FAULT-TOLERANT CLOCK SYNCHRONIZATION

Joseph Y. Halpern
Barbara Simons
Ray Strong

IBM Research Laboratory
San Jose, California 95193

Danny Dolev

Hebrew University, Givat Ram
91904 Jerusalem, Israel

Abstract: This paper gives two simple efficient dis-
tributed algorithms: one for keeping clocks in a net-
work synchronized and one for allowing new proc-
essors to join the network with their clocks syn-
chronized. The algorithms tolerate both link and
node failures of any type. The algorithm for main-
taining synchronization will work for arbitrary net-
works (rather than just completely connected net-
works) and tolerates any number of processor or
communication link faults as long as the correct
processors remain connected by fault-free paths. It
thus represents an improvement over other clock
synchronization algorithms such as [LM1,LM2,LL1].
Our algorithm for allowing new processors to join
requires that more than half the processors be cor-
rect, a requirement which is provably necessary.

1. Introduction

In a distributed system it is often necessary for
processors to perform certain actions at roughly the
same time. In such a system each processor usually
possesses its own independent clock. However, de-
spite the marvels of modern technology, clocks tend
to drift apart. Therefore, clocks must be resynchron-

ized periodically.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-143-1/84/008/0089 $00.75

89

Recently, many protocols for resynchroniza-
tion in the presence of faults have received wide at-
tention (c¢f. {LM1,LM2,Ma,LL1]). The algorithms
mentioned above are all based on an averaging proc-
ess that involves reading the clocks of all the other
processors. Because of this use of averaging, there
must be more nonfaulty than faulty processors for
these algorithms to work. Two of the algorithms
presented in [LMI1,LM2] and the algorithm of
[LL1] require 3f+1 processors in order to handle f
faults; a third algorithm of [LM1,1.M2], which as-
sumes the existence of unforgeable signatures, re-
quires 2f+1 processors. The algorithms of [Ma], for
which no worst case analysis is provided, deal with
ranges of times rather than a single logical clock time

and therefore are not directly comparable.

In this paper a synchronization algorithm is
presented that does not require any minimum number
of processors to handle f processor faults, so long as
the network remains connected. The crucial point is
that since we do not use averaging, it is not necessary
that the majority of processors be correct. Moreover,
our algorithm requires the transmission of at most n2
messages per synchronization (where n is the total
number of processors in the system). The algorithm
of [LL1} and one of the algorithms of [LM1,LM2]
also require only n? messages; the other two algor-
ithms of [LM1,LM2] might need as many as nf+!

messages to- tolerate f faults. A final advantage of

our algorithm is that it can deal with either processor
or link faults in any network, provided the network
The algorithms of

[LM1,LM2,LL1] deal only with processor faults in a

completely connected network.

remains connected.

The algorithm is based on the following simple
observation. If there are no faulty processors, a
processor can be chosen to be a synchronizer and to
broadcast a message with its current time once an
hour (or day, or week, depending on the frequency of
synchronization required). Each processor would
then adjust its clock accordingly, making minor al-
lowances if necessary for the transmission time of the

message.

If there are faults, however, then there are obvi-
ous problems with the above approach. A faulty
synchronizer might broadcast different messages (i.e.
different times) to different processors, or it might
broadcast the same message but at different times, or
it might "forget" to broadcast the message to some
processors. Note that it is nor necessary to assume
"malevolence' on the part of the synchronizer for
such behavior to occur. For example, a synchronizer
might fail in the middle of broadcasting the message
"The time is 9 A.M.," spontaneously recover five
minutes later, and continue broadcasting the same
message. Thus, some of the processors would receive
the message '"The time is 9 AM." at 9 A M., while

the remainder would receive it at 9:05.

Nevertheless, the idea of using a synchronizer
can be modified to obtain an efficient synchroniza-
tion algorithm which is correct even in the presence
of faults. The key idea is to distribute the role of the
synchronizer: every (correct) processor will try to act
as a synchronizer at roughly the same time, and at
least one will succeed. To ensure that this really
happens at ''roughly the same time', we use a proto-
col that guarantees that all the correct processors

90

agree on the expected time for the next synchroniza-

tion.

In practice the periodic resynchronization algor-
ithm must be supplemented by a method for syn-
chronizing the original participants and for bringing
in new processors. Our techniques can also be used
to construct such a join algorithm, which can be used
to allow new processors to join the network with
their clocks synchronized to those of already existing
processors. This algorithm can also be applied to
repaired (previously faulty) processors that must be
resynchronized with the rest of the network. The
join algorithm requires that fewer than half the proc-
essors in the network be faulty in order to work, a

requirement which is provably necessary.

The remainder of the paper is organized as fol-
lows. In the next section the problem is formalized
and the precise assumptions underlying the algorithm
are described. These assumptions include the exist-
ence of a bounded rate of drift between the clocks of
nonfaulty processors, a known upper bound on the
transmission time of messages between nonfaulty
processors, and the ability to authenticate signatures.
The resynchronization algorithm is described in sec-
tion 3 and analyzed in section 4. The degree of syn-
chronization obtained is almost as tight as possible,
but a careful discussion of this property is beyond the
scope of this paper (v. [DHS] and [LL2]). Finally,
the join algorithm is presented and analyzed in Sec-
tion §S.

2. A specification of the algorithm,

In this section both the properties (CS1-CS3)
that the clock synchronization algorithm satisfies and
the assumptions (A1-A3) that are made in the model

are presented.

