
FAULT-TOLERANT CLOCK SYNCHRONIZATION

Joseph Y. Halpern
Barbara Simons

Ray Strong

IBM Research Laboratory
San Jose, Cal ifornia 95193

Danny Dolce

Hebrew Univers i ty , Givat Ram
91904 Jerusalem, Israel

Abstrac t : This paper gives two simple eff ic ient dis-
t r ibuted algorithms: one for keeping clocks in a net -
work synchronized and one for al lowing new proc-
essors to join the ne twork with their clocks syn-
chronized. The algorithms tolerate both l ink and
node failures of any type. The algori thm for main-
ta in ing synchroniza t ion will work for arbi t rary net -
works (rather than just completely connected net -
works) and tolerates any number of processor or
communica t ion l ink faults as long as the correct
processors remain connected by faul t -free paths. I t
thus represents an improvement over other clock
synchroniza t ion algorithms such as [LM1,LM2,LL1].
Our algori thm for al lowing new processors to join
requires that more than half the processors be cor-
rect, a requirement which is provably necessary.

1. I n t r o d u c t i o n

In a distr ibuted system it is of ten necessary for

processors to perform cer ta in act ions at roughly the

same time. In such a system each processor usually

possesses its own independent clock. However, de-

spite the marvels of modern technology, clocks tend

to drif t apart. Therefore, clocks must be resynchron-

ized periodically.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0-89791-143-1/84/008/0089 $00.75

89

Recently, many protocols for resynchroniza-

t ion in the presence of faults have received wide at-

t en t ion (cf. [L M 1 , L M 2 , M a , L L 1]) . The algorithms

ment ioned above are all based on an averaging proc-

ess that involves reading the clocks of all the other

processors. Because of this use of averaging, there

must be more nonfau l ty than faulty processors for

these algori thms to work. Two of the algorithms

presented in [L M 1 , L M 2] and the algorithm of

I L L 1] require 3f+1 processors in order to handle f

faults; a third algori thm of [LM1,LM2], which as-

sumes the existence of unforgeable signatures, re-

quires 2f+1 processors. The algorithms of [M a] , for

which no worst case analysis is provided, deal with

ranges of times rather than a single logical clock time

and therefore are not directly comparable.

In this paper a synchroniza t ion algorithm is

presented that does not require any min imum number

of processors to handle f processor faults, so long as

the ne twork remains connected. The crucial point is

that since we do not use averaging, it is not necessary

that the majori ty of processors be correct. Moreover,

our algorithm requires the t ransmission of at most n 2

messages per synchroniza t ion (where n is the total

number of processors in the system). The algorithm

of [LL1] and one of the algorithms of [LM1,LM2]

also require only n 2 messages; the other two algor-

i thms of [LM1,LM2] might need as many as n f+ l

messages to- to lera te f faults. A f inal advantage of

our a lgor i thm is tha t i t can deal wi th e i ther processor

or l ink faul t s in any ne twork , provided the n e t w o r k

remains connected . The a lgor i thms of

[L M I , L M 2 , L L I] deal only wi th processor faul ts in a

comple te ly connec ted ne twork .

The a lgor i thm is based on the fo l lowing s imple

observa t ion . I f there are no fau l ty processors , a

processor can be chosen to be a synchronizer and to

b roadcas t a message wi th i ts cu r ren t t ime once an

hour (or day, or week, depending on the f r equency of

synch ron iza t ion required) . Each processor would

then adjus t its c lock accordingly , mak ing minor a l -

lowances if necessary for the t ransmiss ion t ime of the

message.

I f there are faul ts , however , then there are obv i -

ous p rob lems wi th the above approach . A fau l ty

synchron ize r might b roadcas t d i f fe ren t messages (i.e.

d i f fe ren t t imes) to d i f fe ren t processors , or i t might

b roadcas t the same message but at d i f fe ren t t imes, or

i t might " forge t" to broadcas t the message to some

processors . Note tha t it is not necessary to assume

"malevo lence" on the par t of the synchron ize r for

such behavior to occur. Fo r example , a synchron ize r

might fai l in the middle of b roadcas t ing the message

"The t ime is 9 A.M. ," spontaneous ly recover f ive

minu tes la ter , and con t inue b roadcas t ing the same

message. Thus, some of the processors would rece ive

the message "The t ime is 9 A.M." at 9 A.M., whi le

the remainder would receive i t at 9:05.

Never theless , the idea of using a synchron ize r

can be modif ied to ob ta in an e f f i c ien t sync h ron i z a -

t ion a lgor i thm which is cor rec t even in the presence

of faults . The key idea is to d i s t r ibu te the role of the

synchron izer : every (correc t) processor wi l l t ry to ac t

as a synchron ize r a t roughly the same t ime, and at

least one will succeed. To ensure tha t this rea l ly

happens at " roughly the same t ime" , we use a p ro to -

col tha t guarantees tha t all the cor rec t p rocessors

90

agree on the expec ted t ime for the next synch ron iza -

tion.

In p rac t i ce the per iod ic r e synchron iza t ion a lgor-

i thm must be supp lemented by a method for syn-

chron iz ing the or ig ina l pa r t i c ipan t s and for b r ing ing

in new processors . Our techniques can also be used

to cons t ruc t such a join algor i thm, which can be used

to a l low new processors to join the n e t w o r k wi th

their c locks synchron ized to those of a l ready ex is t ing

processors . This a lgor i thm can also be app l ied to

repai red (prev ious ly fau l ty) processors tha t must be

r e synchron ized wi th the rest of the ne twork . The

join a lgor i thm requires tha t fewer than half the p roc-

essors in the n e t w o r k be fau l ty in order to work , a

r equ i rement which is p rovab ly necessary.

The remainder of the paper is o rganized as fol-

lows. In the nex t sec t ion the problem is fo rmal ized

and the precise assumpt ions under ly ing the a lgor i thm

are descr ibed. These assumpt ions include the exis t -

ence of a bounded ra te of d r i f t be tween the c locks of

non fau l ty processors , a k n o w n upper bound on the

t ransmiss ion t ime of messages be tween n o n f a u l t y

processors , and the ab i l i ty to au then t i ca te s ignatures .

The r e s y n c h r o n i z a t i o n a lgor i thm is descr ibed in sec-

t ion 3 and ana lyzed in sec t ion 4. The degree of syn-

ch ron iza t i on ob ta ined is a lmost as t ight as possible,

but a ca re fu l d iscuss ion of this p roper ty is beyond the

scope of this paper (v. [DHS] and [LL2]). F ina l ly ,

the join a lgor i thm is presented and ana lyzed in Sec-

t ion 5.

