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Abstrac t :  This paper gives two simple eff ic ient  dis- 
t r ibuted algorithms: one for keeping clocks in a net -  
work synchronized and one for al lowing new proc- 
essors to join the ne twork  with their clocks syn- 
chronized. The algorithms tolerate both l ink  and 
node failures of any type. The algori thm for main-  
ta in ing  synchroniza t ion  will work for arbi t rary  net -  
works (rather than  just completely connected net -  
works) and tolerates any number  of processor or 
communica t ion  l ink  faults  as long as the correct  
processors remain connected by faul t -free paths. I t  
thus represents an improvement  over other clock 
synchroniza t ion  algorithms such as [LM1,LM2,LL1]. 
Our algori thm for al lowing new processors to join 
requires that  more than half the processors be cor- 
rect, a requirement  which is provably necessary. 

1. I n t r o d u c t i o n  

In  a distr ibuted system it is of ten necessary for 

processors to perform cer ta in  act ions  at roughly the 

same time. In  such a system each processor usually 

possesses its own independent  clock. However,  de- 

spite the marvels of modern technology, clocks tend 

to drif t  apart. Therefore, clocks must  be resynchron-  

ized periodically. 
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Recently,  many protocols for resynchroniza-  

t ion in the presence of faults  have received wide at- 

t en t ion  (cf. [ L M 1 , L M 2 , M a , L L 1 ] ) .  The algorithms 

ment ioned above are all based on an averaging proc- 

ess that  involves reading the clocks of all the other 

processors. Because of this use of averaging, there 

must  be more nonfau l ty  than faulty processors for 

these algori thms to work. Two of the algorithms 

presented in [ L M 1 , L M 2 ]  and the algorithm of 

I L L 1 ]  require 3f+1 processors in order to handle f 

faults;  a third algori thm of [LM1,LM2], which as- 

sumes the existence of unforgeable signatures, re- 

quires 2f+1 processors. The algorithms of [ M a ] ,  for 

which no worst case analysis  is provided, deal with 

ranges of times rather  than  a single logical clock time 

and therefore are not  directly comparable.  

In  this paper a synchroniza t ion  algorithm is 

presented that  does not  require any min imum number  

of processors to handle f processor faults,  so long as 

the ne twork  remains connected.  The crucial  point  is 

that since we do not  use averaging, it is not  necessary 

that  the majori ty  of processors be correct. Moreover, 

our algorithm requires the t ransmission of at most n 2 

messages per synchroniza t ion  (where n is the total  

number  of processors in the system). The algorithm 

of [LL1] and one of the algorithms of [LM1,LM2] 

also require only n 2 messages; the other two algor- 

i thms of [LM1,LM2] might need as many as n f+ l  

messages to- to lera te  f faults. A f inal  advantage of 



our  a lgor i thm is tha t  i t  can  deal  wi th  e i ther  processor  

or  l ink  faul t s  in any  ne twork ,  provided  the n e t w o r k  

remains  connected .  The a lgor i thms of 

[ L M I , L M 2 , L L I ]  deal  only  wi th  processor  faul ts  in a 

comple te ly  connec ted  ne twork .  

The a lgor i thm is based on the fo l lowing  s imple  

observa t ion .  I f  there  are no fau l ty  processors ,  a 

processor  can  be chosen  to be a synchronizer and to 

b roadcas t  a message wi th  i ts cu r ren t  t ime once an  

hour  (or day,  or week,  depending on the f r equency  of  

synch ron iza t ion  required) .  Each processor  would  

then  adjus t  its c lock  accordingly ,  mak ing  minor  a l -  

lowances  if necessary  for the t ransmiss ion  t ime of  the  

message. 

I f  there  are faul ts ,  however ,  then  there  are obv i -  

ous p rob lems  wi th  the  above  approach .  A fau l ty  

synchron ize r  might  b roadcas t  d i f fe ren t  messages (i.e. 

d i f fe ren t  t imes)  to d i f fe ren t  processors ,  or  i t  might  

b roadcas t  the  same message but  at  d i f fe ren t  t imes,  or  

i t  might  " forge t"  to  broadcas t  the message to some 

processors .  Note  tha t  it  is not necessary  to assume 

"malevo lence"  on the par t  of the synchron ize r  for  

such behavior  to occur.  Fo r  example ,  a synchron ize r  

might  fai l  in the middle  of b roadcas t ing  the message 

"The t ime is 9 A.M. ,"  spontaneous ly  recover  f ive  

minu tes  la ter ,  and con t inue  b roadcas t ing  the same 

message. Thus,  some of the processors  would  rece ive  

the  message "The t ime is 9 A.M."  at  9 A.M.,  whi le  

the  remainder  would  receive  i t  at 9:05. 

Never theless ,  the  idea of using a synchron ize r  

can  be modif ied  to ob ta in  an e f f i c ien t  sync h ron i z a -  

t ion  a lgor i thm which  is cor rec t  even in the  presence  

of  faults .  The  key  idea is to d i s t r ibu te  the  role of  the  

synchron izer :  every  (correc t )  processor  wi l l  t ry  to ac t  

as a synchron ize r  a t  roughly the same t ime,  and  at  

least  one will  succeed. To ensure tha t  this  rea l ly  

happens  at  " roughly  the  same t ime" ,  we use a p ro to -  

col  tha t  guarantees  tha t  all  the cor rec t  p rocessors  
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agree on the  expec ted  t ime for  the next  synch ron iza -  

tion. 

In  p rac t i ce  the per iod ic  r e synchron iza t ion  a lgor-  

i thm must  be supp lemented  by a method for  syn-  

chron iz ing  the or ig ina l  pa r t i c ipan t s  and for  b r ing ing  

in new processors .  Our  techniques  can  also be used 

to cons t ruc t  such a join algor i thm,  which can  be used 

to a l low new processors  to join the n e t w o r k  wi th  

their  c locks  synchron ized  to those of a l ready ex is t ing  

processors .  This  a lgor i thm can also be app l ied  to  

repai red  (prev ious ly  fau l ty )  processors  tha t  must  be 

r e synchron ized  wi th  the  rest  of the ne twork .  The 

join a lgor i thm requires  tha t  fewer  than  half  the  p roc-  

essors in the n e t w o r k  be fau l ty  in order  to work ,  a 

r equ i rement  which  is p rovab ly  necessary.  

The  remainder  of  the  paper  is o rganized  as fol-  

lows. In  the  nex t  sec t ion  the problem is fo rmal ized  

and the precise  assumpt ions  under ly ing  the a lgor i thm 

are  descr ibed.  These assumpt ions  include the exis t -  

ence of a bounded  ra te  of d r i f t  be tween  the c locks  of  

non fau l ty  processors ,  a k n o w n  upper  bound  on the 

t ransmiss ion  t ime of  messages be tween n o n f a u l t y  

processors ,  and  the ab i l i ty  to au then t i ca te  s ignatures .  