The clock of a processor is defined to be a par-

ticular time service delivered by that processor. In

response to a time query the service responds with a
number indicating the "time." In particular, the no-
tion of a clock is not bound to any hardware, and
processors may possess any number of clocks. It is
assumed that a processor uses one or more independ-
ent hardware components to time durations, to up-
date, and to provide accuracy for its logical clocks.
More specifically, it is assumed that all clocks of a
correct processor are correct in the sense of (A1)

below.

As in [LM1,LM2,LL11], a distinction is made
between real time (as measured in an assumed Newto-
nian time frame that is not directly observable) and
clock time, the time measured on some clock. We also
adopt the convention that. variables and constants
that range over real times are written in lower case
and variables and constants that range over clock
If C is a clock, the

notation C(t) denotes the time C reads at real time t.

times are written in upper case.

When we speak of "a clock drifting from real time,"
we mean that the difference between the value deliv-
ered by the time service and real time might gradually
increase. In particular, a clock C is considered to be
correct if its rate of drift from real time is bounded

by a known constant o > 0. That is:
(A1) (1+4p)1(v-u) < C(V)=C(u) < (1+p)(v-u).

For technical reasons the leftmost term has a factor
of (1+p)‘1 rather than the more common 1-p; for
small p both approaches are essentially the same. An
advantage of (A1) is that it implies the symmetric

condition

(14p) H(C(¥)=C(w)) < v=u < (1+p)(C(v)—C(u)).

By a straightforward computation one can show
that the drift between two correct clocks is bounded
by dr=p(2+p)/(1+p); i.e. over a period u, the devia-
tion between correct clocks is bounded by A +
up(2+p)/(1+p), where A is the deviation of the

91

clocks at the beginning of the period. Note that

dr<2p.

Important Note: Our use of p is consistent with that
of [LL1], but differs from that of [LM1,LM2]. The p
of [LM1,L.M2] essentially corresponds to our dr.

Messages from one processor to another are
transmitted over a logical communication network G.
G may be a network of physical links between proc-
essors, for example, or it may be the route graph of
[DHSS].

free paths can be synchronized. However, it is not

Only processors connected through fault

necessary to assume that the network is completely
connected as do [LM1,LM2,LL11], i.e. it is not nec-
essary for there to be a link between every pair of
processors. We assume that there is a known upper
bound rdel (for transmission delay) on the time t re-
quired for a short message (typically of the form
“The time is T") to be prepared by a given processor,
sent to all the other processors to which it is linked,
and processed by all the correct processors that re-

ceive it; formally:

(A2) O<t<tdel

For local area networks the time required to
schedule the synchronization process tends to domi-
nate the time required to transmit a message along
the communication links. Therefore, we have not
analyzed a refined version of assumption (A2) (such
as that used in [LL1,LM1,L.M2]) that, if t is as above,
then §-e<t<d+e. We leave it to the reader to verify
that our results could also be obtained using this re-

fined version.

The next major assumption is that signatures are

unforgeable. More precisely:

(A3) The processors are numbered 1,2,...,n. Proc-
essor i uses an encoding function E; to encode

a message M so that:

(a) no processor other than i can generate or
alter the encoded message E;[M] (i.e. no
message can be forged),

(b) if processor j receives E;[M1, it can de-
code M and determine that i was the proc-
essor that sent the message (messages can

be authenticated).

These assumptions are quite reasonable given
current technology. Clocks are sufficiently precise to
guarantee p = 10°6 sec./sec. for Al. In a local area
network, we can typically take the value of tdel to be
0.1 seconds. This value can be further reduced by
giving the clock synchronization process high priority
in the scheduling of the operating system of the proc-
essor. Algorithms for digital signatures satisfying A3
are well known (v. [RSA]) and have been used in
distributed agreement protocols (v. [DS]). Note
that assumptions Al and A2 are quite standard and
have been made in all the other clock synchroniza-
tion papers. Assumption A3 is used in one of the
algorithms of [LM1,LM2], but not in of the other
algorithms mentioned above. There is actually a pre-
cise sense in which assumption A3 is not needed in

our algorithm (see [DHS] for more details).

As in [LMI1,LM2,LL1], resynchronization is
modelled by starting a new clock. After the kth syn-
chronization, processor i has clock Ci‘ running as its
current clock. We define beginnings (beg) and ends
(end) as follows: begK is the (real) time that the first
nonfaulty processor starts its xth clock; endK is the
(real) time the last nonfaulty processor starts its kth
clock. Between the k! and k+15t synchronizations,

processor i will consider C}‘ its current clock.

Typically, the time between synchronizations,
begk"‘1 —endk, is on the order of hours, while the time
during which clocks are resynchronized, endk—begk,
is on the order of seconds. We occasionally refer to
the interval [begk,endK] as the k'™ synchronization

92

interval. A processor uses its kP clock for the timing
of any protocols begun while the k'! clock was the
current clock. Thus, in practice there can be a brief
overlap period in which more than one clock is in
use. Unlike [LM1,LM21] the gap between intervals
is not timed out. There is no ambiguity as to which
clock to use to time a given protoco! since all proto-
cols can be timestamped, and it is a property of our
algorithm that exactly one clock is current through-

out the network as of any given clock time.

The clock synchronization algorithm maintains
properties CS1-CS3 below for all correct processors
p; and Pj (Compare our CS1 and CS2 to S1 and S2
of [LM11]).

CS1: There is an upper bound on the difference
between correct processors’ kth clocks. More
precisely, there is a constant DMAX (for
"maximum deviation'") such that

Vte [endK,endk+1],

Ick(t) - Ck(1)l<DMAX.