2. A specification of the algorithm.

In th is sec t ion both the proper t ies (CSI -CS3)

tha t the c lock synch ron i za t i on a lgor i thm sat isf ies and

the a s sumpt ions (A I - A 3) tha t are made in the model

are presented .

The c lock of a processor is defined to be a par-

t icu lar t ime service de l ivered by that processor . In

response to a t ime query the service responds with a

number indicat ing the " t ime." In part icular , the no-

t ion of a c lock is not bound to any hardware, and

processors may possess any number of clocks. I t is

assumed that a processor uses one or more independ-

ent hardware components to t ime durations, to up-

date, and to provide accuracy for its logical clocks.

More specifically, it is assumed that all c locks of a

correc t processor are correct in the sense of (A1)

below.

As in [L M 1 , L M 2 , L L 1] , a dis t inct ion is made

between real time (as measured in an assumed Newto -

nian time frame that is not direct ly observable) and

clock time, the t ime measured on some clock. We also

adopt the conven t ion t h a t var iables and cons tan ts

that range over real t imes are wr i t ten in lower case

and variables and constants that range over c lock

times are wr i t ten in upper case. If C is a clock, the

no ta t ion C(t) denotes the t ime C reads at real t ime t.

When we speak of "a c lock dr i f t ing from real t ime,"

we mean that the di f ference be tween the value del iv-

ered by the t ime service and real t ime might gradually

increase. In part icular , a c lock C is considered to be

correct if its rate of drift f rom real t ime is bounded

by a known cons tant p > O. That is:

(A1) (l + p) ' l (v - u) < C (v) - C (u) < (l+p) (v -u) .

For technica l reasons the lef tmost term has a fac tor

of (l + p) -1 rather than the more common l -p; for

small p both approaches are essential ly the same. An

advantage of (A1) is that it implies the symmetr ic

condi t ion

(l+p)'1(C(v)-C(u)) < v-u < (l+p)(C(v)-C(u)).

By a s t ra ightforward computa t ion one can show

that the drif t be tween two correc t c locks is bounded

by dr=p(2+p)/(l+p); i.e. over a period u, the devia-

t ion between correct c locks is bounded by A +

up(2+p)/(l+p), where A is the deviat ion of the

91

clocks at the beginning of the period. Note that

dr<2p.

Important Note: Our use of p is consis tent wi th that

of [LL1], but differs f rom that of [LM1,LM2]. The p

of [LM1,LM2] essent ial ly corresponds to our dr.

Messages f rom one processor to another are

t ransmit ted over a logical communica t ion ne twork G.

G may be a ne twork of physical l inks between proc-

essors, for example, or it may be the route graph of

[DFISS] . Only processors connec ted through fault

free paths can be synchronized. However , it is not

necessary to assume that the ne twork is complete ly

connec ted as do [L M 1 , L M 2 , L L 1] , i.e. it is not nec-

essary for there to be a l ink between every pair of

processors. We assume that there is a known upper

bound tdel (for transmission delay) on the t ime t re-

quired for a short message (typical ly of the form

"The t ime is T") to be prepared by a given processor,

sent to all the other processors to which it is l inked,

and processed by all the correct processors that re-

ceive it; formally:

(A2) O<t<tdel .

For local area ne tworks the time required to

schedule the synchroniza t ion process tends to domi-

nate the t ime required to t ransmit a message along

the communica t ion links. Therefore, we have not

analyzed a ref ined vers ion of assumption (A2) (such

as that used in [LL1,LM1,LM2]) that, if t is as above,

then 8-~<t<8+~. We leave it to the reader to ver i fy

that our results could also be obtained using this re-

f ined version.

The next major assumption is that signatures are

unforgeable. More precisely:

(A3) The processors are numbered 1,2 n. Proc-

essor i uses an encoding func t ion E i to encode

a message M so that :

(a) no processor other than i can generate or

alter the encoded message E i[M] (i.e. no

message can be forged),

(b) if processor j receives E i [M] , it can de-

code M and determine that i was the proc-

essor that sent the message (messages can

be authent icated) .

These assumptions are quite reasonable given

current technology. Clocks are suff ic ient ly precise to

guarantee p = 10 -6 scc./sec, for A1. In a local area

network, wc can typical ly take the value of tdel to be

0.1 seconds. This value can be further reduced by

giving the clock synchroniza t ion process high pr ior i ty

in the scheduling of the operat ing SYstem of the proc-

essor. Algori thms for digital signatures sat isfying A3

are well k n o w n (v. [R S A]) and have been used in

distr ibuted agreement protocols (v. [D S]) . Note

that assumpt ions A1 and A2 are quite s tandard and

have been made in all the other clock synchroniza-

t ion papers. Assumpt ion A3 is used in one of the

algorithms of [LM1,LM2], but no t in of the other

algorithms ment ioned above. There is actual ly a pre-

cise sense in which assumption A3 is not needed in

our algori thm (see [DHS] for more details).

As in [L M 1 , L M 2 , L L 1] , r e synchron iza t ion is

modelled by s tar t ing a new clock. After the k th syn-

chroniza t ion , processor i has clock C~ r u n n i n g as its

current clock. We define beg inn ings (beg) and ends

(end) as follows: beg k is the (real) t ime that the f irst

nonfau l ty processor starts its k th clock; end k is the

(real) t ime the last nonfau l ty processor starts its k th

clock. Between the k th and k + l st synchroniza t ions ,

processor i will consider C~ its current clock.

interval. A processor uses its k th clock for the t iming

of any protocols begun while the k th clock was the

current clock. Thus, in practice thexe can be a brief

overlap period in which more than one clock is in

use. Unl ike [L M 1 , L M 2] the gap between intervals

is not t imed out. There is no ambiguity as to which

clock to use to time a given protocol since all proto-

cols can be timestamped, and it is a property of our

algorithm that exactly one clock is current through-

out the ne twork as of any given clock time.

The clock synchroniza t ion algorithm main ta ins

properties CS1-CS3 below for all correct processors

Pi and pj. (Compare our CS1 and CS2 to $1 and $2

of [LM1]) .

CSI: There is an upper bound on the difference

between correct processors' k th clocks. More

precisely, there is a cons tant D M A X (for

"maximum deviat ion") such that

Vt~ [endk,end k+ l 3,

]C~(t) - Cj~(t)I<DMAX.

