we give a more re�ned presentation of the algorithm:

At �pulse� event Do /* received the internal pulse event */
1. Revoke possible other instances of the algorithm and clear the data structures;
2. If (reset) then Do invoke Init_Basic_Program;/* reset the Basic Program */

/* Lines 3,4 are executed by the GetState_Wrapper() procedure */
3. Upon a sampling point Do
4. Set Timer := elapsed time since pulse;
5. Record app_state & invoke Byz_Agreement on (app_state, Timer);

/* Line 6 is executed about agreement_duration time after the f+1st agreement */
6. Sift through agreed values for a cluster of ≥ n− f values whose Timers within

2∆ of each other, thus comprising a meaningful global application snapshot;
7. If no such cluster exists then Do reset := true;

/* Lines 8,9,10 are executed by the EvalState_Wrapper() procedure */
8. Else Do predicate evaluation on the global application snapshot;
9. If global application snapshot is not legal Do reset :=true;
10. Else If you are not part of the cluster Do Repair your application state;

7 A basic program that lacks this property might not converge to a legal state.

10 Daliot and Dolev

The complete algorithm, denoted ByzStabilizer, is given below:

Algorithm 1 ByzStabilizer /* executed at node q */

At �pulse� event Do /* received the internal pulse event */
Begin
1. Revoke possible other instances of ByzStabilizer and clear the data structures;
2. Timer := 0; Tpivot := 0;
3. If (reset) then Do invoke Init_Basic_Program; /* reset the Basic Program */
4. Wait until Timer = σ · (1 + ρ) time units;

/* read&agree state at sampl. point; collect f+1 agreed states in window */
5. Do
6. Invoke in the background RecState := GetState_Wrapper();
7. If RecState 6=⊥ then Do invoke Byz_Agreement(q, RecState, T imer);
8. AS := {(p, S, T) | Byz_Agreement returned S 6=⊥}; /* add agreed state */
9. Agr_nodes := {pi | (pi,_, Ti) ∈ AS, σ + ∆ ≤ Ti ≤ Σ + ∆}; /* minimal Ti */
10. Until (‖ Agr_nodes ‖≥ f + 1 or Timer > Σ + ∆ + agreement_duration);

/* collect agreed states, until no more possible states from correct nodes */
11. Do
12. AS := {(p, S, T) | Byz_Agreement returned S 6=⊥}; /* add agreed state */
13. Agr_nodes := {pi | (pi,_, Ti) ∈ AS, σ + ∆ ≤ Ti ≤ Σ + ∆}; /* minimal Ti */
14. Let pivot be the f+1st node in Agr_nodes, in ascending order by their min. Ti;
15. Until Timer ≥ Tpivot + (σ + ∆ + agreement_duration) · (1 + ρ) time units;

/* seek cluster of ≥n−f values whose Timers within 2∆ of each other */
16. AS′ := {(p, S, T) ∈ AS | σ + ∆ ≤ T ≤ Tpivot + ∆ · (1 + ρ)};
17. Cluster_rep := {(pc, Sc, Tc) ∈ AS′ |

‖ {p′ | (p′, S′, T ′) ∈ AS & Tc ≤ T ′ ≤ Tc + 2∆ & Sc ∼ S′} ‖≥ n− f};

/* if no cluster do reset, otherwise evaluate snapshot of earliest cluster */
18. If ‖ Cluster_rep ‖ = 0 then Do reset := true; /* if no n-f sized cluster found */
19. Else Do (pc, Sc, Tc):=minT {(p, S, T) ∈ Cluster_rep};/* else seek earliest cluster */
20. globAppSnapshot := {(p′, S ′, T ′) ∈ AS | Tc ≤ T ′ ≤ Tc + 2∆ & Sc ∼ S ′};
21. reset := EvalState_Wrapper(globAppSnapshot);/*reset,repair or nothing*/
End

The internal pulse event is delivered by the pulse synchronization proce-
dure (presented in [8]). The synchronization of the pulses ensures that the
ByzStabilizer procedure is invoked within σ real-time units of its invocation
at all other correct nodes. Note that we do not assume any correlation between
the pulse cycle and any internal cycles or rounds of the basic program. Hence at
the time of the pulse, the basic program may be in any of its states. The Byzan-
tine agreement procedure used, Byz_Agreement, is essentially the consensus
procedure of [9]. We present its agreement equivalent in Section 7.