CS2: If k>1, then the time the kP clock of p; reads
is no less than that of CK'! (ie. clocks are
never set back) and can differ from CK-! by at
most a bounded amount. More formally, there
is a small constant ADJ (for "adjust") and a
time t € [begk, endX] such that C¥ is started
at t and if k>1
0 < ck)-ck-1(1) < ADJ.

CS3: The length of a synchronization interval is
small, that is, there exists a small constant
dmin such that

0 < end¥—begk < dmin.

3. The algorithm

The algorithm consists of two tasks which run
continuously on each correct processor. There are
two parameters of the algorithm: PER and D. They

must be chosen to satisfy certain constraints dis-

cussed in the next section. Roughly speaking, PER
(for "period") is the time between synchronizations
(and thus corresponds to the R of [LM1,LM2] and the
P of [LL1]), while D (for "deviation") is an upper

bound on the difference between correct clocks.

Let ET; (the expecied time of the next syn-
chronization), CURRENT; (the current clock being
used), and C?, C}, ... {clocks that are continuously
updated in some fashion) be variables local to proc-
essor i. When processor i, is started, ET; = PER,
CURRENT; = 0, and C)=0. In this section we as-
sume that all processors in the network are started
within dmin of each other (put another way, end® —
beg° < dmin). Later we show how to modify the
algorithm to allow processors to join the network at

any time.

We use the following abbreviations in the de-
scription of the two tasks which comprise the algor-
ithm. C; represents the time on processor i’s current
clock; i.e CK where k=CURRENT;. SIGN means
"encode with the appropriate encoding function Ej;"
SEND means "send out to each other processor to
which there is a link." Subscripts are omitted when-
ever they are clear from context; for example, C rep-
resents C; when the processor i is known from con-

text.

Task TM (Time Monitor). When the current clock of
processor i reads ET;, processor i signs and sends an
encoded message to all processors saying "'The time is
ET." A new clock is started with time ET;, and both
ET; and CURRENT; The

"pseudocode is:

are incremented.

If C = ET then begin
SIGN AND SEND "The time is ET";
CURRENT := CURRENT + 1;
C := ET;
ET := ET + PER;
end.

93

Task MSG (Message Manager). Suppose processor i

receives an authentic message with s distinct signa-
tures saying '"The time is T" (i.e. an unforgeable mes-
sage that has been signed by s distinct processors and

not altered in any way). Then if the message arrives

at a "reasonable" time, processor i updates both ET;

and the current interval and signs and sends out the

message. Otherwise the message is ignored. More

formally:

If processor i receives an authentic message M
with s distinct signatures saying "The time is T"
then
if T=ET and ET-sD < C then begin
SIGN AND SEND M;
CURRENT := CURRENT + 1;

C := ET;
ET := ET + PER;
end.

This completes the description of the algorithm.
Note that the two tasks have almost identical bodies.
The that
CURRENT=k, ET=(k+1)PER. We could have elim-

reader will also note whenever
inated one of these variables here, but we have kept
them both since they perform conceptually different
tasks; in the join algorithm of Section 5 this relation-

ship between CURRENT and ET no longer holds.

As an example of how the algorithm operates,
suppose PER = 1 hour, and the next synchronization
is expected at 11:00 (i.e. ET = 11). If processor i has
not received a valid message by 11:00 o’clock on its
clock, where a message is said to be valid if it passes
all the tests of Task MSG, then Task TM is executed
by processor i. If, on the other hand, processor i does
receive a valid message before 11:00, then it executes
Task MSG. Once one of these tasks is executed,
processor i -updates its local variable ET to read
12:00. Processor i will then ignore any further mes-

sages it receives saying ''The time is 11:00."

Note that a message with s signatures saying

"“The time is T" might arrive as much as sD “early"

(before ET) and still be considered valid according to
the test in Task MSG. Nonetheless, as we show in
the next section, at the completion of a synchroniza-
tion, the correct processors are synchronized to with-

in (1+p)dmin, which is less than D.

The following example illustrates why the test in
Task MSG must allow the interval during which a
message is considered acceptable to have size sD.
Suppose DMAX (the actual maximum deviation be-
tween correct clocks) is .1 second and in the algor-
ithm we take D=DMAX=.1. Now if processor i re-
ceives a message with 3 signatures saying "'The time
is 11:00 o’clock," and the message arrives .3 seconds
before 11:00 o’clock, processor i will think that mes-
sage is valid according to Task MSG. Suppose, how-
ever, that processor j is also correct and is running .1
seconds slower than processor i (which is possible
since DMAX=.1). If processor j receives processor
i's message almost instantaneously, then j will receive
the message roughly .4 seconds. before 11 o’clock on
its clock. Since the message now has four signatures,
processor j will also consider it valid. However, if
the test in Task MSG did not allow the interval of
validity to grow as a function of the number of signa-
tures, the message might not have been considered
valid. Indeed, it is straightforward to convert this
example to a scenario in which a fixed Bound on the
interval in which a message is considered valid that is
independent of the number of signatures on the mes-

sage results in an incorrect algorithm.
4. Analysis of the algorithm

The crucial point in proving the correctness of
the algorithm is to show that once one correct proc-
essor receives a valid message according to Task
MSG, or initiates a message according to T ask TM,
within a very short time all the other correct proc-
essors will receive a valid message or initiate bne. In

order to make precise the amount of time that this
94

could take, suppose there is a set of faults F
FpuF; in a communication network G, where Fp is
the set of fauity processors and Fy is the set of faulty
communication links. Let G/F be the network which
remains when all the faults in F are removed from G,
and let trtg p(i.j), be the time required to transmit a
message from processor i to processor j in G/F
(possibly by having it relayed through a number of
other processors, if there is no direct link from Py to

pjor if the direct link is faulty). Define:

trig p = max; j(trig /g(i.j),
trig(fp.fy) = max{trtg g |Fpl<fp, IFp|< 1y,
and G/F is connected}

dmin = trtg(fp,fp).