CS2: If k > l , then the time the k th clock of Pi reads

is no less than that of C~ -1 (i.e. clocks are

never set back) and can differ from C~ "1 by at

most a bounded amount . More formally, there

is a small cons tan t ADJ (for "adjust") and a

t ime t ~ [beg k, end k] such that Ctk is started

at t and if k > l

0 _ C ~ (t) - c ~ - l (t) < ADJ.

CS3: The length of a synchroniza t ion in te rva l is

small, that is, there exists a small cons tan t

drain such that

0 < e n d k - b e g k _< drain.

Typical ly, the time between synchroniza t ions ,

beg k + l - e n d k, is on the order of hours, while the t ime

during which clocks are resynchronized, e n d k - b e g k,

is on the order of seconds. We occasionally refer to

the in te rva l [begk,end k] as the k th synchronization

92

3. The algorithm

The algorithm consists of two tasks which run

cont inuous ly on each correct processor. There are

two parameters of the algorithm: PER and D. They

must be chosen to satisfy cer ta in cons t ra in t s dis-

cussed in the next section. Roughly speaking, PER

(for "period") is the time between synchronizat ions

(and thus corresponds to the R of [LM1,LM2] and the

P of [LL1]), while D (for "deviat ion") is an upper

bound on the difference between correct clocks.

Let ET i (the expected time of the next syn-

chronizat ion) , CURRENT i (the current clock being

used), and CO, Cx/ (clocks that are cont inuously

updated in some fashion) be variables local to proc-

essor i. When processor i, is started, ET i ffi PER,

C U R R E N T i = 0, and C0=0. In this section we as-

sume that all processors in the network are started

wi th in drain of each other (put another way, end 0 -

beg 0 < drain). Later we show how to modify the

algorithm to allow processors to join the ne twork at

any time.

We use the following abbreviat ions in the de-

scr ipt ion of the two tasks which comprise the algor-

ithm. C i represents the time on processor i 's cur ren t

clock; i.e C~ where k = C U R R E N T i. SIGN means

"encode with the appropriate encoding func t ion Ei;"

SEND means "send out to each other processor to

which there is a l ink." Subscripts are omitted when-

ever they are clear from context ; for example, C rep-

resents C i when the processor i is known from con-

text.

Task TM (T ime Moni tor) . When the current clock of

processor i reads ET i, processor i signs and sends an

encoded message to all processors saying "The time is

ET." A new clock is started with time ET i, and both

ET i and C U R R E N T i are incremented. The

"pseudocode" is:

I f C = ET then begin
SIGN AND SEND "The time is ET";
CURRENT := C U R R E N T + 1;
C :--- ET;
ET := ET + PER;

end.

93

Task MSG (Message Manager) . Suppose processor i

receives an authentic message with s dis t inct signa-

tures saying "The time is T" (i.e. an unforgeable mes-

sage that has been signed by s dis t inct processors and

not altered in any way). Then if the message arrives

at a "reasonable" time, processor i updates both ET i

and the cur ren t in terval and signs and sends out the

message. Otherwise the message is ignored. More

formally:

I f processor i receives an authent ic message M
with s dis t inct signatures saying "The time is T"
then

i f TffiET and ET-sD < C then begin
SIGN AND SEND M;
C U R R E N T := C U R R E N T + 1;
C :--- ET;
ET := ET + PER;

end.

This completes the descript ion of the algorithm.

Note that the two tasks have almost identical bodies.

The reader will also note that whenever

CU RR EN T- - k , E T - - (k + I) P E R . We could have elim-

inated one of these variables here, but we have kept

them both since they perform conceptual ly different

tasks; in the join algorithm of Section 5 this relat ion-

ship between C U R R E N T and ET no longer holds.

As an example of how the algorithm operates,

suppose PER -- 1 hour, and the next synchroniza t ion

is expected at 11:00 (i.e. ET ffi 11). If processor i has

not received a valid message by 11:00 o 'clock on its

clock, where a message is said to be valid if it passes

all the tests of Task MSG, then Task TM is executed

by processor i. If, on the other hand, processor i does

receive a valid message before 11:00, then it executes

Task MSG. Once one of these tasks is executed,

processor i - upda t e s its local variable ET to read

12:00. Processor i will then ignore any further mes-

sages it receives saying "The time is 11:00."

Note that a message with s signatures saying

"The time is T" might arrive as much as sD "early"

(before ET) and still be considered valid according to

the test in Task MSG. Nonetheless, as we show in

the next section, at the complet ion of a synchroniza-

tion, the correct processors are synchronized to with-

in (l + p) d m i n , which is less than D.

The fol lowing example i l lustrates why the test in

Task MSG must allow the interval dur ing which a

message is considered acceptable to have size sD.

Suppose DMAX (the actual maximum devia t ion be-

tween correct clocks) is .1 second and in the algor-

i thm we take D = D M A X = . I . Now if processor i re-

ceives a message with 3 signatures saying "The time

is 11:00 o 'clock," and the message arrives .3 seconds

before 11:00 o 'clock, processor i will t h ink that mes-

sage is valid according to Task MSG. Suppose, how-

ever, that processor j is also correct and is r u n n i n g .1

seconds slower than processor i (which is possible

since D M A X = . I) . If processor j receives processor

i's message almost ins tan taneous ly , then j will receive

the message roughly .4 seconds before 11 o 'c lock on

its clock. Since the message now has four signatures,

processor j will also consider it valid. However, if

the test in Task MSG did not allow the in te rva l of

validity to grow as a func t ion of the number of signa-

tures, the message might not have been considered

valid. Indeed, it is s traightforward to conver t this

example to a scenario in which a fixed bound on the

interval in which a message is considered valid that is

independent of the number of signatures on the mes-

sage results in an incorrect algorithm.

4. Analysis of the algorithm

The crucial poin t in proving the correctness of

the algori thm is to show that once one correct proc-

essor receives a valid message according to Task

MSG, or ini t ia tes a message according to T ask TM,

wi th in a very short time all the other correct proc-

essors will receive a valid message or in i t ia te one. In

order to make precise the amount of t ime that this

94

could take, suppose there is a set of faults F =

F p o F L in a communica t ion network G, where Fp is

the set of faul ty processors and F L is the set of faul ty

communica t ion links. Let G / F be the ne twork which

remains when all the faults in F are removed from G,

and let t r tG/F(i , j) , be the time required to transmit a

message from processor i to processor j in G / F

(possibly by having it relayed through a number of

other processors, if there is no direct l ink from Pk to

pj or if the direct l ink is faulty). Define:

t r tG /F = maxi , j (t r tG/F(i , j)) ,

trtG(fP,fL) - max{t r tG/F []Fp[<fp, IFL[_<f L,

and G / F is connected}

drain = trtG(fP,fL).