Line 1: Following the pulse any possible on-going invocation ofByzStabilizer
(and thus any on-going Byz_Agreement or instance of the wrappers, but not
the execution of the basic program) is revoked and all data structures that are
not used by the basic program are cleared. The exception is the �reset� variable
that is not cleared. Note that the application state, as it belongs to the basic
program, remains intact.

Line 2-3: Each node p initializes a Timer that holds the elapsed clock time
since the last pulse invocation, before possibly doing a reset of the basic program.

Self-Stabilization of Byzantine Protocols 11

Lines 4-7: When the GetState_Wrapper() wrapper procedure encoun-
ters a sampling point subsequent to the pulse, at elapsed time = Timer, then it
records the local application state into the RecState variable. Agreement is then
invoked on (p, RecState, T imer). The procedure GetState_Wrapper() san-
ity checks the state recorded at line 6, thus if it detects that the local application
state is invalid or corrupt it will return ⊥.

Lines 8-15: Target at identifying the f + 1st (time-wise) distinct node whose
value has been agreed upon, denoted the pivot node. Note that after a bounded
time all correct nodes will identify the same pivot node. The time appearing in
the agreed value of the pivot node is denoted Tpivot. The variable AS holds the
set of agreed states. The variable Agr_nodes holds the set of nodes whose values
have been agreed on.

Lines 16-17: A bounded period of time subsequent to Tpivot, all correct nodes
must have terminated agreement on all nodes' values. It is then, that a cluster
of at least n− f agreed values is searched for, such that their Timers are within
2∆ of each other.

Line 18: Such a cluster, if exists, comprises a meaningful global application
snapshot. Otherwise, the global application state must be in an illegal state.

Lines 19-21: If a cluster is detected, then the EvalState_Wrapper proce-
dure evaluates the global application snapshot. It determines whether the node
must repair its local application state; whether a global reset should be scheduled
at the next pulse invocation or whether the global application state is assumed
to be legal and thus nothing is done. The ∼ notation denotes equality between
cluster identi�ers.

The following Lemma and Theorem apply as long as the system is coherent:

Lemma 1. If the system is in an arbitrary global state then, within �nite time,
subsequent to line 17 of the ByzStabilizer algorithm there is agreement on the
set Cluster_rep.

Theorem 1. ByzStabilizer is a self-stabilizing extension of any algorithm
that complies with restrictions R1-R7.

Proof. Convergence: Let the system be coherent but in an arbitrary global
state, s, with the nodes holding arbitrary local application states. The pulse
synchronization procedure is self-stabilizing, thus, independent of the system's
initial state within a �nite time the pulses are invoked regularly and synchro-
nously with a tightness of σ real-time units. At the pulse invocation all remnants
of previously invoked ByzStabilizer, inclusive of its sub-procedures such as
the agreement and wrappers, are �ushed by all the correct nodes. Following
Lemma 1, subsequent to line 17 of ByzStabilizer there is consensus on the
selected cluster (including of the empty cluster). At line 18 there may be one of
two possibilities:

1. ‖ Cluster_rep ‖ = 0: This necessarily implies the basic program is in an
illegal state. In this case all correct nodes will do reset :=true. At the next
pulse all correct nodes will reset the basic program and thus converge to a
legal state.

2. A cluster was detected : In this case subsequent to line 20 the variable globApp-
Snapshot, which holds the cluster whose states are the earliest agreed on
since the pulse, will be generated at all correct nodes. Again, there are two
cases to consider:
(a) The sampling points are within ∆ real-time of each other :

Thus all correct nodes have initiated an agreement on their state within
∆ real-time units of time Tpivot at the pivot node. Hence all correct nodes

12 Daliot and Dolev

are represented in the cluster. The reset variable will be set at line 21 by
the EvalState_Wrapper predicate detection procedure. If the pro-
cedure returns that the globAppSnapshot is legal then all correct nodes
do nothing. Otherwise all correct nodes will reset the basic program at
the next pulse and thus the system converges to a legal global state.