The r e s y n c h r o n i z a t i o n  a lgor i thm is descr ibed in sec- 

t ion 3 and ana lyzed  in sec t ion  4. The degree of  syn-  

ch ron iza t i on  ob ta ined  is a lmost  as t ight  as possible,  

but  a ca re fu l  d iscuss ion of  this  p roper ty  is beyond  the 

scope of  this  paper  (v. [ DHS ] and [ LL2 ] ). F ina l ly ,  

the join a lgor i thm is presented  and ana lyzed  in Sec- 

t ion 5. 

2. A specification of the algorithm. 

In  th is  sec t ion both  the  proper t ies  (CSI -CS3)  

tha t  the  c lock  synch ron i za t i on  a lgor i thm sat isf ies  and 

the a s sumpt ions  ( A I - A 3 )  tha t  are made in the  model  

are  presented .  

The  c lock  of a processor  is defined to be a par-  

t icu lar  t ime service  de l ivered  by that  processor .  In  



response to a t ime query the service responds with a 

number  indicat ing the " t ime."  In part icular ,  the no-  

t ion of a c lock is not  bound to any hardware,  and 

processors may possess any number  of clocks. I t  is 

assumed that  a processor uses one or more independ-  

ent hardware components  to t ime durations,  to up- 

date, and to provide accuracy for its logical clocks.  

More specifically,  it is assumed that  all c locks of a 

correc t  processor are correct  in the sense of (A1) 

below. 

As in [ L M 1 , L M 2 , L L 1 ] ,  a dis t inct ion is made 

between real time (as measured in an assumed Newto -  

nian time frame that  is not  direct ly  observable) and 

clock time, the t ime measured on some clock. We also 

adopt the conven t ion  t h a t  var iables  and cons tan ts  

that  range over  real t imes are wr i t ten  in lower case 

and variables  and constants  that  range over  c lock  

times are wr i t ten  in upper case. If  C is a clock,  the 

no ta t ion  C(t) denotes the t ime C reads at real t ime t. 

When we speak of "a c lock dr i f t ing from real t ime,"  

we mean that  the di f ference be tween  the value del iv-  

ered by the t ime service and real t ime might gradually 

increase. In part icular ,  a c lock C is considered to be 

correct  if its rate of drift  f rom real t ime is bounded 

by a known cons tant  p > O. That  is: 

(A1) ( l + p ) ' l ( v - u )  < C ( v ) - C ( u )  < ( l+p ) (v -u ) .  

For  technica l  reasons the lef tmost  term has a fac tor  

of ( l + p )  -1 rather than the more common l -p;  for  

small p both approaches are essential ly the same. An  

advantage  of (A1) is that  it implies the symmetr ic  

condi t ion  

(l+p)'1(C(v)-C(u)) < v-u < (l+p)(C(v)-C(u)). 

By a s t ra ightforward computa t ion  one can show 

that  the drif t  be tween two correc t  c locks is bounded 

by dr=p(2+p)/( l+p);  i.e. over  a period u, the devia-  

t ion between correct  c locks  is bounded by A + 

up(2+p)/( l+p),  where A is the deviat ion of the 
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clocks at the beginning of the period. Note  that  

dr<2p. 

Important  Note:  Our use of p is consis tent  wi th  that  

of [LL1], but differs  f rom that  of [LM1,LM2]. The p 

of [LM1,LM2] essent ial ly corresponds to our dr. 

Messages f rom one processor to another  are 

t ransmit ted over  a logical communica t ion  ne twork  G. 

G may be a ne twork  of physical  l inks between proc-  

essors, for  example,  or it may be the route graph of 

[DFISS] .  Only processors connec ted  through fault  

free paths can be synchronized.  However ,  it is not  

necessary to assume that  the ne twork  is complete ly  

connec ted  as do [ L M 1 , L M 2 , L L 1 ] ,  i.e. it is not  nec-  

essary for there to be a l ink between every pair of  

processors. We assume that  there is a known upper 

bound tdel (for transmission delay) on the t ime t re- 

quired for a short message ( typical ly of the form 

"The t ime is T")  to be prepared by a given processor,  

sent to all the other  processors to which it is l inked, 

and processed by all the correct  processors that  re- 

ceive it; formally:  

(A2) O<t<tdel .  

For  local area ne tworks  the time required to 

schedule the synchroniza t ion  process tends to domi- 

nate  the t ime required to t ransmit  a message along 

the communica t ion  links. Therefore,  we have not  

analyzed a ref ined vers ion of assumption (A2) (such 

as that  used in [LL1,LM1,LM2])  that,  if t is as above,  

then 8-~<t<8+~. We leave it to the reader to ver i fy  

that  our results could also be obtained using this re- 

f ined version.  

The next  major assumption is that  signatures are 

unforgeable.  More precisely:  

(A3) The processors are numbered 1,2 ..... n. Proc- 

essor i uses an encoding func t ion  E i to encode 

a message  M so that :  



(a) no processor other than  i can generate or 

alter the encoded message E i[  M ] (i.e. no  

message can be forged), 

(b) if processor j receives E i [ M ] ,  it can  de- 

code M and determine that  i was the proc-  

essor that  sent the message (messages can  

be authent icated) .  

These assumptions  are quite reasonable given 

current  technology. Clocks are suff ic ient ly  precise to 

guarantee p = 10 -6 scc./sec, for A1. In  a local area 

network,  wc can typical ly take the value of tdel to be 

0.1 seconds. This value can be further  reduced by 

giving the clock synchroniza t ion  process high pr ior i ty  

in the scheduling of the operat ing SYstem of the proc-  

essor. Algori thms for digital signatures sat isfying A3 

are well k n o w n  (v. [ R S A ] )  and have been used in  

distr ibuted agreement  protocols (v. [ D S ] ) .  Note  

that assumpt ions  A1 and A2 are quite s tandard and 

have been made in all the other clock synchroniza-  

t ion papers. Assumpt ion  A3 is used in  one of the 

algorithms of [LM1,LM2], but  no t  in of the other  

algorithms ment ioned  above. There is actual ly a pre- 

cise sense in  which assumption A3 is not  needed in  

our algori thm (see [DHS] for more details). 

As in  [ L M 1 , L M 2 , L L 1 ] ,  r e synchron iza t ion  is 

modelled by s tar t ing a new clock. After  the k th syn-  

chroniza t ion ,  processor i has clock C~ r u n n i n g  as its 

current clock. We define beg inn ings  (beg) and ends 

(end) as follows: beg k is the (real) t ime that the f irst  

nonfau l ty  processor starts its k th clock;  end k is the 

(real) t ime the last nonfau l ty  processor starts its k th 

clock. Between the k th and k + l  st synchroniza t ions ,  

processor i will consider C~ its current clock. 

interval. A processor uses its k th clock for the t iming 

of any protocols begun while the k th clock was the 

current  clock. Thus, in  practice thexe can be a brief 

overlap period in which more than one clock is in 

use. Unl ike  [ L M 1 , L M 2 ]  the gap between intervals  

is not  t imed out. There is no ambiguity as to which 

clock to use to time a given protocol since all proto- 

cols can be timestamped, and it is a property of our 

algorithm that  exactly one clock is current  through- 

out the ne twork  as of any given clock time. 