Note that this is the dmin of CS3 (given that
there are at most fp processor failures and f; commu-
nication link failures in the network). If we assume
(as is done in [LM1,1LM2,LL1]) that G is a complete-
ly connected network with n nodes and [f{ |=0 (i.e.,
there are no link faults), then any two correct proc-
essors are still joined by an edge in G/F; consequent-

ly, for any fp, trtg(fp,0) < tdel. If we allow link

faults but take |f; +fpl<n-1, then it is easy to check
that any two correct processors are either joined by a
nonfaulty link or are both joined to another correct
vertex by nonfaulty edges; so in this case, trig(fp.fy)
< 2tdel. (the diameter of

In general, trig/p <
G/F)tdel, (where the diameier of a graph is the dis-
tance between the two nodes that are farthest apart
in the graph). For any graph G with n nodes for
which G/F is connected, the diameter of G/F at most

n-1, and trtg/F < (n-1)tdel.

Suppose the clock synchronization algorithm is
to be designed to tolerate at most fp processor faults
and f; link faults for a communication network G
satisfying A1-A3. Choose the parameters D and PER

in the algorithm to satisfy

(Drift Inequality) D > (1+p)dmin + dr(1+p)PER,
and

(Interval Separation) PER > dmin(1+p) + fpD.

As we shall see, the drift inequality guarantees that D
is at least as large as the maximum difference be-
tween clock readings in a given interval, while the
interval separation constraint guarantees that two
synchronization intervals do not overlap; i.e., that
begk*+1>endX. This, in turn, will guarantee that no
correct processor ever receives a message from anoth-
er to synchronize its kP clock before it is "ready",
that is, before it has set ET=kKPER.

A straightforward substitution shows that PER
and D can be chosen to satisfy both constraints iff
dr(1+p)fp < 1.
satisfied when fp < 499,999. We can omit the inter-

Taking p = 10‘6, this inequality is
val separation constraint if we assume that messages
between two correct processors joined by a nonfaulty
link always arrive in the order in which they were
sent (v. Remark 2 below). In this case the algorithm
will work as long as D and PER are chosen to satisfy

the drift inequality.

Once values have been chosen for D and PER,

define:

DMAX = (1+p)dmin + dr(1+p)PER, and
ADJ = (fp+1)D.

Theorem 1. Let G be a network with n processors
Al-A3 that the

processors’ CO clocks are started within dmin of each

satisfying assumptions such

other. If D and PER are chosen to satisfy the drift
inequality and interval separation and during the
running of tasks TM and MSG at most fp processors
are faulty in the interval [beg®endN], and at most f_
communication links are faulty in any of the inter-
vals [begK.endX], k=1,....N, and these faults do not
disconnect the network, then clock synchronization
conditions CS1-CS3 hold in the interval [beg®,endN).
Moreover, the correct processors send at most n2

95

synchronization messages during each synchroniza-

tion interval.

Note that in the statement of Theorem 1, we
tolerate any number of transient link faults provided
there are at most {f; of them during any synchroniza-
tion interval and they do not disconnect correct proc-
essors. The join protocol described in the next sec-
tion gives us a means to resynchronize processors
that fail and are subsequently repaired. It will also
allow us to resynchronize processors disconnected by

transient link faults.

Roughly speaking, the algorithm will guarantee
that all correct clocks will synchronize within a real
time interval of length dmin = trtg(fy,fp). Thus, at
the end of a synchronization interval (i.e. at endX for
any k) clocks will be at most (1+p)dmin apart. Dur-
ing the lifetime of a clock as current clock (which
has real time duration at most (1+p)PER), clocks will
drift
p(2+p)PER. (Recall that dr is the maximum rate at

apart at most an extra dr(1+p)PER =
which correct clocks might drift apart). This gives us
the expression for DMAX, which is the right hand

side of the drift inequality.

As an example, suppose p = 10‘6, tdel = 0.1 sec.,
and the network is completely connected with n
processors. Then so long as there are fp processor
< n-2, we

can take PER = 1 hour, dmin = .2 sec., DMAX = .21

failures and f; link failures, with fp+fp

sec., and ADJ = .21fp sec. If we take f; =0 and al-
low only processor failures (as is the case in
[LM1,ILM2,LL11]), then we can do even better. We
can take PER = 1 hour, DMAX = .11 sec., dmin = .1
sec., and ADJ = .11fp sec. Note that DMAX is
roughly equal to dmin. As we remarked above, we
can make dmin, and hence DMAX, smaller by giving
the synchronization process high priority in the

scheduling of the operating system of the processor.

The key to the proof of Theorem 1 is the follow-
ing lemma, which essentially says that as long as D is
greater than the maximum difference between the
(k-1)5t clocks of correct processors in the interval
[begk,endk], then the algorithm guarantees that the
kth clocks of correct processors will be within
(1+p)dmin at time end®. This is true no matter how

large D is, as long as it is large encugh.

As context for the lemma, let F be a set of faultsin G
during the synchronization interval [begK,end¥],
(k>0), such that F does not disconnect G, [Fp|<fy,
and |[Fpl<fp. Also let D and PER satisfy the drift

inequality and interval separation.