Note that this is the drain of CS3 (given that

there are at most fp processor failures and fL commu-

n ica t ion l ink failures in the network) . If wc assume

(as is done in [LM1,LM2,LL1]) that G is a complete-

ly connected ne twork with n nodes and IfL]----0 (i.e.,

there are no l ink faults), then any two correct proc-

essors are still joined by an edge in G / F ; consequent -

ly, for any fp, tr tG(fp,0) < tdel. If we allow l ink

faults but take [fL+fp[<n-1, then it is easy to check

that any two correct processors are either joined by a

nonfau l ty l ink or are both joined to another correct

vertex by nonfau l ty edges; so in this case, trtG(fP,fL)

< 2tdel. In general, t r tG /F _< (the diameter of

G /F) tde l , (where the diameter of a graph is the dis-

lance between the two nodes that are farthest apart

in the graph). For any graph G with n nodes for

which G / F is connected, the diameter of G / F at most

n - l , and t r tG /F < (n-1)tdel.

Suppose the clock synchroniza t ion algorithm is

to bc designed to tolerate at most fp processor faults

and fL l ink faults for a communica t ion ne twork G

satisfying A1-A3. Choose the parameters D and PER

in the algori thm to satisfy

(Dr i f t Inequality) D >_ (l + e) d m i n + d r (l + a) P E R ,

and

(Interval Separation) PER > d m i n (l + p) + fpD.

As we shall see, the drift inequal i ty guarantees that D

is at least as large as the maximum difference be-

tween clock readings in a given interval , while the

interval separation cons t ra in t guarantees that two

synchroniza t ion intervals do not overlap; i.e., that

begk+ l>endk . This, in turn, will guarantee that no

correct processor ever receives a message from anoth-

er to synchronize its k th clock before it is "ready",

that is, before it has set E T = k P E R .

A straightforward subst i tu t ion shows that PER

and D can be chosen to satisfy both cons t ra in ts iff

d r (l + p) f p < 1. Taking p = 10 -6 , this inequal i ty is

satisfied when fp < 499,999. Wc can omit the in ter -

val separation cons t ra in t if we assume that messages

between two correct processors joined by a nonfau l ty

l ink always arrive in the order in which they were

sent (v. Remark 2 below). In this case the algori thm

will work as long as D and PER are chosen to satisfy

the drift inequal i ty.

Once values have been chosen for D and PER,

define:

DMAX = (l + #) d m i n + d r (l + p) P E R , and

ADJ = (f p + l) D .

Theorem 1. Let G be a ne twork with n processors

satisfying assumptions A1-A3 such that the

processors' C O clocks are started wi th in drain of each

other. If D and PER are chosen to satisfy the drif t

inequal i ty and interval separation and during the

runn ing of tasks TM and MSG at most fp processors

are faulty in the interval [beg0,endN], and at most fL

communica t ion l inks are faulty in any of the in ter -

vals [begk,endk], kffil N, and these faults do not

disconnect the network, then clock synchroniza t ion

condi t ions CS1-CS3 hold in the interval [beg0,endN].

Moreover, the correct processors send at most n 2

95

synchroniza t ion messages during each synchroniza-

t ion interval .

Note that in the s ta tement of Theorem I, we

tolerate any number of t rans ient l ink faults provided

there are at most fL of them during any synchroniza-

t ion in terval and they do not d isconnect correct proc-

essors. The join protocol described in the next sec-

t ion gives us a means to resynchronize processors

that fail and are subsequent ly repaired. It will also

allow us to resynchronize processors disconnected by

t rans ien t l ink faults.

Roughly speaking, the algorithm will guarantee

that all correct clocks will synchronize wi th in a real

time in terval of length drain = trtG(fL,fp). Thus, at

the end of a synchroniza t ion in terval (i.e. at end k for

any k) clocks will be at most (l + #) d m i n apart. Dur-

ing the l ifetime of a clock as cur ren t clock (which

has real time dura t ion at most (1 +p)PER), clocks will

drift apart at most an extra d r (I + o) P E R =

p(2+p)PER. (Recall that dr is the maximum rate at

which correct clocks might drift apart). This gives us

the expression for DMAX, which is the right hand

side of the drift inequali ty.

As an example, suppose # ffi 10 -6, tdel = 0.1 sec.,

and the ne twork is completely connected with n

processors. Then so long as there are fp processor

failures and fL l ink failures, with fP+fL -< n-2, we

can take PER = 1 hour, drain = .2 sec., DMAX = .21

see., and ADJ = .21fp sec. If we take fL=0 and al-

low only processor failures (as is the case in

[LM1,LM2,LL1]) , then we can do even better. We

can take PER = 1 hour, DMAX = .11 see., drain = .1

see., and ADJ = . l l f p sec. Note that DMAX is

roughly equal to drain. As we remarked above, we

can make drain, and hence DMAX, smaller by giving

the synchroniza t ion process high priori ty in the

scheduling of the operat ing system of the processor.

The key to the proof of Theorem 1 is the fo l low-

ing lemma, which essent ia l ly says that as long as D is

greater t han the max imum dif ference be tween the

(k - l) st c locks of cor rec t processors in the in te rva l

[begk,endk], then the a lgor i thm guarantees tha t the

k th c locks of cor rec t processors will be wi th in

(l + p) d m i n at t ime end k. This is t rue no ma t t e r how

large D is, as long as it is large enough.

As con tex t for the lemma, let F be a set of fau l t s in G

during the synchron iza t ion in te rva l [begk,endk],

(k>0) , such that F does not d i sconnec t G, IFL[_<f L,

and IFpl_<fp. Also let D and PER sat isfy the dr i f t

inequa l i ty and in te rva l separat ion.