The clock synchroniza t ion  algorithm main ta ins  

properties CS1-CS3 below for all correct processors 

Pi and pj. (Compare our CS1 and CS2 to $1 and $2 

of [ LM1 ]) .  

CSI: There is an upper bound on the difference 

between correct processors'  k th clocks. More 

precisely, there is a cons tant  D M A X  (for 

"maximum deviat ion")  such that 

Vt~ [ endk,end k+ l  3, 

]C~( t ) -  Cj~(t)I<DMAX. 

CS2: If k > l ,  then the time the k th clock of Pi reads 

is no less than that  of C~ -1 (i.e. clocks are 

never  set back) and can differ from C~ "1 by at 

most a bounded amount .  More formally,  there 

is a small cons tan t  ADJ (for "adjust")  and a 

t ime t ~ [ beg k, end k]  such that Ctk is started 

at t and if k > l  

0 _ C ~ ( t ) - c ~ - l ( t )  < ADJ. 

CS3: The length of a synchroniza t ion  in te rva l  is 

small, that  is, there exists a small cons tan t  

drain such that 

0 < e n d k - b e g  k _< drain. 

Typical ly,  the time between synchroniza t ions ,  

beg k + l - e n d  k, is on the order of hours, while the t ime 

during which clocks are resynchronized,  e n d k - b e g  k, 

is on the order of seconds. We occasionally refer to 

the in te rva l  [begk,end k] as the k th synchronization 
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3. The algorithm 

The algorithm consists  of two tasks which run  

cont inuous ly  on each correct  processor. There  are 

two parameters  of the algorithm: PER and D. They 

must be chosen to satisfy cer ta in  cons t ra in t s  dis- 



cussed in the next  section. Roughly speaking, PER 

(for "period") is the time between synchronizat ions  

(and thus corresponds to the R of [LM1,LM2] and the 

P of [LL1]), while D (for "deviat ion")  is an upper  

bound on the difference between correct clocks. 

Let ET i (the expected time of the next  syn- 

chronizat ion) ,  CURRENT i (the current  clock being 

used), and CO, Cx/ . . . .  (clocks that are cont inuously  

updated in some fashion) be variables local to proc- 

essor i. When processor i, is started, ET i ffi PER, 

C U R R E N T  i = 0, and C0=0. In  this section we as- 

sume that all processors in the network are started 

wi th in  drain of each other (put  another way, end 0 - 

beg 0 < drain). Later we show how to modify the 

algorithm to allow processors to join the ne twork  at 

any time. 

We use the following abbreviat ions in the de- 

scr ipt ion of the two tasks which comprise the algor- 

ithm. C i represents the time on processor i 's cur ren t  

clock; i.e C~ where k = C U R R E N T  i. SIGN means 

"encode with the appropriate encoding func t ion  Ei;" 

SEND means "send out to each other processor to 

which there is a l ink."  Subscripts are omitted when-  

ever they are clear from context ;  for example, C rep- 

resents C i when the processor i is known  from con-  

text. 

Task TM (T ime  Moni tor ) .  When the current  clock of 

processor i reads ET i, processor i signs and sends an  

encoded message to all processors saying "The time is 

ET." A new clock is started with time ET i, and both 

ET i and C U R R E N T  i are incremented.  The 

"pseudocode" is: 

I f  C = ET then begin 
SIGN AND SEND "The time is ET";  
CURRENT := C U R R E N T  + 1; 
C :--- ET; 
ET := ET + PER; 

end. 
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Task MSG (Message Manager) .  Suppose processor i 

receives an authentic message with s dis t inct  signa- 

tures saying "The time is T" (i.e. an unforgeable mes- 

sage that  has been signed by s dis t inct  processors and 

not  altered in any way). Then  if the message arrives 

at a "reasonable" time, processor i updates both ET i 

and the cur ren t  in terval  and signs and sends out the 

message. Otherwise the message is ignored. More 

formally: 

I f  processor i receives an authent ic  message M 
with s dis t inct  signatures saying "The time is T" 
then 

i f  TffiET and ET-sD < C then begin 
SIGN AND SEND M; 
C U R R E N T  := C U R R E N T  + 1; 
C :--- ET; 
ET := ET + PER; 

end. 

This completes the descript ion of the algorithm. 

Note that  the two tasks have almost identical  bodies. 

The reader will also note that whenever  

CU RR EN T- - k ,  E T - - ( k + I ) P E R .  We could have elim- 

inated one of these variables here, but  we have kept 

them both since they perform conceptual ly  different  

tasks; in  the join algorithm of Section 5 this relat ion-  

ship between C U R R E N T  and ET no longer holds. 

As an example of how the algorithm operates, 

suppose PER -- 1 hour, and the next  synchroniza t ion  

is expected at 11:00 (i.e. ET ffi 11).  If processor i has 

not  received a valid message by 11:00 o 'clock on its 

clock, where a message is said to be valid if it passes 

all the tests of Task MSG, then Task TM is executed 

by processor i. If, on the other hand, processor i does 

receive a valid message before 11:00, then it executes 

Task MSG. Once one of these tasks is executed, 

processor i - upda t e s  its local variable ET to read 

12:00. Processor i will then ignore any further mes- 

sages it receives saying "The time is 11:00." 

Note that a message with s signatures saying 

"The time is T" might arrive as much as sD "early" 



(before ET) and still be considered valid according to 

the test in  Task MSG. Nonetheless, as we show in 

the next  section, at the complet ion of a synchroniza-  

tion, the correct processors are synchronized to with-  

in ( l + p ) d m i n ,  which is less than D. 

The fol lowing example i l lustrates why the test in  

Task MSG must allow the interval  dur ing which a 

message is considered acceptable to have size sD. 

Suppose DMAX (the actual  maximum devia t ion  be- 

tween correct  clocks) is .1 second and in  the algor- 

i thm we take D = D M A X = . I .  Now if processor i re- 

ceives a message with 3 signatures saying "The time 

is 11:00 o 'clock,"  and the message arrives .3 seconds 

before 11:00 o 'clock,  processor i will t h ink  that  mes- 

sage is valid according to Task MSG. Suppose, how- 

ever, that  processor j is also correct and is r u n n i n g  .1 

seconds slower than processor i (which is possible 

since D M A X = . I ) .  If processor j receives processor 

i's message almost ins tan taneous ly ,  then j will  receive 

the message roughly .4 seconds  before 11 o 'c lock on 

its clock. Since the message now has four signatures,  

processor j will also consider it valid. However,  if 

the test in  Task MSG did not  allow the in te rva l  of 

validity to grow as a func t ion  of the number  of signa- 

tures, the message might not  have been considered 

valid. Indeed, it is s traightforward to conver t  this 

example to a scenario in which a fixed bound  on the 

interval  in which a message is considered valid that  is 

independent  of the number  of signatures on the mes- 

sage results in an incorrect  algorithm. 