Lemma 1. If (a) for all correct processors i and j,
IC}"I(t)—C}"I(t)I < D for all t e [begK,endX], and (b)
at time begk (just before any correct processor has
started its ktP clock) all correct processors have

CURRENT =k-1 and the same value for ET, then

(1.1) end¥—begk < dmin; thus CS3 holds for this
synchronization interval,

1.2) at endk (after all the correct processors have
started their ktP clock) the k'™ clocks of cor-
rect processors differ by at most (1+p)dmin,
(1.3) the first correct processor to start its kth
clock does so no earlier than time ET-fpD on
its (k-1)t clock,

no correct processor starts its kt® clock earli-

er than time ET-ADJ on its (k-1)5t clock;

(1.4)

thus CS2 holds for this synchronizaticn in-
terval, since correct processors start their kth
clocks reading ET,
(1.5) begk+! > endk,
(1.6) the kM clocks of correct processors differ by
DMAX in the interval

[end¥,endX+1]; thus CS1 holds in this inter-

at most

val,
a.mn conditions (a) and (b) hold with k replaced
by k+1 and D replaced by any D*>DMAX.

96

Proof of (1.1). Suppose that p; is the first correct
processor to start its kth clock running. By defini-
tion, this happens at time begk. We will show that if
P; is correct, it starts its kP clock running within
time tnG,F(i,j) of processor i. Suppose we can prove
this. Since, by definition, dmin > trtG'F(i,j) for all i,
j» it follows that all correct processors will start their
kP clock running within dmin. Thus endX—begk <

dmin.

It only remains to prove that if pj is a correct
processor, then pj starts its kth clock running within
time trtG'F(i,j) of processor i. Here we make use of
the precise form of the validity test of Task MSG. By
definition of trt, there must be some sequence of non-
faulty processors and links, starting with p; a_nd end-
ing with Pj such that messages passed from p; to Pj
along this path arrive in time at most trtG'F(i,j).
(Note that here we are implicitly using the fact that
the faults in F do not disconnect G.) We prove the
result by induction on the length of the path. If the
length is 0, then the result is trivial since i=j. In
general, suppose the path has length m+1. Let p, be
the processor just before pj on the path. Note that
we must have trtG'F(i,h)+trtG_F(h,j) = trtG,F(i,j).
By the induction hypothesis, p,, starts its kth clock
within trtg p(i,h) of p;. When it does so, it must be
either because it initiated Task TM or it received a
message that it considered valid according to Task
MSG. In either case, it passes a message on to Pj
which arrives within time trtG,F(h,j). Either Pj has
already started its kB clock by the time the message
arrives, or, as we now show, the message will pass the
validity test of Task MSG, so that p; will start its kth
clock within trig g(i,j) of p;.

Let X be the value of ET shared by all correct
processors according to hypothesis (b). When the kth
clock of a correct processor is started, it is set to X.
Suppose P; has not started its kP clock when the

message from py arrives. If p, sent the message as a

result of initiating Task TM, this must have happened
at time X on py’s k-1% clock. Since, by hypothesis
(a), pj’s clock differs from py’s by at most D, this
happens at a2 time later than X-D on pj’s clock. Thus
P; receives the message from py at a time later than
ET-D (since ET=X, by hypothesis, until p; starts its
kth clock).
(py's), it passes the validity test.

Since the message has one signature
Now suppose pp
sent the message to pj as a result of getting a valid
message with s distinct signatures. The message must
come at a time after X—sD on py’s clock. By a simi-
lar argument to that above, it comes to pjata time
after X—(s+1)D on pj's clock, and since it now has
s+1 signatures (including py’s), the message also pas-
ses the validity test for Pj- (|

Proof of (1.2). Each correct processor starts its xth
clock at some point in the interval [begk,endX]. By
hypothesis (b) and the definition of the algorithm, all
the kP clocks of correct processors are set to the
same value (the ET at time begk) when they start.
By (1.1) they start within real time dmin of each oth-
er. Thus they differ by at most (1+p)dmin at time
endk. O

Proof of (1.3). A correct processor starts its kth
clock either as a result of its current clock reading
ET, or at a time later than ET-sD, if, it receives a
valid message with s signatures. The first correct
processor to start its kth clock cannot do this as a
result of receiving a message with more than fp signa-
tures, otherwise one of these signatures must be that
of a correct processor that started its kth clock at an
earlier time. Thus the first correct processor to start
its kP clock must do so after ET-fpD on it (k-1)$
clock. []

Proof of (1.4). By (1.3) the first correct processor to
start its kth clock does so at a time after ET-pr on
its (k-1)5t clock.
clocks of correct processors differ by at most D at

97

By assumption (a), all (k-1)5t

this time (begk). Thus, the (k-1)5t clocks of correct
processors read a time after ET-—(fp+ 1)D = ET-ADJ
at begK. This proves (1.4). O

Proof of (1.5). Suppose p; is the first correct proc-
essor to start its (k+1)5t clock, and let v’ be its value
of ET immediately before the (k+1)St clock is start-
ed. Let v be the value on its k'P clock when the kth
clock is started. From the definition of the algor-
ithm, it follows that v = v+PER. An identical argu-
ment to that of (1.3) above shows that p; starts its
(k+1)8t clock later than v'-fpD on its k! clock; i.e.,
Ck(begk+1) > v'-fpD. From (1.1), it follows that the
Ck(end*¥) > v+(1+p)dmin. By the Interval Separa-
tion inequality, v+(1+p)dmin < v'-fpD. Thus
begk*! > endk. O

Proof of (1.6). By the specification of Task TM, the
maximum time during which the k! clock can be
current (i.e. CURRENT = k) is PER in clock time or
(1+p)PER in real time. The last correct processor to
starts its (k+1)5! clock already has CURRENT=k
immediately after endX. Thus endX*l-end* <
(1+p)PER. Since the k!® clocks are within
(1+p)dmin at endk, they are within DMAX =
(1+p)dmin + dr(1+p)PER at endX+1 and at all times

between.