Lemma 1. I f (a) for al l cor rec t processors i and j,

[C~k-l(t) -Cjg ' l (t) l < D for all t E [begk,endk], and (b)

at t ime beg k (just before any cor rec t processor has

s tar ted its k th c lock) all cor rec t processors have

C U R R E N T = k - 1 and the same value for ET, then

(I . I) e n d k - b e g k _< drain; thus CS3 holds for this

synch ron i za t i on in te rva l ,

(1.2) a t end k (af te r all the correc t processors have

s ta r ted their k th c lock) the k th c locks of cor -

rec t processors d i f fer by at most (I +p)dmin ,

(1.3) the first cor rec t processor to s ta r t i ts k th

c lock does so no ear l ier than t ime ET-fpD on

i ts (k - l) st c lock,

(1.4) no cor rec t processor s tar ts its k th c lock ear l i -

er than t ime E T - A D J on its (k - l) st c lock ;

thus CS2 holds for this synch ron iza t ion in-

te rva l , s ince correc t processors s ta r t thei r k th

c locks reading ET,

(1.5) beg k + l > end k,

(I .6) the k th c locks of cor rec t processors d i f fer by

at most D M A X in the in te rva l

[endk , endk+ l] ; thus CSI holds in this in te r -

val ,

(1.7) cond i t ions (a) and (b) hold wi th k rep laced

by k + l and D replaced by any D* >_DMAX.

95

Proof of (1.1). Suppose tha t Pi is the f i r s t cor rec t

processor to s tar t i ts k th c lock r u n n i n g By def ini-

t ion, this happens at t ime beg k. We will show tha t if

pj is correct , it s tar ts i ts k th c lock runn ing wi th in

t ime t r tG,F(i , j) of processor i. Suppose we can prove

this. Since, by def in i t ion , drain > t r tG,F(i , j) for all i,

j, it fo l lows tha t all cor rec t processors wil l s t a r t their

k th c lock runn ing wi th in drain. Thus e n d k - b e g k _<

drain.

I t only remains to prove tha t if pj is a cor rec t

processor , then pj s tar ts i ts k th c lock runn ing wi th in

t ime t r tG,F(i , j) of processor i. Here we make use of

the precise form of the va l id i ty test of Task MSG. By

def in i t ion of t r t , there must be some sequence of non-

faul ty processors and l inks, s ta r t ing with Pi and end-

ing wi th pj, such tha t messages passed f rom Pi to pj

a long this pa th ar r ive in t ime at most t r tG,F(i , j) .

(Note tha t here we are impl ic i t ly using the fac t that

the faul ts in F do not d i sconnec t G.) We p rove the

resul t by induc t ion on the length of the pa th . I f the

length is 0, then the resul t is t r iv ia l s ince i-- j . In

general , suppose the pa th has length m + l . Le t Ph be

the processor just before pj on the path. No te tha t

we must have t r tG ,F (i , h)+ t r tG ,F (h , j) -- t r tG,F(i , j) .

By the induc t ion hypothesis , Ph s tar ts i ts k th c lock

wi th in t r tG,F(i ,h) of Pi" When it does so, i t must be

e i ther because i t in i t i a ted Task TM or i t rece ived a

message tha t i t considered val id accord ing to Task

MSG. In e i ther case, i t passes a message on to pj,

which arr ives wi th in t ime t r tG,F(h, j) . E i t he r pj has

a l ready s tar ted its k th c lock by the t ime the message

arr ives , or, as we now show, the message wil l pass the

va l id i ty test of Task MSG, so tha t pj wil l s t a r t i ts k th

c lock wi th in t r tG,F(i , j) of p~.

Let X be the value of ET shared by al l cor rec t

processors accord ing to hypothes is (b). W h e n the k th

c lock of a cor rec t processor is s tar ted, i t is set to X.

Suppose pj has not s tar ted i ts k th c lock when the

message f rom Ph arrives. If Ph sent the message as a

resul t of in i t i a t ing Task TM, this must have happened

at t ime X on Ph'S k-1 st c lock. Since, by hypothes is

(a), p j ' s c lock di f fers from Ph'S by at most D, this

happens at a t ime la ter than X-D on pj ' s c lock. Thus

pj receives the message from Ph at a t ime later than

ET-D (s ince E T - - X , by hypothesis , unt i l pj s tar ts i ts

k th c lock) . Since the message has one s ignature

(Ph'S), it passes the va l id i ty test. Now suppose Ph

sent the message to pj as a resul t of get t ing a val id

message with s d i s t inc t signatures. The message must

come at a t ime af te r X - s D on Ph'S clock. By a simi-

lar a rgument to tha t above, it comes t o pj at a t ime

af te r X - (s + I) D on p j ' s c lock, and since it now has

s + l s ignatures (inc luding Ph'S), the message also pas-

ses the va l id i ty test for pj. []

Proof of (1.2). Each correc t processor s tar ts i ts k th

c lock at some po in t in the in te rva l [begk,endk]. By

hypothes is (b) and the def in i t ion of the a lgor i thm, all

the k th c locks of cor rec t processors are set to the

same value (the E T at t ime beg k) when they start .

By (1.1) they s tar t wi th in real t ime drain of each o th-

er. Thus they d i f fer by at most (l + p) d m i n at t ime

end k. []

Proof of (1.3). A correc t processor s tar ts i ts k th

c lock ei ther as a resul t of i ts cur ren t c lock reading

ET, or at a . t i m e la ter than ET-sD, i f . i t receives a

val id message wi th s signatures. The f irst co r rec t

processor to s tar t i ts k th c lock canno t do this as a

resul t of rece iv ing a message wi th more than fp s igna-

tures, o therwise one of these s ignatures must be tha t

of a cor rec t processor that s tar ted its k th c lock at an

ear l ier time. Thus the f irst cor rec t processor to s ta r t

its k th c lock must do so af te r ET-fpD on it (k - l) st

c lock. C]

Proof of (1.4). By 41.3) the f irst cor rec t processor to

s tar t i ts k th c lock does so at a t ime af ter ET- fpD on

its (k - l) st c lock. By assumpt ion (a), all (k - l) st

c locks of correct processors differ by at most D at

97

this t ime (begk). Thus, the (k - l) st c locks of cor rec t

processors read a t ime a f te r E T - (f p + I) D = E T - A D J

at beg k. This proves (1.4). I"1

Proof of (1.5). Suppose Pi is the f irst correct proc-

essor to s tar t i ts (k + l) st c lock, and let v' be i ts value

of ET immedia te ly before the (k + l) st c lock is startl-

ed. Let v be the value on its k th c lock when the k th

c lock is started. F rom the def in i t ion of the algor-

i thm, it fol lows tha t v' = v + P E R . An ident ica l argu-

ment to that of (1.3) above shows tha t Pi s tar ts i ts

(k + l) st c lock la te r than v ' - fpD on its k th c lock; i.e.,

C~(beg k + l) > v ' - fpD. F rom (1.1), it fol lows that the

C~(end k) _> v + (l + p) d m i n . By the In te rva l Separa-

t ion inequal i ty , v + (l + p) d m i n < v'-fpD. Thus

beg k + l > end k. []

Proof of (1.6). By the spec i f ica t ion of Task TM, the

max imum t ime dur ing which the k th c lock can be

cu r ren t (i.e. C U R R E N T ffi k) is PER in c lock t ime or

(I + p) P E R in real time. The last cor rec t processor to

s tar ts i ts (k + l) st c lock a l ready has CURRENTff ik

immedia te ly a f te r end k. Thus e n d k + l - e n d k <

(I + #) P E R . Since the k th c locks are wi th in

(l + p) d m i n at end k, they are wi th in D M A X --

(l + #) d m i n + d r (l + p) P E R at end k + l and at al l t imes

between.