(b) The sampling points are not within ∆ real-time of each other : There are
two cases to consider:
i. All correct nodes are represented in the cluster :
Thus the basic program is unsynchronized within the uncertainty
window. If the EvalState_Wrapper procedure detects the ille-
gality of the global state then all correct nodes will reset at next
pulse, otherwise the illegality will not be detected and all correct
nodes will not reset the basic program at the next pulse.

ii. At least one correct nodes is not represented in the cluster : Again
there are two cases:
A. The EvalState_Wrapper procedure evaluates in line 21 the

application snapshot as illegal : Then all correct nodes reset at
the next pulse and the system attains a legal global state.

B. The EvalState_Wrapper procedure evaluates in line 21 the
application snapshot as legal : This is due to faulty nodes that
��ll-in� for the lacking correct values, then these correct nodes
that are not represented will detect so and must repair their local
states. Thus no correct node does a reset at the next pulse. By
restriction R6, a repair is done by the EvalState_Wrapper
procedure as a function of the global application snapshot such
that the new global state will be legal. ut

Closure: Following Lemma 1 the closure proof reduces to case (2.a.) in the proof
of convergence, for the case in which the global state is legal. Thus, following
restriction R4 the EvalState_Wrapper procedure evaluates correctly that
the global snapshot is legal and thus all correct nodes do reset :=false.

This concludes the proof of the theorem. ut

5 Example of Stabilizing a Non-stabilizing Algorithm

To illustrate our method and to elucidate its generality we will provide a spe-
ci�c example of the conversion of a well known non-stabilizing algorithms to its
stabilizing counterpart.

To stabilize the protocol using our scheme the following needs to be identi�ed:
the application state, the sampling points, the bound ∆ on the real-time skew be-
tween correct nodes' sampling points in a legal state, theGetState_Wrapper
procedure, the EvalState_Wrapper procedure and how it characterizes the
legal states and how it does a repair, the initialization of the basic program
following a global reset, the required minimal length of the cycle.

Consider the Byzantine clock synchronization algorithm in [10]. Informally
that algorithm operates as follows: The processes resynchronize their clocks every
PER time period. A process expects the time at the next resynchronization to
equal ET . When a process's local time reaches ET it broadcasts a (signed)
message stating �the time is ET �. Alternatively, when a process receives such
a message from f + 1 distinct nodes it knows that at least one correct node
advanced its local time to ET and thus it resets its clock to ET . Note that this
algorithm does not utilize a rounds structure.

It is interesting to note that the candidate protocol above uses signed mes-
sages in a way that does not comply with R2, because replay of signed messages

Self-Stabilization of Byzantine Protocols 13

from previous incarnations of the protocol can destroy the synchronization of the
clocks of the correct nodes. One can transform the protocol to conform with R2,
by using Byzantine Agreement instead of sending signed messages. The di�culty
above is inherent in stabilizing protocols that use digital signatures.

� The application state will be comprised of the ET variable only.
� Practically any point throughout the inter-PER period avoiding the vicinity
of the resynchronization events is safe for sampling. For illustrative purposes
we will de�ne a sampling point at every time that equals ET +PER/2. It is
clear that the ET variable is quiescent around this point when the algorithm
is in a legal global state.

� The algorithm can be initialized with the required bound of σ real-time
units between the di�erent nodes. This will not a�ect the precision of the
algorithm which will stay d. That will yield a real-time skew between correct
nodes' sampling points in a legal state of ∆ = d + PER · (1 + ρ).

� The sampling point is identi�ed by the GetState_Wrapper procedure
through the local state event of clocktime = ET +PER/2, at which the ET
value is read into the localAppState variable.

� The EvalState_Wrapper procedure identi�es the legal application states
as those in which there are at least n − f identical ET values. A repair is
done by a node by setting its ET value to equal the other n− f or more ET
values in the application snapshot if it was evaluated as legal.

� Following a reset a node should initialize the algorithm by setting its ET
variable to some pre-de�ned value, e.g. ET = 0. As mentioned before, the
initial skew of σ will a�ect the accuracy but not the precision, as early and
fast nodes will reach their subsequent ET before the others, but the others
late and slow nodes will set their clock accordingly upon receiving f + 1
messages which is uncorrelated to the initialization skew.

� The required minimal cycle length equals PER/2 in case the pulse correlates
with the reading of the sampling point and some correct nodes will have to
wait until the next sampling point. The protocol then needs to allow for a full
Byzantine agreement to terminate, in addition to a few round-trip rounds.
Thus the required minimal cycle length equals PER/2 + (2f + 3) rounds.