Proof of (1.7). By (1.5) begk+! occurs in the interval
[endK,end¥+1]. Thus, by (1.6), all clocks are within
D* between [begk+!,endk+1] for all D*>DMAX. At
time begk*‘1 (just before any correct processor has
started its (k+1)5t clock) all correct processors have
CURRENT=k+1 and the same values for ET because
these values are only changed when a new clock is
started and they are then changed in exactly the same
way. This completes the proof of (1.7), and with it
the proof of the Lemma. [

Proof of Theorem 1. To show that CS1-CS3 hold, we
first prove, by induction on k (using part (1.7) of

Lemma 1), that for k<N, hypotheses (a) and (b) of
Lemma 1 hold. The result then follows immediately

from Lemma 1.

To see that at most n2 messages are required
during any synchronization interval, note that during
every such interval, note that a correct processor will
execute either Task TM or Task MSG, but not both.
This is because once a correct processor has signed
and sent a synchronization message, it updates its
value of ET. Because of the validity test in Task
MSG, it will ignore any synchronization messages it
might receive containing the former value of ET.
Therefore, each correct processor will send one mes-
sage to each processor to which it has a logical link
during each interval. Thus, at most n2 messages are
sent by correct processors during each synchroniza-

tion interval. [

Remarks

1. As is mentioned above, although there is a brief
overlap in which different processors may be using
different clocks, timeouts are not necessary. If DUR
is the maximum real time duration during which a
clock might be used to time some distributed process,
the k! clock of a given processor might be used for a
time DUR beyond when it starts its k+15t clock to
time events that were started just before endk+!
Thus (14p)PER+DUR is the maximum life time of a
clock. During an interval of this length, the devia-
tion between clocks of correct processors could be as
much as DMAX+drDUR.

2. We could omit the Interval Separation inequality
by taking the following assumption:
(1) If processors i and j are joined by a direct link,
then while the link is nonfaulty, messages sent
along the link will arrive in the same order they

are sent.

98

The Interval Separation inequality was used in
the proof above to show that that synchronization
intervals do not overlap; i.e. begk*!>end¥ (v. condi-
tion (1.6) of Lemma 1). This, in turn, was needed to
show that the following situation cannot occur: a
correct processor starts its k! and (k+1)5t clocks,
and sends out messages to the other processors to do
so too. These messages cross, so another correct
processor receives the message to start the (k+1)st
clock before it is "ready'’; i.e. while ET=kPER. This
message will not pass the validity test of Task MSG,
and so will be ignored. Assumption (1) guarantees
that this problem cannot happen. We leave it to the
reader to prove an analogue of Lemma 1 using this
assumption (cf. [HSS,DHS)).

Note that the following simple protocol achieves
(1). All messages from processor i to processor j are
numbered consecutively. If processor j receives a
message numbered m, it accepts m at time t if (a) no
message with a higher number has been accepted, and
(b) either all message with a lower number have al-
ready been accepted or or an interval of (2+p)tdel on
its duration timer has passed since message m was
received. It is easy to see that the accepted messages
are indeed accepted in the order that they are sent,
and any message which is sent while the link is non-

faulty will be accepted.

3. During a synchronization interval, correct proc-

essors may have different current clocks

(corresponding to different values of CURRENT).
However, the difference between current time (C) on
correct clocks is always bounded by DMAX+ADJ.
Note that this term corresponds to the y of [LL1].
We have not concerned ourselves with this figure
here, since we assume that processors will always use
the same clock to time a given event (namely, the
clock that was in force when the event began, at the

site initiating the event).

4. The bound on synchronization that we achieve -
DMAX - is essentially within a factor of two of opti-
mal (see [DHS] for further details).

5. Initialization and Joining

The clock synchronization algorithm presented
in previous sections is subject to the weakness that
processor faults accumulate: once a processor is
‘faulty, it stays faulty since we have not yet specified
any way to synchronize an unsynchronized clock. In
order to tolerate processor failures in the long run,
we must assume an environment in which the mean
time to repair or replacement of a faulty processor is
less than the mean time between processor failures.
To be useful in practice, a clock synchronization
algorithm must handle both repaired and new proc-

essors. In this section we present an algorithm that

enables such processors to rejoin the system. Our

strategy is to run a Byzantine Broadcast algorithm
among the currently active processors, in order to
agree on the fact that a processor wants to join, fol-
lowed by a resynchronization algorithm in order to
synchronize the clocks of all the currently active

correct processors together, with the joiner.

A previously synchronized group of processors is
called a cluster, the new processor that wants to join
is called the joiner, and the synchronization of a new
processor is called joining. Unlike the clock syn-
chronization algorithm, which does not require a
minimum number of correct processors, a processor
can join a cluster of synchronized processors only if
the number of processor faults in the cluster is small-
er than half the number of processors in the cluster.
To see that this constraint is as weak as possible,
suppose that half of the processors in the group are
faulty, and they all think that the time is 10 AM,
while the correct processors all say the time is 11
AM. Then there is no way for a joining processor to
be able to disambiguate the situation.