4. Analysis of the algorithm 

The crucial  poin t  in proving the correctness  of 

the algori thm is to show that once one correct  proc- 

essor receives a valid message according to Task 

MSG, or ini t ia tes  a message according to T ask TM, 

wi th in  a very short time all the other correct  proc- 

essors will receive a valid message or in i t ia te  one. In  

order to make precise the amount  of t ime that  this 

94 

could take, suppose there is a set of faults  F = 

F p o F  L in a communica t ion  network G, where Fp is 

the set of faul ty  processors and F L is the set of faul ty  

communica t ion  links. Let G / F  be the ne twork  which 

remains when all the faults  in F are removed from G, 

and let t r tG/F( i , j ) ,  be the time required to transmit a 

message from processor i to processor j in G / F  

(possibly by having it relayed through a number  of 

other processors, if there is no direct l ink  from Pk to 

pj or if the direct l ink is faulty). Define: 

t r tG /F  = maxi , j ( t r tG/F(i , j ) ) ,  

trtG(fP,fL) - max{t r tG/F [ ]Fp[<fp, IFL[_<f L, 

and G / F  is connected} 

drain = trtG(fP,fL). 

Note that this is the drain of CS3 (given that  

there are at most fp processor failures and fL commu- 

n ica t ion  l ink  failures in the network) .  If wc assume 

(as is done in [LM1,LM2,LL1]) that  G is a complete-  

ly connected  ne twork  with n nodes and IfL]----0 (i.e., 

there are no l ink  faults),  then any two correct  proc- 

essors are still joined by an edge in G / F ;  consequent -  

ly, for any fp, tr tG(fp,0 ) < tdel. If we allow l ink 

faults  but  take [fL+fp[<n-1, then it is easy to check 

that  any two correct processors are either joined by a 

nonfau l ty  l ink  or are both joined to another  correct  

vertex by nonfau l ty  edges; so in this case, trtG(fP,fL) 

< 2tdel. In  general, t r tG /F  _< (the diameter of 

G /F ) tde l ,  (where the diameter of a graph is the dis- 

lance  between the two nodes that  are farthest  apart  

in the graph). For any  graph G with n nodes for 

which G / F  is connected,  the diameter of G / F  at most 

n - l ,  and t r tG /F  < (n-1)tdel.  

Suppose the clock synchroniza t ion  algorithm is 

to bc designed to tolerate at most fp processor faults  

and fL l ink  faults  for a communica t ion  ne twork  G 

satisfying A1-A3. Choose the parameters D and PER 

in the algori thm to satisfy 



(Dr i f t  Inequality) D >_ ( l + e ) d m i n  + d r ( l + a ) P E R ,  

and 

(Interval  Separation) PER > d m i n ( l + p )  + fpD. 

As we shall see, the drift  inequal i ty  guarantees that  D 

is at least as large as the maximum difference be- 

tween clock readings in a given interval ,  while the 

interval  separation cons t ra in t  guarantees that two 

synchroniza t ion  intervals  do not  overlap; i.e., that  

begk+ l>endk .  This, in turn,  will guarantee that no 

correct processor ever receives a message from anoth-  

er to synchronize its k th clock before it is "ready", 

that  is, before it has set E T = k P E R .  

A straightforward subst i tu t ion shows that PER 

and D can be chosen to satisfy both cons t ra in ts  iff 

d r ( l + p ) f p  < 1. Taking p = 10 -6 , this inequal i ty  is 

satisfied when fp < 499,999. Wc can omit the in ter -  

val separation cons t ra in t  if we assume that  messages 

between two correct processors joined by a nonfau l ty  

l ink always arrive in the order in which they were 

sent (v. Remark 2 below). In  this case the algori thm 

will work as long as D and PER are chosen to satisfy 

the drift  inequal i ty.  

Once values have been chosen for D and PER, 

define: 

DMAX = ( l + # ) d m i n  + d r ( l + p ) P E R ,  and 

ADJ = ( f p + l ) D .  

Theorem 1. Let G be a ne twork  with n processors 

satisfying assumptions A1-A3 such that the 

processors'  C O clocks are started wi th in  drain of each 

other. If D and PER are chosen to satisfy the drif t  

inequal i ty  and interval  separation and during the 

runn ing  of tasks TM and MSG at most fp processors 

are faulty in the interval  [beg0,endN], and at most fL 

communica t ion  l inks  are faulty in any of the in ter -  

vals [begk,endk], kffil ..... N, and these faults do not  

disconnect  the network,  then clock synchroniza t ion  

condi t ions  CS1-CS3 hold in the interval  [beg0,endN]. 

Moreover, the correct processors send at most n 2 
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synchroniza t ion  messages during each synchroniza-  

t ion interval .  

Note that in the s ta tement  of Theorem I, we 

tolerate any number  of t rans ient  l ink faults  provided 

there are at most fL of them during any synchroniza-  

t ion in terval  and they do not  d isconnect  correct proc- 

essors. The join protocol described in the next  sec- 

t ion gives us a means to resynchronize  processors 

that  fail and are subsequent ly  repaired. It  will  also 

allow us to resynchronize  processors disconnected by 

t rans ien t  l ink faults. 

Roughly speaking, the algorithm will guarantee 

that all correct clocks will synchronize  wi th in  a real 

time in terval  of length drain = trtG(fL,fp).  Thus, at 

the end of a synchroniza t ion  in terval  (i.e. at end k for 

any k) clocks will be at most ( l + # ) d m i n  apart. Dur- 

ing the l ifetime of a clock as cur ren t  clock (which 

has real time dura t ion at most (1 +p)PER),  clocks will 

drift  apart  at most an extra d r ( I + o ) P E R  = 

p(2+p)PER. (Recall that  dr is the maximum rate at 

which correct clocks might drift  apart).  This gives us 

the expression for DMAX, which is the right hand 

side of the drift  inequali ty.  

As an example, suppose # ffi 10 -6, tdel = 0.1 sec., 

and the ne twork  is completely connected with n 

processors. Then  so long as there are fp processor 

failures and fL l ink  failures, with fP+fL -< n-2, we 

can take PER = 1 hour, drain = .2 sec., DMAX = .21 

see., and ADJ = .21fp sec. If we take fL=0  and al- 

low only processor failures (as is the case in 

[ LM1,LM2,LL1] ) ,  then we can do even better. We 

can take PER = 1 hour, DMAX = .11 see., drain = .1 

see., and ADJ = . l l f p  sec. Note that  DMAX is 

roughly equal to drain. As we remarked above, we 

can make drain, and hence DMAX, smaller by giving 

the synchroniza t ion  process high priori ty in the 

scheduling of the operat ing system of the processor. 



The key  to the proof  of Theorem 1 is the  fo l low-  

ing lemma, which essent ia l ly  says that  as long as D is 

greater  t han  the max imum dif ference  be tween  the 

( k - l )  st c locks  of cor rec t  processors  in the  in te rva l  

[begk,endk],  then the a lgor i thm guarantees  tha t  the  

k th c locks  of cor rec t  processors  will  be wi th in  

( l + p ) d m i n  at  t ime end k. This  is t rue no ma t t e r  how 

large D is, as long as it  is large enough. 