Proof of (1.7). By (1.5) beg k + l occurs in the in te rva l

[endk ,endk+l] . Thus, by 41.6), all c locks are wi th in

D* be tween [begk+ l , end k + l] for all D*_>DMAX. At

t ime beg k + l (just before any correc t processor has

s tar ted its (k + l) st c lock) all cor rec t processors have

C U R R E N T f f i k + I and the same values for ET because

these values are only changed when a new clock is

s tar ted and they are then changed in exac t ly the same

way. This completes the proof of 41.7), and with i t

the proof of the Lemma. []

Proof of Theorem 1. To show tha t CS1-CS3 hold, we

f irst prove, by induc t ion on k (using par t (1.7) of

Lemma 1), that for k<N, hypotheses (a) and (b) of

Lemma 1 hold. The result then follows immediately

from Lemma 1.

To see that at most n 2 messages are required

during any synchroniza t ion interval , note that dur ing

every such interval , note that a correct processor will

execute either Task TM or Task MSG, but not both.

This is because once a correct processor has signed

and sent a synchroniza t ion message, it updates its

value of ET. Because of the validity test in Task

MSG, it will ignore any synchroniza t ion messages it

might receive conta in ing the former value of ET.

Therefore, each correct processor will send one mes-

sage to each processor to which it has a logical l ink

during each interval . Thus, at most n 2 messages are

sent by correct processors during each synchroniza-

t ion interval . []

Remarks

I. As is ment ioned above, although there is a brief

overlap in which different processors may be using

different clocks, t imeouts are not necessary. If DUR

is the maximum real time durat ion during which a

clock might be used to time some dis t r ibuted process,

the k th clock of a given processor might be used for a

time DUR beyond when it starts its k + l st clock to

time events that were started just before end k+ l

Thus (I + p) P E R + D U R is the maximum life t ime of a

clock. During an interval of this length, the devia-

t ion be tween clocks of correct processors could be as

much as DMAX+drDUR.

2. We could omit the Interval Separat ion inequal i ty

by taking the fol lowing assumption:

(t) If processors i and j are joined by a direct l ink,

then while the l ink is nonfaul ty , messages sent

along the l ink will arrive in the same order they

are sent.

98

The In te rva l Separat ion inequal i ty was used in

the proof above to show that that synchroniza t ion

in tervals do not overlap; i.e. beg k+ l ~end k (v. condi-

t ion (1.6) of Lemma 1). This, in turn, was needed to

show that the fol lowing s i tuat ion cannot occur: a

correct processor starts its k th and (k + l) st clocks,

and sends out messages to the other processors to do

so too. These messages cross, so another correct

processor receives the message to start the (k + l) st

clock before it is "ready"; i.e. while E T - k P E R . This

message will not pass the val idi ty test of Task MSG,

and so will be ignored. Assumpt ion (t) guarantees

that this problem canno t happen. We leave it to the

reader to prove an analogue of Lemma 1 using this

assumption (cf. [HSS,DHS]).

Note that the fol lowing simple protocol achieves

(t) . All messages from processor i to processor j are

numbered consecutively. If processor j receives a

message numbered m, it accepts m at time t if (a) no

message with a higher number has been accepted, and

(b) either all message with a lower number have al-

ready been accepted or or an in terval of (2+p)tdel on

its dura t ion t imer has passed since message m was

received. It is easy to see that the accepted messages

are indeed accepted in the order that they are sent,

and any message which is sent while the l ink is non-

faulty will be accepted.

3. During a synchroniza t ion interval , correct proc-

essors may have di f ferent current clocks

(corresponding to different values of CURRENT) .

However, the difference between current time (C) on

correct clocks is always bounded by D MA X+ADJ .

Note that this term corresponds to the ~, of ILL1].

We have not concerned ourselves with this figure

here, since we assume that processors will always use

the same clock to t ime a given event (namely, the

clock that was in force when the event began, at the

site in i t ia t ing the event).

4. The bound on synchronization that we achieve -

DMAX - is essentially within a factor of two of opti-

mal (see [DHS] for further details).

5. Initialization and Joining

The clock synchroniza t ion algori thm presented

in previous sections is subject to the weakness that

processor faults accumulate: once a processor is

faulty, it stays faul ty since we have not yet specified

any way to synchronize an unsynchronized clock. In

order to tolerate processor failures in the long run,

we must assume an env i ronment in which the mean

time to repair or replacement of a faul ty processor is

less than the mean time between processor failures.

To be useful in practice, a clock synchron iza t ion

algori thm must handle both repaired and new proc-

essors. In this section we present an algori thm that

enables such processors to rejoin the system. Our

strategy is to run a Byzant ine Broadcast algori thm

among the cur ren t ly active processors, in order to

agree on the fact that a processor wants to join, fol-

lowed by a resynchroniza t ion algori thm in order to

synchronize the clocks of all the cur ren t ly act ive

correct processors together with the joiner.

A previously synchronized group of processors is

called a duster, the new processor that wants to join

is called the joiner, and the synchronization of a new

processor is called joinin 8. Unlikc the clock syn-

chronization algorithm, which does not require a

minimum number of correct processors, a processor

can join a cluster of synchronized processors only if

the number of processor faults in the cluster is small-

er than half the number of processors in the cluster.

To see that this constraint is as weak as possible,

suppose that half of the processors in the group are

faulty, and they all think that the time is 10 AM,

while the correct processors all say the time is 11

AM. Then there is no way for a joining processor to

be able to disambiguate the situation.

99

Roughly speaking, the join algorithm proceeds as

follows. The joiner sends a message to a processor in

the cluster (called its agent) saying it wants to join.