6 Analysis

We require Cycle to be chosen s.t. cyclemin > σ + Σ + agreement_duration.
From an arbitrary state in which the system is coherent it can take up to

pulse_conv real-time until the pulses synchronize. Subsequent to the pulses it
can take in the order of Σ + agreement_duratione real-time to reach a decision
on a reset. The steady-state time complexity equals the time overhead from the
pulse until the EvalState_Wrapper procedure terminates. Again this equals
about Σ +agreement_duration time. With few faults and/or a fast network this
becomes in the order of Σ, which is largely determined by the user and can be as
low as 4d if the basic program allows for frequent sampling points. The message
complexity is expressed in point-to-point messages. The message complexity of
the steady state is roughly n2 messages for the pulse synchronization procedure,
and f ′ · n2 for the agreement algorithm.

Note that the agreement instances initiated by correct nodes will always
terminate within 2 communication rounds, this is due to the early stopping
property of the consensus algorithm which terminates within 2 rounds if all
correct nodes hold the same initial agreement value. Thus the communication
complexity is that of the actual number of faulty nodes.

14 Daliot and Dolev

The algorithm is fault-containing, in the sense that if faulty nodes behave
�correctly� such that a correct node detects that it is not in synch with a legal
global snapshot then the node can �repair� itself. Thus even though we present a
reset-based protocol, repair is done up to a certain amount of concurrent faults.
This is because our protocol is Byzantine resilient, thus a non-Byzantine fault
or inconsistency will be masked by the protocol while the a�ected non-faulty
node can perform a repair. Only if there should be more than f faults and
inconsistencies would a system reset be performed.

The algorithm is also time-adaptive, the number of rounds executed in every
cycle equals the number of actual faults, f ′. This is due to the early-stopping
feature of the agreement algorithm which terminates within f ′ ≤ f rounds.

Note that if solving a certain Byzantine problem can be reduced to consensus
(or agreement) on the future value of the global state at the next pulse, (e.g.
token circulation, see [9]), as opposed to reaching agreement on the current value
of every node, then the agreement algorithm presented can be used to achieve
2-round early stopping subsequent to every pulse. Thus based on the global ap-
plication snapshot at the last pulse, it can be calculated what the global state
should be at this pulse. Thus if all correct nodes previously agreed on the state
of every other node, which comprises the global snapshot, then they can enter
agreement with consensus on the expected states for all nodes. The early stop-
ping feature of the consensus algorithm in [9] ensures that if all correct nodes
hold the same initial value to be agreed on then consensus is reached within two
rounds. This makes the steady-state case extremely cost-e�cient with a minimal
overhead of 2 rounds. Only following a transient failure might full agreement be
executed on the values of the faulty nodes, since di�erent correct nodes may
then hold di�erent values for the same nodes.

Acknowledgements: We wish to thank Shlomi Dolev and Hanna Parnas
for stimulating discussions with regards to the current result.

References

1. Y. Afek, S. Dolev, �Local Stabilizer�, Proc. of the 5th Israeli Symposium on Theory
of Computing Systems (ISTCS97), Bar-Ilan, Israel,74-84. June 1997.

2. A. Arora and S. Kulkarni, �Component Based Design of Multitolerance, IEEE
Transactions on Software Engineering, Vol. 24, No.1, January 1998, pp. 63-78.

3. A. Arora and M. Gouda, �Distributed Reset, In Proceedings of the 10th Confer-
ence on Foundations of Software Technology and Theoretical Computer Science,
number 472 in Lecture Notes in Computer Science, pages 316�333, 1990.

4. B. Awerbuch, B. Patt-Shamir and G. Varghese, �Self-Stabilization by Local Check-
ing and Correction, In Proceedings of the 32nd IEEE Symp. on Foundation of
Computer Science, 1991.

5. K. M. Chandy and L. Lamport, �Distributed Snapshots: Determining Global States
of Distributed Systems, ACM Trans. on Computer Systems, Vol. 9(1):63�75, 1985.

6. A. Daliot, D. Dolev and H. Parnas, �Linear Time Byzantine Self-Stabilizing Clock
Synchronization", In Proceedings of 7th International Conference on Principles
of Distributed Systems (OPODIS-2003), La Martinique, France, December, 2003.