As con tex t  for  the  lemma, let  F be a set of fau l t s  in G 

during the  synchron iza t ion  in te rva l  [begk,endk],  

( k>0 ) ,  such that  F does not  d i sconnec t  G, IFL[_<f L, 

and IFpl_<fp. Also let  D and PER sat isfy  the  dr i f t  

inequa l i ty  and in te rva l  separat ion.  

Lemma 1. I f  (a) for al l  cor rec t  processors  i and j, 

[C~k-l( t ) -Cjg ' l ( t ) l  < D for all  t E [begk,endk],  and  (b) 

at t ime beg k ( just  before  any cor rec t  processor  has 

s tar ted its k th c lock)  all  cor rec t  processors  have  

C U R R E N T = k - 1  and the same value  for ET, then  

( I . I )  e n d k - b e g  k _< drain;  thus CS3 holds for  this  

synch ron i za t i on  in te rva l ,  

(1.2) a t  end k (af te r  all  the correc t  processors  have  

s ta r ted  their  k th c lock)  the k th c locks  of cor -  

rec t  processors  d i f fer  by at  most ( I  +p )dmin ,  

(1.3) the  first  cor rec t  processor  to s ta r t  i ts  k th 

c lock  does so no ear l ier  than  t ime ET-fpD on 

i ts  ( k - l )  st c lock,  

(1.4) no  cor rec t  processor  s tar ts  its k th c lock  ear l i -  

er than  t ime E T - A D J  on its ( k - l )  st c lock ;  

thus  CS2 holds for  this  synch ron iza t ion  in-  

te rva l ,  s ince correc t  processors  s ta r t  thei r  k th 

c locks  reading ET, 

(1.5) beg k + l  > end k, 

( I .6)  the  k th c locks  of cor rec t  processors  d i f fer  by  

at  most D M A X  in the in te rva l  

[ endk , endk+ l ] ;  thus CSI holds in this  in te r -  

val ,  

(1.7) cond i t ions  (a) and (b) hold wi th  k rep laced  

by  k + l  and D replaced  by any D* >_DMAX. 
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Proof  of (1.1). Suppose tha t  Pi is the f i r s t  cor rec t  

processor  to s tar t  i ts  k th c lock  r u n n i n g  By def ini-  

t ion,  this  happens  at  t ime beg k. We will  show tha t  if 

pj is correct ,  it  s tar ts  i ts k th c lock  runn ing  wi th in  

t ime t r tG,F(i , j )  of processor  i. Suppose we can  prove 

this. Since, by def in i t ion ,  drain > t r tG,F(i , j )  for  all i, 

j, it  fo l lows tha t  all  cor rec t  processors  wil l  s t a r t  their  

k th c lock  runn ing  wi th in  drain. Thus e n d k - b e g  k _< 

drain. 

I t  only  remains  to prove tha t  if pj is a cor rec t  

processor ,  then  pj s tar ts  i ts k th c lock  runn ing  wi th in  

t ime t r tG,F(i , j )  of  processor  i. Here  we make  use of 

the precise  form of the va l id i ty  test  of Task  MSG. By 

def in i t ion  of t r t ,  there  must  be some sequence of  non-  

faul ty  processors  and l inks,  s ta r t ing  with  Pi and  end- 

ing wi th  pj, such tha t  messages passed f rom Pi to pj 

a long this  pa th  ar r ive  in t ime at  most  t r tG,F( i , j ) .  

(Note  tha t  here we are impl ic i t ly  using the fac t  that  

the  faul ts  in F do not  d i sconnec t  G.) We p rove  the 

resul t  by induc t ion  on the length  of the pa th .  I f  the 

length  is 0, then  the resul t  is t r iv ia l  s ince i-- j .  In  

general ,  suppose the pa th  has length  m + l .  Le t  Ph be 

the processor  just  before  pj on the path.  No te  tha t  

we must  have t r tG ,F ( i , h )+ t r tG ,F (h ,  j) -- t r tG,F(i , j ) .  

By the induc t ion  hypothesis ,  Ph s tar ts  i ts  k th c lock  

wi th in  t r tG,F( i ,h)  of Pi" When  it  does so, i t  must  be 

e i ther  because  i t  in i t i a ted  Task  TM or i t  rece ived  a 

message tha t  i t  considered val id  accord ing  to Task  

MSG. In  e i ther  case, i t  passes a message on  to pj, 

which  arr ives  wi th in  t ime t r tG,F(h, j ) .  E i t he r  pj has 

a l ready s tar ted  its k th c lock  by the t ime the message 

arr ives ,  or, as we now show, the message wil l  pass the 

va l id i ty  test  of Task  MSG, so tha t  pj wil l  s t a r t  i ts  k th 

c lock  wi th in  t r tG,F(i , j )  of p~. 

Let  X be the  value  of ET shared by al l  cor rec t  

processors  accord ing  to hypothes is  (b). W h e n  the k th 

c lock  of a cor rec t  processor  is s tar ted,  i t  is set to X. 

Suppose pj has not  s tar ted  i ts  k th c lock  when  the 

message f rom Ph arrives.  If  Ph sent the message as a 



resul t  of in i t i a t ing  Task  TM, this must  have happened  

at t ime X on Ph'S k-1 st c lock.  Since,  by hypothes is  

(a), p j ' s  c lock  di f fers  from Ph'S by at  most D, this  

happens  at  a t ime la ter  than  X-D on pj ' s  c lock.  Thus  

pj receives  the message from Ph at  a t ime later  than  

ET-D (s ince E T - - X ,  by hypothesis ,  unt i l  pj s tar ts  i ts 

k th c lock) .  Since the message has one s ignature  

(Ph'S), it  passes the  va l id i ty  test.  Now suppose Ph 

sent the message to pj as a resul t  of get t ing a val id  

message with  s d i s t inc t  signatures.  The message must  

come at  a t ime af te r  X - s D  on Ph'S clock.  By a simi-  

lar  a rgument  to tha t  above,  it  comes t o  pj at  a t ime 

af te r  X - ( s + I ) D  on p j ' s  c lock,  and since it now has 

s + l  s ignatures  ( inc luding  Ph'S), the message also pas-  

ses the va l id i ty  test  for pj. [ ]  

Proof  of  (1.2). Each  correc t  processor  s tar ts  i ts  k th 

c lock  at  some po in t  in the in te rva l  [begk,endk]. By 

hypothes is  (b) and the def in i t ion  of the a lgor i thm,  all  

the k th c locks  of cor rec t  processors  are set to the  

same value  (the E T  at  t ime beg k) when they start .  