At that point three procedures are executed. The

first is a a Byzant ine agreement (cf. [DS]), ini t iated

by the agent, on a value for ET to be used in a special

synchronizat ion. We then have two synchroniza-

tions. The agent tells the joiner what time the first

unscheduled synchroniza t ion is going to take place.

The joiner "listens in" while this unscheduled sy-

chroniza t ion is going on; it receives messages but

does not respond. When it receives f p + l messages it

sets its clock to ET. We can show that as a result of

this unscheduled synchronizat ion, the clocks of cor-

rect processors in the original cluster, as before, are

at most DMAX apart, while the clock of the joiner

can differ from the clocks of the correct processors

by at most 2DMAX. One more synchroniza t ion

brings the clocks of all processors (including the join-

er) to within DMAX.

In more detail, we proceed as follows. As in our

original algorithm, we have global constants D and

PER which must meet cer ta in const ra ints described

below, local variables ET and CURRENT, and an

inf in i te col lect ion of clocks. We have a three addi-

t ional local variables: SS, CLUSTER, and MSIG. SS

("state of synchroniza t ion") takes on values NOR-

MAL, UNSCHED1, UNSCHED2, or JOINING, de-

pending on what stage of the synchroniza t ion process

a processor is in. While no joining is taking place

(the s i tuat ion described in the previous sections) all

correct processors have S S = N O R MA L (and essential-

ly follow the tasks TM and MSG described above). A

processor that wants to join the cluster has

SS=JOINING. As we ment ioned above, the join

process involves two special, unscheduled synchroni-

zations. While these are going on, the correct proc-

essors in the cluster will have SS=UNSCHED1 and

SS=UNSCHED2 respectively. CLUSTER keeps

t rack of which processors are current ly in the cluster.

Final ly , MSIG keeps track of which processors have

signed a message saying "The time is T". As we shall

see, this will be needed in the second unscheduled

synchronizat ion.

We assume that the system starts with the clus-

ter consis t ing of one processor, say i, with the var ia-

bles ini t ia l ized as follows: E T = P E R , CURRENT--0 ,

C=0, SS=NORMAL, CLUSTER={i}, and MSIG=[}.

A processor that wants to join a cluster has

SS=JOINING, CLUSTER--{}, MSIG={}, and the

other variables undefined. It sends a request - to- jo in

message to its agent (one of its neighbors that is in

the cluster). (It is beyond the scope of this paper to

explain how a processor decides to join or picks the

agent.) If the agent is correct, it then chooses a t ime

T which is suff icient ly away from any scheduled syn-

chronizat ion, and at that time ini t ia tes a Byzant ine

agreement on a time for an unscheduled synchroniza-

tion. (We show in the full paper that it suffices to

choose T such that T + B Y Z T + (2 f p + 3) D < ET, where

BYZT is some upper bound on the t ime that it takes

to reach Byzant ine agreement; then we can take ET

= T + BYZT + (fp + 1) D for the unscheduled synchroni -

zation.) If the Byzant ine agreement succeeds, each

correct processor in the cluster sets SS=UNSCHED1

at t ime T + B Y Z T on its cur rent clock and updates

CLUSTER to include the joining processor. F rom

this po in t on, all messages sent to the cluster will also

reach the joining processor. At UNSCHED1 the

agent also sends the joiner a message con ta in ing its

cur ren t values of CLUSTER, C U R R E N T , and ET.

On receipt of this message, the joiner sets its corre-

sponding variables to the same values. We leave de-

tails of the pseudocode describing the Byzant ine

agreement and the t rans i t ion to UNSCHED1 to the

full paper.

In the U N S C H E D I state the correct processors

essential ly run the Tasks TM and MSG described

100

above, the only difference being that ET :=

E T + 2 (f p + I) D rather than ET := E T + P E R , and

SS :=UNSCHED2 (see the pseudocode below). In the

UNSCHED2 state, when a processor gets a message

that was started by another processor in the

UNSCHED1 state, the message is not ignored, but is

passed around the system if it has any "new" signa-

tures on it (i.e., s ignatures that have not appeared on

previous messages saying the t ime is the previous ET,

which is the current E T - 2 (f p + I) D .) The MSIG vari-

able is used to keep t rack of which processors have

signed such a message. When [MSIG[>fp for the join-

ing processor, it starts a new clock. We show in the

full paper that this t ime is at most 2dmin after the

first processor in the cluster has started its c lock with

the same time. In the UNSCHED2 state, processors

also execute Tasks TM and MSG, but the val idi ty test

for Task MSG is slightly different to allow for the

fact that the jo in ing processor is only synchronized to

wi th in 2D of the rest of the processors.

We now give the pseudocode for the Tasks TM

and MSG in the join algorithm. Recall that in the

N O R M A L state the two tasks share almost ident ical

bodies. Since this is also true in the pseudocode be-

low, we use a macro to represent the ident ical part.

Let START N E W u C L O C K represent

SIGN AND SEND M TO CLUSTER;
C U R R E N T : = C U R R E N T + 1;
C := ET;

Using this abbrevia t ion , we have

Task TM

I f C ffi ET then begin
Select (SS);

When (NORMAL) begin
M := "The t ime is ET";
S T A R T N E W CLOCK;
ET := ET + PER;

end

When (UNSCHEDI) begin
M :ffi "The t ime is ET";
START N E W CLOCK;
ET := ET + 2 (f p + l) D ;
SS := UNSCHED2;

end

When (UNSCHED2) begin
M :ffi "The t ime is ET";
START N E W CLOCK;
ET := ET + PER;
SS :-- N O R M A L ;
MSIG := {};

end
end

end .

Task MSG

I f processor i receives an au then t ic message M of the
form "The t ime is T" wi th s ignature set SIG then begin

Select (SS);

When (NORMAL) begin
] f T = E T and T-[SIG[. D < C then begin

S T A R T N E W C L O C K ;
ET :-- ET + PER;

end
end

When (UNSCHED1) begin
] f T = E T and T- I SIG [. D < C then begin

S T A R T N E W C L O C K ;
ET :-- ET + 2 (f p + l) D ;
SS := UNSCHED2;

end
end

When (UNSCHED2) begin
I f (Tf f iET-2(fp+I)D)
and (I MSIG I < f p + l)
and (SIG is not con ta ined in MSIG)
then begin

MSIG := MSIG v SIG;
S IGN A N D SEND M TO C L U S T E R ;

end
l f T = E T and T-2o [SIG [° D < C then begin

S T A R T N E W m C L O C K ;
ET :-- ET + PER;
SS := N O R M A L ;
MSIG := {};

end
end

101

end
end .