99

Roughly speaking, the join algorithm proceeds as
follows. The joiner sends a message t0 a processor in
the cluster (called its agenr) saying it wants to join.
At that point three procedures are executed. The
first is a a Byzantine agreement (cf. [DS]), initiated
by the agent, on a value for ET to be used in a special
synchronization. We then have two synchroniza-
tions. The agent tells the joiner what time the first
unscheduled synchronization is going to take place.
The joiner "listens in" while this unscheduled sy-
chronization is going omn; it receives messages but
does not respond. When it receives fp+1 messages it
sets its clock to ET. We can show that as a result of
this unscheduled synchronization, the clocks of cor-
rect processors in the original cluster, as before, are
at most DMAX apart, while the clock of the joiner
can differ from the clocks of the correct processors
by at most 2DMAX. One more synchronization
brings the clocks of all processors (including the join-

er) to within DMAX.

In more detail, we proceed as follows. As in our
original algorithm, we have global constants D and
PER which must meet certain constraints described
below, local variables ET and CURRENT, and an
infinite collection of clocks. We have a three addi-
tional local variables: SS, CLUSTER, and MSIG. SS
("'state of synchronization') takes on values NOR-
MAL, UNSCHED1, UNSCHED2, or JOINING, de-
pending on what stage of the synchronization process
a processor is in. While no joining is taking place
(the situation described in the previous sections) all
correct processors have SS=NORMAL (and essential-
ly follow the tasks TM and MSG described above). A
that wants to has

processor the cluster

join
SS=JOINING. As we mentioned above, the join
process involves two special, unscheduled synchroni-
zations. While these are going on, the correct proc-
essors in the cluster will have SS=UNSCHED1 and

SS=UNSCHED2 respectively. CLUSTER keeps

track of which processors are currently in the cluster.
Finally, MSIG keeps track of which processors have
signed a message saying ''The time is T". As we shall
see, this will be needed in the second unscheduled

synchronization.

We assume that the system starts with the clus-
ter consisting of one processor, say i, with the varia-
bles initialized as follows: ET=PER, CURRENT=0,
C=0, SS=NORMAL, CLUSTER={i}, and MSIG={}.
A processor that w%mts to join a cluster
SS=JOINING, CLUSTER={}, MSIG={},

other variables undefined. It sends a request-to-join

has
and the

message to its agent (one of its neighbors that is in
the cluster). (It is beyond the scope of this paper to
explain how a processor decides to join or picks the
agent.) If the agent is correct, it then chooses a time
T which is sufficiently away from any scheduled syn-
chronization, and at that time initiates a Byzantine
agreement on a time for an unscheduled synchroniza-
tion. (We show in the full paper that it suffices to
choose T such that T+BYZT+(2fp+3)D < ET, where
BYZT is some upper bound on the time that it takes
to reach Byzantine agreement; then we can take ET
= T+BYZT+({p+1)D for the unscheduled synchroni-
zation.) If the Byzantine agreement succeeds, each
correct processor in the cluster sets SS=UNSCHED1
at time T+BYZT on its current clock and updates
CLUSTER to include the joining processor. From
this point on, all messages sent to the cluster will also
At UNSCHEDI1 the
agent also sends the joiner a message containing its

current values of CLUSTER, CURRENT, and ET.

reach the joining processor.

On receipt of this message, the joiner sets its corre-
sponding variables to the same values. We leave de-
tails of the pseudocode describing the Byzantine
agreement and the transition to UNSCHEDI1 to the

full paper.

In the UNSCHED1 state the correct processors
essentially run the Tasks TM and MSG described
100

above, the only difference being that ET :=
ET+2(fp+1)D rather than ET := ET+PER, and
8S:=UNSCHED? (see the pseudocode below). In the
UNSCHED2 state, when a processor gets a message
that was started by another

processor in the

UNSCHEDI1 state, the message is not ignored, but is

passed around the system if it has any "new' signa-
tures on it (i.e., signatures that have not appeared on
previous messages saying the time is the previous ET,
which is the current ET-2(fp+1)D.) The MSIG vari-
able is used to keep track of which processors have
signed such a message. When [MSIG|>{p for the join-
ing processor, it starts 2 new clock. We show in the
full paper that this time is at most 2dmin after the
first processor in the cluster has started its clock with
In the UNSCHED? state, processors

also execute Tasks TM and MSG, but the validity test

the same time.

for Task MSG is slightly different to allow for the
fact that the joining processor is only synchronized to

within 2D of the rest of the processors.

We now give the pseudocode for the Tasks TM
and MSG in the join algorithm. Recall that in the
NORMAL state the two tasks share almost identical
bodies. Since this is also true in the pseudocode be-
low, we use a macro to represent the identical part.
Let START__ NEW__ CL.OCK represent

SIGN AND SEND M TO CLUSTER;
CURRENT := CURRENT+1;
C := ET;

Using this abbreviation, we have

Task TM
If C = ET then begin
Select (SS);

When (NORMAL) begin
M := "The time is ET";
START__NEW__CLOCK;
ET := ET + PER;

end

When (UNSCHEDV1) begin
M := "The time is ET";
START_NEW__ CLOCK;
ET := ET + 2(fp+1)D;
SS := UNSCHED?2?;

end

When (UNSCHED?2) begin
M := "The time is ET";
START__NEW__CLOCK;
ET := ET + PER;
SS := NORMAL;
MSIG := {};

end

end
end .