By (1.1) they s tar t  wi th in  real  t ime drain of each o th-  

er. Thus they d i f fer  by at  most ( l + p ) d m i n  at  t ime 

end k. [ ]  

Proof of (1.3). A correc t  processor  s tar ts  i ts k th 

c lock  ei ther  as a resul t  of i ts cur ren t  c lock  reading 

ET, or at  a . t i m e  la ter  than  ET-sD,  i f . i t  receives  a 

val id message wi th  s signatures.  The f irst  co r rec t  

processor  to s tar t  i ts  k th c lock  canno t  do this as a 

resul t  of rece iv ing  a message wi th  more than  fp s igna-  

tures,  o therwise  one of these s ignatures  must  be tha t  

of a cor rec t  processor  that  s tar ted its k th c lock  at  an 

ear l ier  time. Thus the f irst  cor rec t  processor  to s ta r t  

its k th c lock  must  do so af te r  ET-fpD on it ( k - l )  st 

c lock.  C] 

Proof of (1.4). By 41.3) the f irst  cor rec t  processor  to 

s tar t  i ts  k th c lock  does so at a t ime af ter  ET- fpD on 

its ( k - l )  st c lock.  By assumpt ion  (a), all  ( k - l )  st 

c locks  of correct  processors  differ  by at  most D at  
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this t ime (begk).  Thus, the ( k - l )  st c locks  of cor rec t  

processors  read a t ime a f te r  E T - ( f p + I ) D  = E T - A D J  

at  beg k. This proves  (1.4). I"1 

Proof of (1.5). Suppose Pi is the f irst  correct  proc-  

essor to s tar t  i ts  ( k + l )  st c lock,  and let  v'  be i ts value 

of ET immedia te ly  before  the ( k + l )  st c lock  is startl- 

ed. Let  v be the  value on its k th c lock  when the k th 

c lock  is started.  F rom the def in i t ion  of the algor-  

i thm, it fol lows tha t  v'  = v + P E R .  An  ident ica l  argu- 

ment  to that  of (1.3) above  shows tha t  Pi s tar ts  i ts 

( k + l )  st c lock  la te r  than  v ' - fpD on its k th c lock;  i.e., 

C~(beg k + l )  > v ' - fpD. F rom (1.1), it  fol lows that  the 

C~(end k) _> v + ( l + p ) d m i n .  By the In te rva l  Separa-  

t ion inequal i ty ,  v + ( l + p ) d m i n  < v'-fpD. Thus 

beg k + l  > end k. [ ]  

Proof  of (1.6). By the spec i f ica t ion  of Task TM, the 

max imum t ime dur ing which the k th c lock  can be 

cu r ren t  (i.e. C U R R E N T  ffi k) is PER in c lock  t ime or 

( I + p ) P E R  in real  time. The last  cor rec t  processor  to 

s tar ts  i ts ( k + l )  st c lock  a l ready has CURRENTff ik  

immedia te ly  a f te r  end k. Thus e n d k + l - e n d  k < 

( I + # ) P E R .  Since the k th c locks  are wi th in  

( l + p ) d m i n  at  end k, they are  wi th in  D M A X  -- 

( l + # ) d m i n  + d r ( l + p ) P E R  at  end k + l  and at al l  t imes 

between.  

Proof of (1.7). By (1.5) beg k + l  occurs  in the in te rva l  

[endk ,endk+l ] .  Thus, by 41.6), all  c locks  are wi th in  

D* be tween [begk+ l , end  k + l ]  for  all  D*_>DMAX. At  

t ime beg k + l  ( just  before  any correc t  processor  has 

s tar ted  its ( k + l )  st c lock)  all cor rec t  processors have 

C U R R E N T f f i k + I  and the same values for ET because 

these values  are only changed when a new clock is 

s tar ted and they are then changed in exac t ly  the same 

way. This completes  the proof  of 41.7), and with i t  

the proof  of the Lemma.  [ ]  

Proof of Theorem 1. To show tha t  CS1-CS3 hold, we 

f irst  prove,  by induc t ion  on k (using par t  (1.7) of 



Lemma 1), that for k<N,  hypotheses (a) and (b) of 

Lemma 1 hold. The result then follows immediately 

from Lemma 1. 

To see that at most n 2 messages are required 

during any synchroniza t ion  interval ,  note  that  dur ing  

every such interval ,  note that a correct  processor will 

execute either Task TM or Task MSG, but  not  both. 

This is because once a correct processor has signed 

and sent a synchroniza t ion  message, it updates its 

value of ET. Because of the validity test in Task 

MSG, it will  ignore any synchroniza t ion  messages it 

might receive conta in ing  the former value of ET. 

Therefore, each correct processor will send one mes- 

sage to each processor to which it has a logical l ink  

during each interval .  Thus, at most n 2 messages are 

sent by correct  processors during each synchroniza-  

t ion interval .  [] 

Remarks 

I. As is ment ioned above, although there is a brief  

overlap in  which different  processors may be using 

different  clocks, t imeouts are not  necessary. If DUR 

is the maximum real time durat ion during which a 

clock might be used to time some dis t r ibuted process, 

the k th clock of a given processor might be used for a 

time DUR beyond when it starts its k + l  st clock to 

time events  that  were started just  before end k+ l  

Thus ( I + p ) P E R + D U R  is the maximum life t ime of a 

clock. During an interval  of this length,  the devia-  

t ion be tween clocks of correct processors could be as 

much as DMAX+drDUR.  

2. We could omit the Interval  Separat ion inequal i ty  

by taking  the fol lowing assumption:  

( t )  If processors i and j are joined by a direct l ink,  

then while the l ink is nonfaul ty ,  messages sent 

along the l ink  will arrive in the same order they 

are sent. 
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The In te rva l  Separat ion inequal i ty  was used in  

the proof above to show that  that synchroniza t ion  

in tervals  do not  overlap;  i.e. beg k+ l  ~end  k (v. condi-  

t ion  (1.6) of Lemma 1). This, in turn,  was needed to 

show that  the fol lowing s i tuat ion cannot  occur:  a 

correct  processor starts its k th and ( k + l )  st clocks, 

and sends out messages to the other processors to do 

so too. These messages cross, so another  correct  

processor receives the message to start the ( k + l )  st 

clock before it is "ready";  i.e. while E T - k P E R .  This 

message will not  pass the val idi ty test of Task MSG, 

and so will be ignored. Assumpt ion  ( t )  guarantees  

that  this problem canno t  happen. We leave it to the 

reader to prove an analogue of Lemma 1 using this 

assumption (cf. [HSS,DHS]). 

Note that  the fol lowing simple protocol achieves 

( t ) .  All messages from processor i to processor j are 

numbered  consecutively.  If processor j receives a 

message numbered  m, it accepts m at time t if (a) no 

message with a higher number  has been accepted, and 

(b) either all message with a lower number  have al- 

ready been accepted or or an in terval  of (2+p)tdel  on 

its dura t ion  t imer has passed since message m was 

received. It  is easy to see that  the accepted messages 

are indeed accepted in  the order that  they are sent, 

and any message which is sent while the l ink is non-  

faulty will be accepted. 

3. During a synchroniza t ion  interval ,  correct proc- 

essors may have di f ferent  current  clocks 

(corresponding to different  values of CURRENT) .  

However,  the difference between current  time (C) on 

correct clocks is always bounded by D MA X+ADJ .  

Note that  this term corresponds to the ~, of ILL1]. 

We have not  concerned ourselves with this figure 

here, since we assume that processors will always use 

the same clock to t ime a given event  (namely,  the 

clock that  was in  force when the event  began, at the 

site in i t ia t ing  the event).  