7. A. Daliot, D. Dolev and H. Parnas, �Self-Stabilizing Pulse Synchronization In-
spired by Biological Pacemaker Networks�, In Proceedings of the Sixth Sympo-
sium on Self-Stabilizing Systems, DSN SSS '03, San Francisco, June 2003. See
also LNCS 2704.

8. A. Daliot, D. Dolev and H. Parnas, �Self-Stabilizing Byzantine Pulse Syn-
chronization", Technical Report TR2005-84, Schools of Engineering and
Computer Science, The Hebrew University of Jerusalem, Aug. 2005. Url:
http://leibniz.cs.huji.ac.il/tr/841.pdf

Self-Stabilization of Byzantine Protocols 15

9. A. Daliot, and D. Dolev, �Self-Stabilizing Byzantine Token Circulation", Technical
Report TR2005-77, Schools of Engineering and Computer Science, The Hebrew
University of Jerusalem, June 2005. Url: http://leibniz.cs.huji.ac.il/tr/834.pdf

10. D. Dolev, J. Y. Halpern, B. Simons, and R. Strong, �Dynamic Fault-Tolerant
Clock Synchronization�, Journal of the ACM, Vol. 42, No.1, pp. 143-185, 1995.

11. S. Dolev, �Self-Stabilization�, The MIT Press, 2000.
12. S. Dolev, and J. L. Welch, �Self-Stabilizing Clock Synchronization in the presence

of Byzantine faults�, Journal of the ACM, Vol. 51, Issue 5, pp. 780 - 799, 2004.
13. M. J. Fischer, N. A. Lynch and M. Merritt, �Easy impossibility proofs for distrib-

uted consensus problems�, Distributed Computing, Vol. 1, pp. 26-39, 1986.
14. A. S. Gopal and K. J. Perry, �Unifying self-stabilization and fault-tolerance�, IEEE

Proceedings of the 12th annual ACM symposium on Principles of distributed
computing, Ithaca, New York, 1993.

15. S. Katz, K. J. Perry, �Self-Stabilizing Extensions for Message-Passing Systems�,
Distributed Computing 7(1): 17-26 (1993)

16. S. Kulkarni and A. Arora, �Multitolerance in distributed reset, Chicago Journal
of Theoretical Computer Science, Special Issue on Self-Stabilization, 1998.

17. S. Kulkarni and A. Arora, �Compositional Design of Multitolerant Repetitive
Byzantine Agreement, Proceedings of the 18th Int. Conference on the Founda-
tions of Software Technology and Theoretical Computer Science, India, 1997.

18. S. Kutten and B. Patt-Shamir, �Time-adaptive self stabilization, In PODC97 Pro-
ceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 149-158, 1997.

19. J. Lundelius, and N. Lynch, �An Upper and Lower Bound for Clock Synchroniza-
tion,� Information and Control, Vol. 62, pp. 190-205, Aug/Sep. 1984.

20. M. Nesterenko and A. Arora, �Local Tolerance to Unbounded Byzantine Faults�,
IEEE SRDS, pages 22-31, 2002.

21. S. D. Stoller, �Detecting Global Predicates in Distributed Systems with Clocks�,
Distributed Computing, 13(2):85-98, April 2000.

22. Sam Toueg, Kenneth J. Perry, T. K. Srikanth, �Fast Distributed Agreement�, SIAM
Journal on Computing, 16(3):445-457, June 1987.

7 Appendix - The Byz_Agreement Procedure

The Byzantine Agreement module extends the approach taken in [9] in using
explicit time bounds in order to address the variety of potential problems that
may arise when the system is stabilizing.

We assume that timers of correct nodes are always within σ̄ of each other.
More speci�cally, we assume that nodes have timers that reset periodically, say
at intervals ≤ Cycle′. Let Tp(t) be the reading of the timer at node p at real-time
t. We thus assume that there exists a bound such that for every real-time t, when
the system is coherent,

∀p, q if σ̄ < Tp(t), Tq(t) < Cycle′ − σ̄ then |Tp(t)− Tq(t)| < σ̄ .

The bound σ̄ includes all drift factors that may occur among the timers of
correct nodes during that period. When the timers are reset to zero it might
be, that for a short period of time, the timers may be further apart. The pulse
synchronization algorithm [8] satis�es the above assumptions and implies that
σ̄ > d.

We use the following notations in the description of the agreement procedure:

� Let d̄ be the duration of time equal to (σ̄+d) · (1+ρ) time units on a correct
node's timer. Intuitively, d̄ can be assumed to be a duration of a �phase� on
a correct node's timer.