When (JOINING) begin
I f T = ET then begin

MSIG := MSIG u SIG;
i f [MSIG [> f p then begin

S T A R T m N E W _ C L O C K ;
SS := UNSCHED2;
ET :ffi E T + 2 . (f p + I) . D ;

end
end

end

We now br ief ly s ta te the correc tness condi t ions

sat isf ied by the join a lgori thm. We leave the proofs

of the theorems to the ful l paper.

Define the system state of a processor to consis t

of the sequence of values of its var iables SS, ET,

C U R R E N T , and CLUSTER. We say a pa i r of proc-

essors (Pi,Pj) is in rapport at real t ime t if they have

the same system state, they both appear in their

shared value for CLUSTER, and I C i (t) - C j (t) J <

(l + p) d m i n . Assume as before that D and PER have

been chosen to satisfy the dr i f t inequal i ty and in ter -

val separat ion.

Theorem 2. I f all the cor rec t processors in a ne twork

are in r appor t at t ime t, then these processors , and

any cor rec t processors tha t join the ne twork , will

sat isfy CS1-CS3 of the c lock synchron iza t ion algor-

i thm (wi th values for D M A X , ADJ, and drain twice

those of Theorem 1), so long as any two cor rec t proc-

essors are l inked by a f au l t - f ree path.

Theorem 3. If PER > 2 (fp+2)D, and n > 2 f p , then a

cor rec t processor can successful ly reach r appor t wi th

any correc t processor to which it is connec ted by a

fau l t - f ree path.

We now consider how the cur ren t c locks of cor-

rect processors behave (cf. Remark 4 of Sect ion 4).

We say a pair of processors (Pi,Pj) is R,B-synchronized

dur ing real t ime in te rva l in t if for al l t e in t ,

I C i (t) - C j (t) [< B, and for a l l t 1 < t 2 w i t h t I a n d t 2

in int , 0 < C i (t2) -C i (t l) < (l + R) (t 2 - t l) . Note tha t

in the la t te r inequal i ty , we may be compar ing two

d i f fe ren t c locks, s ince processor i ' s cu r ren t c lock at

real t ime t 1 may be d i f fe ren t from its cur ren t c lock at

t 2. This cond i t ion says that processor i ' s cu r ren t

c lock t imes are wi th in a l inear bound of real t ime,

and thus cor responds to the Linear Envelope

Synchronization of [DHS]. Let B = D M A X + 2 A D J .

Let R be any value > p + (2 A D J / (P E R - (f p + I) D)) .

Theorem 4. I f a pair of processors is in r appor t a t

t ime t, then they wil l remain R ,B-synchron ized a f te r t

so long as they remain cor rec t and connec ted by a

f au l t - f ree path.

Note .that in the a lgor i thm as presented, for a

processor to successful ly join the ne twork , the agent

chosen by a jo iner must be correct . I t might have to

re t ry the jo in a number of t imes (at most fp though)

before it ac tua l ly does join. We can overcome this

p rob lem by modi fy ing the join a lgor i thm so that the

jo iner sends its request to f p + l agents. Then the

jo iner must keep t r ack of all poss ible values for ET

accord ing to each of i ts agents and resolve any con-

f l ic t by choosing the f irst value tha t receives the re-

quired number of suppor t ing signatures. Using the

modif ied a lgor i thm, we can prove tha t any cor rec t

processor can successful ly join wi th in 5 (f p + 2) D on

its c lock. This is a wors t ease t ime, which only oc-

curs if a number of processors t ry to join at once.

When only one processor is joining, the whole process

t akes at wors t 3 (fp+2)D.

The join a lgor i thm presented here is not opt i -

mal wi th respect to running time. I t was presented

this way. to enable to reader to see the p ro toco l ' s

bui ld ing blocks. In the full paper we discuss a num-

ber of op t imiza t ions which can reduce the runn ing

t ime, such as combin ing the Byzan t ine agreement and

the f i rs t synchroniza t ion .

References

[DHSS] D. Dolev, J. Y. Halpern , B. B. Simons, and H.

R. Strong, A new look at faul t to le ran t ne t -

work rout ing, Proceedings of the S ix teenth

A n n u a l A C M STOC, 1984, pp. 526-535;

also IBM RJ4239, 1984.

[DHS] D. Dolce, J. Y. Halpern , and H. R. Strong, On

the poss ib i l i ty and imposs ib i l i ty of ach iev-

ing c lock synchron iza t ion , Proceedings of

the S ix teenth A n n u a l A C M STOC, 1984,

pp. 504-511; also IBM RJ4218, 1984.

[D S] D.Dolev and H. R. Strong, A u the n t i c a t ed

a lgor i thms for Byzan t ine agreement , SIAM

J. of Computing, 12:4, 1983, pp. 656-666.

[HSS] J .Y. Halpern , B. B. Simons, and H. R. Strong,

A n ef f ic ien t f au l t - t o l e r an t a lgor i thm for

c lock synchron iza t ion , IBM RJ4094, 1983.

[L M 1] L. Lampor t and P. M. Mel l iar -Smith , Syn-

chron iz ing c locks in the presence of faul ts ,

SRI In t e rna t i ona l Repor t , 1982.

[LM2] L. L a mpor t and P. M. Mel l iar -Smith , Byzan-

t ine c lock synchron iza t ion , Proceedings of

the 3rd A C M Symposium on Pr inc ip les of

Dis t r ibu ted Comput ing , 1983.

[L L 1] J. Lundel ius and N. Lynch , A new fau l t -

to l e ran t a lgor i thm for c lock synchron iza -

t ion, Proceedings of the 3rd A C M Symposi -

um on Pr inc ip les of Dis t r ibu ted Comput ing ,

1983.

[L L 2] J. Lundel ius and N. Lynch , An upper and

lower bound for c lock synchroniza t ion , un-

publ i shed manuscr ip t , 1984.

[M a] K. Marzul lo , Loose ly-coupled d i s t r ibu ted

services: a d i s t r ibu ted t ime system, Ph.D.

d isser ta t ion , S tanford Univers i ty , 1983.

[R S A] R . L . Rivest , A. Shamir, and L. Adlem.an, A

method for ob ta in ing digi ta l s ignatures and

pub l i c -key c ryptosys tems, Communications

oftheACM, 21:2, 1978, pp. 120-126.

102