4. The bound on synchronization that we achieve - 

DMAX - is essentially within a factor of two of opti- 

mal (see [DHS] for further details). 

5. Initialization and Joining 

The clock synchroniza t ion  algori thm presented 

in previous sections is subject to the weakness that  

processor faults  accumulate:  once a processor is 

faulty,  it stays faul ty  since we have not  yet specified 

any way to synchronize  an unsynchronized  clock. In  

order to tolerate processor failures in the long run,  

we must  assume an env i ronment  in which the mean 

time to repair or replacement  of a faul ty  processor is 

less than  the mean time between processor failures. 

To be useful in practice, a clock synchron iza t ion  

algori thm must handle both repaired and new proc- 

essors. In  this section we present an algori thm that  

enables such processors to rejoin the system. Our 

strategy is to run  a Byzant ine Broadcast algori thm 

among the cur ren t ly  active processors, in  order to 

agree on the fact that  a processor wants  to join, fol- 

lowed by a resynchroniza t ion  algori thm in order to 

synchronize  the clocks of all the cur ren t ly  act ive 

correct  processors together with the joiner. 

A previously synchronized group of processors is 

called a duster, the new processor that wants to join 

is called the joiner, and the synchronization of a new 

processor is called joinin 8. Unlikc the clock syn- 

chronization algorithm, which does not require a 

minimum number of correct processors, a processor 

can join a cluster of synchronized processors only if 

the number of processor faults in the cluster is small- 

er than half the number of processors in the cluster. 

To see that this constraint is as weak as possible, 

suppose that half of the processors in the group are 

faulty, and they all think that the time is 10 AM, 

while the correct processors all say the time is 11 

AM. Then there is no way for a joining processor to 

be able to disambiguate the situation. 
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Roughly speaking, the join algorithm proceeds as 

follows. The joiner sends a message to a processor in 

the cluster (called its agent) saying it wants  to join. 

At that  point  three procedures are executed. The 

first is a a Byzant ine  agreement  (cf. [DS]), ini t iated 

by the agent,  on a value for ET to be used in a special 

synchronizat ion.  We then have two synchroniza-  

tions. The agent tells the joiner what time the first 

unscheduled synchroniza t ion  is going to take place. 

The joiner "listens in" while this unscheduled sy- 

chroniza t ion  is going on; it receives messages but  

does not  respond. When it receives f p + l  messages it 

sets its clock to ET. We can show that  as a result of 

this unscheduled synchronizat ion,  the clocks of cor- 

rect processors in the original cluster, as before, are 

at most DMAX apart, while the clock of the joiner 

can differ from the clocks of the correct processors 

by at most 2DMAX. One more synchroniza t ion  

brings the clocks of all processors (including the join- 

er) to within DMAX. 

In  more detail, we proceed as follows. As in our 

original algorithm, we have global constants  D and 

PER which must meet cer ta in  const ra ints  described 

below, local variables ET and CURRENT,  and an 

inf in i te  col lect ion of clocks. We have a three addi- 

t ional  local variables: SS, CLUSTER, and MSIG. SS 

("state of synchroniza t ion")  takes on values NOR- 

MAL, UNSCHED1, UNSCHED2,  or JOINING,  de- 

pending on what stage of the synchroniza t ion  process 

a processor is in. While no joining is taking place 

(the s i tuat ion described in the previous sections) all 

correct processors have S S = N O R MA L (and essential- 

ly follow the tasks TM and MSG described above). A 

processor that  wants  to join the cluster has 

SS=JOINING.  As we ment ioned above, the join 

process involves two special, unscheduled synchroni-  

zations. While these are going on, the correct proc- 

essors in  the cluster will have SS=UNSCHED1 and 

SS=UNSCHED2 respectively. CLUSTER keeps 



t rack of which processors are current ly  in the cluster. 

Final ly ,  MSIG keeps track of which processors have 

signed a message saying "The time is T". As we shall 

see, this will be needed in the second unscheduled 

synchronizat ion.  

We assume that  the system starts with the clus- 

ter consis t ing of one processor, say i, with the var ia-  

bles ini t ia l ized as follows: E T = P E R ,  CURRENT--0 ,  

C=0,  SS=NORMAL,  CLUSTER={i},  and MSIG=[}.  

A processor that  wants  to join a cluster has 

SS=JOINING,  CLUSTER--{},  MSIG={},  and the 

other variables undefined.  It  sends a request - to- jo in  

message to its agent (one of its neighbors that  is in  

the cluster).  (It is beyond the scope of this paper to 

explain how a processor decides to join or picks the 

agent.) If the agent is correct, it then chooses a t ime 

T which is suff icient ly away from any scheduled syn- 

chronizat ion,  and at that time ini t ia tes  a Byzant ine  

agreement  on a time for an unscheduled synchroniza-  

tion. (We show in the full paper that  it suffices to 

choose T such that  T + B Y Z T + ( 2 f p + 3 ) D  < ET, where 

BYZT is some upper bound on the t ime that  it takes 

to reach Byzant ine  agreement;  then we can take ET 

= T + BYZT + (fp + 1) D for the unscheduled synchroni -  

zation.)  If the Byzant ine  agreement succeeds, each 

correct  processor in  the cluster sets SS=UNSCHED1 

at t ime T + B Y Z T  on its cur rent  clock and updates 

CLUSTER to include the joining processor. F rom 

this po in t  on, all messages sent to the cluster  will also 

reach the joining processor. At  UNSCHED1 the 

agent also sends the joiner a message con ta in ing  its 

cur ren t  values of CLUSTER, C U R R E N T ,  and ET. 

On receipt of this message, the joiner  sets its corre- 

sponding variables to the same values. We leave de- 

tails of the pseudocode describing the Byzant ine  

agreement  and the t rans i t ion  to UNSCHED1 to the 

full paper. 

In  the U N S C H E D I  state the correct  processors 

essential ly run  the Tasks TM and MSG described 
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above, the only difference being that ET := 

E T + 2 ( f p + I ) D  rather than  ET := E T + P E R ,  and 

SS :=UNSCHED2 (see the pseudocode below). In  the 

UNSCHED2 state, when a processor gets a message 

that was started by another  processor in the 

UNSCHED1 state, the message is not  ignored, but  is 

passed around the system if it has any "new" signa- 

tures on it (i.e., s ignatures that  have not  appeared on 

previous messages saying the t ime is the previous ET, 

which is the current  E T - 2 ( f p + I ) D . )  The MSIG vari-  

able is used to keep t rack of which processors have 

signed such a message. When  [MSIG[>fp for the join-  

ing processor, it starts a new clock. We show in the 

full paper that  this t ime is at most 2dmin after  the 

first processor in the cluster  has started its c lock with 

the same time. In  the UNSCHED2 state, processors 

also execute Tasks TM and MSG, but  the val idi ty  test 

for Task MSG is slightly different  to allow for the 

fact that  the jo in ing  processor is only synchronized to 

wi th in  2D of the rest of the processors. 