16 Daliot and Dolev

� The consensus-broadcast and the broadcast primitives are de�ned in [9]. Note
that an accept is issued within the broadcast primitive.

The Byz_Agreement algorithm is presented in a somewhat di�erent style.
Each step has a condition attached to it, if the condition holds and the timer
value assumption holds, then the step is to be executed. Notice that only the
step needs to take place at a speci�c timer value. It is assumed that the internal
procedures invoked as a result of the Byz_Agreement procedure are implicitly
associated with the agreement procedure.

Algorithm Byz_Agreement on (p, V al, T) /* invoked at node q */

broadcasters := ∅; value :=⊥;
if p = q then send (initialize, q, V al, T + d̄, 1) to all; /* the General */

by time (T + d̄) :
if received (initialize, p, V al, T + d̄, 1) then

consensus-broadcast(p, V al, T + d̄, 1);
by time (T + 3d̄) :

if accepted (p, v, T + d̄, 1) then
value := v;

by time (T + (2f + 3)d̄) :
if value 6=⊥ then

broadcast (p, value, T + d̄, bTq−T−d̄

2d̄
c+ 1);

stop and return value.
at time (T + (2r + 1)d̄) :

if (|broadcasters| < r − 1) then
stop and return value.

by time (T + (2r + 1)d̄) :
if accepted (p, v′, T + d̄, 1) and r − 1 distinct messages (pi, v

′, T + d̄, i)
where ∀i, j 2 ≤ i ≤ r, and pi 6= pj 6= p then

value := v′;

Fig. 1. The Byz_Agreement algorithm

The Byz_Agreement algorithm satis�es the following typical properties:

Termination: The protocol terminates in a �nite time;
Agreement: The protocol returns the same value at all correct nodes;
Validity: If the initiator is correct, then the protocol returns the intiator's value;

Nodes stop participating in the Byz_Agreement protocol when they are
instructed to do so. They stop participating in the broadcast primitive 2d̄ after
they terminate Byz_Agreement.

De�nition 12. We say:
A node returns a value m if it has stopped and returned value = m.
A node p decides if it stops at that timer time and returns a value 6=⊥ .
A node p aborts if it stops and returns ⊥ .

Theorem 2. The Byz_Agreement satis�es the Termination property. When
n > 3f , it also satis�es the Agreement and Validity properties.

Self-Stabilization of Byzantine Protocols 17

Proof. The proof follows very closely to the proof of the Byz-Consensus algo-
rithm in [9]. Notice, that there is a di�erence of one d̄ resulting from the initiation
of the protocol by a speci�c node, followed by a consensus. Another di�erence is
that the General itself is one of the nodes, so if it is faulty there are only f − 1
potential faults left.

Lemma 2. If a correct node aborts at time T + (2r + 1)d̄ on its timer, then no
correct node decides at a time T + (2r + 1)′d̄ ≥ T + (2r + 1)d̄ on its timer.

Lemma 3. If a correct node decides by time T + (2r + 1)d̄ on its timer, then
every correct node decides by time T + (2r + 3)d̄ on its timer.

Termination: Lemma 3 implies that if any correct node decides, all decide
and stop. Assume that no correct node decides. In this case, no correct node
ever invokes a broadcast (p, v, T + d̄,_). By the consensus-broadcast properties
in [9], no correct node will ever be considered as broadcaster. Therefore, by time
T +(2f +3)d̄ on their timers, all correct nodes will have at most f broadcasters
and will abort and stop. ut
Agreement: If no correct node decides, then all abort, and return to the same
value. Otherwise, let q be the �rst correct node to decide. Therefore, no correct
node aborts. The value returned by q is the value v of the accepted (p, v, T + d̄, 1)
message. By the consensus-broadcast properties in [9], all correct nodes accept
(p, v, T + d̄, 1) and no correct node accepts (p, v′, T + d̄, 1) for v 6= v′. Thus all
correct nodes return the same value. ut
Validity: If the initiator q is correct, all the correct nodes invoke the consensus-
broadcast with the same value v′ and invoke the protocol with the same timer
time (T + d̄). By the consensus-broadcast properties in [9], all correct nodes will
stop and return v′. ut

Thus the proof of the theorem is concluded. ut