Task MSG

If processor i receives an authentic message M of the
form "The time is T" with signature set SIG then begin

Select (SS);

When (NORMAL) begin
If T=ET and T-|SIG| «D<C then begin
START__NEW__CLOCK;
ET := ET + PER;
end
end

When (UNSCHED1) begin
If T=ET and T-|SIG | «D<C then begin
START__NEW__CLOCK;
ET := ET + 2(fp+1)D;
SS := UNSCHED2;
end
end

When (UNSCHED?2) begin
If (T=ET-2(fp+1)D)
and (| MSIG | <fp+1)
and (SIG is not contained in MSIG)
then begin
MSIG := MSIG v SIG;
SIGN AND SEND M TO CLUSTER,;
end
If T=ET and T-2¢ | SIG | +«D<C then begin
START__NEW__ CLOCK;
ET := ET + PER;
§S := NORMAL;
MSIG := {};
end
end

101

When (JOINING) begin
If T = ET then begin
MSIG := MSIG v SIG;
if |MSIG | >{p then begin
START_NEW__CLOCK;
SS .= UNSCHED2;
ET := ET+2«(fp+1)-D;
end
end
end
end
end .

We now briefly state the correciness conditions
satisfied by the join algorithm. We leave the proofs
of the theorems to the full paper.

Define the system state of a processor to consist
of the sequence of values of its variables SS, ET,
CURRENT, and CLUSTER. We say a pair of proc-
€Ssors (pi,pj) is in rapport at real time t if they have
the same system state, they both appear in their
shared value for CLUSTER, and ICi(t)—Cj(t)l <
(1+p)dmin. Assume as before that D and PER have
been chosen to satisfy the drift inequality and inter-

val separation.

Theorem 2, If all the correct processors in a network
are in rapport at time t, then these processors, and
any correct processors that join the network, will
satisfy CS1-CS3 ofA the clock synchronization algor-
ithm (with values for DMAX, ADJ, and dmin twice
those of Theorem 1), so long as any two correct proc-

essors are linked by a fault-free path.

Theorem 3. If PER > 2(fp+2)D, and n>2{p, then a
correct processor can successfully reach rapport with
any correct processor to which it is connected by a

fault-free path.

We now consider how the current clocks of cor-
rect processors behave (cf. Remark 4 of Section 4).
We say a pair of processors (pi,pj) is R,B-synchronized

during real time interval int if for all teint,

I Ci(t1)=Cj(1)| < B, and for all ty <t with t; and ty

in int, 0 < Ci(15)-Ci(t;) < (1+R)(15-t;). Note that
in the latter inequality, we may be comparing two
different clocks, since processor i's current clock at
real time t; may be different from its current clock at
t5. This condition says that processor i’s current
clock times are within a linear bound of real time,
and thus corresponds to the Linear Envelope
Let B = DMAX+2ADJ.

Let R be any value > p + (2ADJ/(PER-(fp+1)D)).

Synchronization of [DHS]).

Theorem 4. If a pair of processors is in rapport at
time t, then they will remain R,B-synchronized after t
so long as they remain correct and connected by a

fault-free path. .

Note that in the algorithm as presented, for a
processor to successfully join the network, the agent
chosen by a joiner must be correct. It might have to
retry the join a number of times (at most fp though)
before it actually does join. We can overcome this
problem by modifying the join algorithm so that the
joiner sends its request 10 fp+1 agents. Then the
joiner must keep track of all possibie values for ET
according to each of its agents and resolve any con-
flict by choosing the first value that receives the re-
quired number of supporting signatures. Using the
modified algorithm, we can prove that any correct
processor can successfully join within 5(fp+2)D on
its clock. This is a worst case time, which only oc-
curs if a number of processors try to join at once.
When only one processor is joining, the whole process

takes at worst 3(fp+2)D.

The join algorithm presented here is not opti-
mal with respect to running time. It was presented
this way to enable to reader to see the protocol’s
building blocks. In the full paper we discuss a num-
ber of optimizations which can reduce the running
time, such as combining the Byzantine agreement and

the first synchronization.

102

References

[DHSS] D. Dolev, J. Y. Halpern, B. B. Simons, and H.
R. Strong, A new look at fault tolerant net-
work routing, Proceedings of the Sixteenth
Annual ACM STOC, 1984, pp. 526-535;
also IBM RJ4239, 1984.

D. Dolev, J. Y. Halpern, and H. R. Strong, On

the possibility and impossibility of achiev-

[DHS]

ing clock synchronization, Proceedings of
the Sixteenth Annual ACM STOC, 1984,
pPp. 504-511; also IBM RJ4218, 1984,
[DS] D.Dolev and H. R. Strong, Authenticated
algorithms for Byzantine agreement, SIAM
J. of Computing, 12:4, 1983, pp. 656-666.
[HSS] J.Y.Halpern, B. B. Simons, and H. R. Strong,
An efficient fault-tolerant algorithm for
clock synchronization, IBM RJ4094, 1983.
[LM1] L. Lamport and P. M. Melliar-Smith, Syn-
chronizing clocks in the presence of faults,
SRI International Report, 1982.
[LM2] L.LamportandP. M. Melliar-Smith, Byzan-
tine clock synchronization, Proceedings of
the 3rd ACM Symposium on Principles of
Distributed Computing, 1983.
fLL1] J. Lundelius and N. Lynch, A new fault-
tolerant algorithm for clock synchroniza-
tion, Proceedings of the 3rd ACM Symposi-
um on Principles of Distributed Computing,
1983.
[LL2] J. Lundelius and N. Lynch, An upper and
lower bound for clock synchronization, un-
published manuscript, 1984,
[Ma] K. Marzullo, Loosely-coupled distributed
services: a distributed time system, Ph.D.
dissertation, Stanford University, 1983.
R. L. Rivest, A. Shamir, and L. Adleman, A

method for obtaining digital signatures and

[RSA]

Communications

of the ACM, 21:2, 1978, pp. 120-126.

public-key cryptosystems,