We now give the pseudocode for the Tasks TM 

and MSG in the join algorithm. Recall that  in the 

N O R M A L  state the two tasks share almost ident ical  

bodies. Since this is also true in the pseudocode be- 

low, we use a macro to represent  the ident ical  part. 

Let START N E W u C L O C K  represent 

SIGN AND SEND M TO CLUSTER;  
C U R R E N T  : = C U R R E N T  + 1; 
C := ET;  

Using this abbrevia t ion ,  we have 



Task TM 

I f  C ffi ET then begin 
Select (SS); 

When (NORMAL) begin 
M := "The t ime is ET";  
S T A R T  N E W  CLOCK;  
ET :=  ET + PER;  

end 

When (UNSCHEDI)  begin 
M :ffi "The t ime is ET";  
START N E W  CLOCK;  
ET :=  ET + 2 ( f p + l ) D ;  
SS :=  UNSCHED2;  

end 

When (UNSCHED2) begin 
M :ffi "The  t ime is ET";  
START N E W  CLOCK;  
ET := ET + PER; 
SS :-- N O R M A L ;  
MSIG :=  {}; 

end 
end 

end .  

Task MSG 

I f  processor  i receives an au then t ic  message M of the  
form "The t ime is T" wi th  s ignature  set SIG then begin 

Select (SS); 

When (NORMAL) begin 
] f T = E T  and T-[  SIG[ . D < C  then begin 

S T A R T  N E W  C L O C K ;  
ET :-- ET + PER; 

end 
end 

When (UNSCHED1) begin 
] f T = E T  and T- I SIG [ . D < C  then begin 

S T A R T  N E W  C L O C K ;  
ET :-- ET + 2 ( f p + l ) D ;  
SS :=  UNSCHED2;  

end 
end 

When (UNSCHED2) begin 
I f  (Tf f iET-2( fp+I )D)  
and (I  MSIG I < f p + l )  
and (SIG is not  con ta ined  in MSIG)  
then begin 

MSIG :=  MSIG v SIG;  
S IGN A N D  SEND M TO C L U S T E R ;  

end 
l f T = E T  and T-2o [ SIG [ ° D < C  then begin 

S T A R T  N E W  m C L O C K ;  
ET :-- ET + PER; 
SS :=  N O R M A L ;  
MSIG :=  {}; 

end 
end 
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end 
end .  

When ( JOINING)  begin 
I f  T = ET then begin 

MSIG :=  MSIG u SIG; 
i f  [ MSIG [ > f p  then begin 

S T A R T m N E W  _ C L O C K ;  
SS :=  UNSCHED2;  
ET :ffi E T + 2 . ( f p + I ) . D ;  

end 
end 

end 

We now br ief ly  s ta te  the correc tness  condi t ions  

sat isf ied by the join a lgori thm. We leave the proofs  

of the theorems to the ful l  paper.  

Define the  system state of a processor  to consis t  

of the sequence of values  of its var iables  SS, ET, 

C U R R E N T ,  and CLUSTER.  We say a pa i r  of proc-  

essors (Pi,Pj) is in rapport at  real t ime t if they have 

the same system state,  they both appear  in their  

shared value  for  CLUSTER,  and I C i ( t ) - C j ( t ) J  < 

( l + p ) d m i n .  Assume as before  that  D and PER have 

been chosen to satisfy the dr i f t  inequal i ty  and in ter -  

val  separat ion.  

Theorem 2. I f  all  the cor rec t  processors  in a ne twork  

are  in r appor t  at t ime t, then these processors ,  and 

any cor rec t  processors  tha t  join the ne twork ,  will  

sat isfy CS1-CS3 of the c lock  synchron iza t ion  algor-  

i thm (wi th  values  for D M A X ,  ADJ, and drain twice  

those of Theorem 1), so long as any two cor rec t  proc-  

essors are l inked  by a f au l t - f ree  path. 

Theorem 3. If  PER > 2 ( fp+2)D,  and n > 2 f p ,  then a 

cor rec t  processor  can successful ly  reach r appor t  wi th  

any correc t  processor  to which  it is connec ted  by a 

fau l t - f ree  path.  

We now consider  how the cur ren t  c locks  of cor-  

rect  processors  behave (cf. Remark  4 of Sect ion 4). 

We say a pair  of processors  (Pi,Pj) is R,B-synchronized 

dur ing real  t ime in te rva l  in t  if for  al l  t e in t ,  

I C i ( t ) - C j ( t ) [  < B, and  for  a l l t  1 < t  2 w i t h t  I a n d t  2 



in int ,  0 < C i ( t2 ) -C i ( t l )  < ( l + R ) ( t 2 - t l ) .  Note  tha t  

in the la t te r  inequal i ty ,  we may be compar ing  two 

d i f fe ren t  c locks,  s ince processor  i ' s  cu r ren t  c lock  at  

real  t ime t 1 may be d i f fe ren t  from its cur ren t  c lock  at  

t 2. This  cond i t ion  says that  processor  i ' s  cu r ren t  

c lock  t imes are wi th in  a l inear  bound of real t ime, 

and thus cor responds  to the Linear Envelope 

Synchronization of [DHS]. Let  B = D M A X + 2 A D J .  

Let  R be any  value > p + ( 2 A D J / ( P E R - ( f p + I ) D ) ) .  

Theorem 4. I f  a pair  of processors  is in r appor t  a t  

t ime t, then  they wil l  remain  R ,B-synchron ized  a f te r  t 

so long as they remain  cor rec t  and connec ted  by a 

f au l t - f ree  path.  

Note  .that in the  a lgor i thm as presented,  for  a 

processor  to successful ly  join the ne twork ,  the agent  

chosen by a jo iner  must  be correct .  I t  might  have to 

re t ry  the jo in  a number  of t imes (at  most fp though)  

before  it ac tua l ly  does join. We can  overcome this  

p rob lem by modi fy ing  the join a lgor i thm so that  the  

jo iner  sends its request  to f p + l  agents.  Then the 

jo iner  must  keep  t r ack  of all  poss ible  values  for ET 

accord ing  to each of  i ts agents  and resolve any con-  

f l ic t  by choosing the f irst  value  tha t  receives the re-  

quired number  of suppor t ing  signatures.  Using the 

modif ied  a lgor i thm,  we can prove  tha t  any  cor rec t  

processor  can  successful ly  join wi th in  5 ( f p + 2 ) D  on 

its c lock.  This  is a wors t  ease t ime,  which only oc-  

curs  if a number  of  processors  t ry  to join at once.  

When  only one processor  is joining,  the  whole  process  

t akes  at  wors t  3 ( fp+2)D.  

The join a lgor i thm presented  here is not  opt i -  

mal wi th  respect  to running  time. I t  was presented  

this way.  to enable  to reader  to see the p ro toco l ' s  

bui ld ing blocks.  In  the full  paper  we discuss a num- 

ber of op t imiza t ions  which can  reduce the runn ing  

t ime,  such as combin ing  the Byzan t ine  agreement  and 

the f i rs t  synchroniza t ion .  
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