Shifting Gears: Changing Algorithms on the Fly
To Expedite Byzantine Agreement

Preliminary Report

Amotz Bar-Noy and Danny Dolev
Hebrew University

Cynthia Dwork and H. Raymond Strong
IBM Almaden Research Center

Section 1. Introduction

In designing distributed algorithms it is often impos-
sible to combine different algorithms for the same prob-
lem; while the hope is that the strengths reinforce, the
reality is that the weaknesses conspire. In this paper
we present three Byzantine agreement algorithius, of re-
silience ";1 , 3‘:—‘, and (n/2)/? respectively, for which it
is possible to shift, mid-execution, from one to another,
where n denotes the total number of processors in the
system. Thus, one may begin an execution using an in-
efficient but highly resilient algorithm, and, after a pre-
determined number of rounds of communication, shift
to a more efficient algorithm of lower resilience, even
though the actnal number of faulty processors remains
high. Shifting between algorithms of different resiliences
is possible in both directions, even if the overall toler-
ance to faults must remain high. To our knowledge the
ability to shift, particularly between algorithms of differ-
ent resiliences, has not previously been demonstrated.

We have identified three key properties shared by all
our algorithms that in combination capture our intu-
ition of why it is possible to shift between the algo-
rithms. These properties are called “persistence,” “fault
detection,” and “faunlt masking.” At all times during ex-
ecution of our algorithms each correct processor has a
“preferred” candidate decision value. “Persistence” says
that if sufficiently many correct processors ‘‘prefer” v,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and / or specific permission.

© 1987 ACM 0-89791-239-X/87/0008/0042 75¢

42

then this situation persists, and the eventual decision
value will be v. A faulty processor is detected if all cor-
rect processors have discovered it to be faulty. (We dis-
tinguish between discovery, which describes the action
of a single processor, and detection, in which all correct
processors have discovered the same faulty processor.
These discoveries need not take place simultaneously.)
Messages from processors known to be faulty are ig-
nored. Thus the actions of detected processors are es-
sentially “masked”. The fault detection and fault mask-
ing properties allow us to shift from an algorithm of high
resilience down to one of lower resilience if many faults
have occurred early in the execution, while the persis-
tence property allows us to shift down if there were few
faults early on, despite the fact that more faults may
occur later.

Our two algorithms of linear resilience are actually
families of algorithms interesting in their own right,
as they achieve the message rounds versus number of
message bits tradeoff exhibited by Coan’s families [C1],
but avoid the exponential local computation of his algo-
rithms. In addition, these algorithms and their proofs of
correctness are dramatically simpler than those of Coan.

The information transfer, local computation, and
rounds of communication required for our three algo-
rithms are stated in Theorems 1-3.

Theorem 1: For 2 < b < t, Byzantine agreement
can be achieved in the presence of t < n/3 faults in
2 + [+=11b rounds of communication, using messages of

O(n?) bits. Moreover, the amount of local computation
at cach processor is O(nt+1(1=1)).

Theorem %: For 1 < b < t, Byzantine agreement
can be achieved in the presence of t < n/4 faults in
2+ ['_:111'5, rotads of communication, using niessages of

O(n') bits. Moreover, the amount of local computation
; b+1p2=1

at each processor is O(n*T}(£=1)).

Theorem 3({DRS]): Ifn > 247 —3t+2 then t-resilient

Byzantine agreement can be achieved in t + 1 rounds

using messages of O(n) bits. Moreover, the amount of

local computation at each processor is at most Q(n”>).

Main Theorem: It is possible to combine the algo-
rithms used to prove Theorems 1-3 to obtain hybrid ak
gorithms. In particular, for 2 < b < ¢, there is a hybrid
of all three algorithms with resilience t = '—'—;—1— requiring

-1
1+([b_2

1+ 1224 VAT

rounds of communication, where x = t/2. The bounds
on information transfer and local computation are as in
Theorem 1.

The remainder of this extended abstract is organized
as follows. In Section 2 we briefly define the Byzantine
agreement problem and specify our model of computa-
tion. In Section 3 we provide an exponential (in ¢) infor-
mation gathering algorithm very similar to the original
algorithm for Byzantine agreement [PSL]. We briefly
outline a new proof that this algorithm achieves Byzan-
tine agreement in ¢ + 1 rounds in the presence of t < 3
faults. In addition to providing certain lemmas for the
correctness proofs of our new algorithms, the new proof
provides intuition that was critical in our discovery of
the new algorithms. We will show how to modify the ex-
ponential algori*hm by introducing fault discovery and
fault masking sc¢ :hat the resulting algorithm exhibits
persistence and fauit detection. In Section 4 we intro-
duce shifting and apply it to our modified information
gathering algorithm to produce our three families of al-
gorithms and the hybrid algorithm of our Main Theo-
rem. Concluding Remarks appear in Section 5.

2. Model Description and Problem Statement

We assume a completely synchronous system of n pro-
cessors connected by a fully reliable complete network.
Each processor has a unique identification number over
which it has no control. At any point In the execution
of the protocol processors may fail. There is no restric-
tion on the behavior of faulty processors, and we do
not assume the existence of authentication mechanisms.
However, a correct processor can always correctly iden-
tify the source of any message it receives. This is the
standard “unaunthenticated Byzantine” fault model.

Processing is completely synchronous. Not only do
the processors comumunicate in synchronous rounds of
communication, but they all begin processing in the

43

same round. Without loss of generality we refer to this
round as Round 1.

In the Byzantine agreement problem one distin-
guished processor, called the source, begins with a single
input value v drawn from a finite set V' (without loss of
generality we assume 0 € V). We view [V| as constant.
(If V| is very large we may apply techniques of Coan
([C2]) to reduce the set to two clements, at the cost of
two rounds.) The goal is for the source to broadcast v
and for all other processors to agree on the value broad-
cast. That is, at some point Im the computation each
correct processor must irreversibly decide on a value.
The requirements are that no two correct processors de-
cide differently, and that if the source is correct then the
decision value is the value broadcast by the source.

An algorithm for Byzantine agreement has resilience ¢
if correct processors following the algorithm are guaran-
teed to reach Byzantine agreement provided the number
of fauity processors does not exceed t. No noncrypto-
graphic protocol for Byzantine agreement can tolerate
n/3 faults [PSL]. Thus, since our results are trivial for
t = 0, we will assume front now on that the resilience to
be achieved is at least 1 and the number of processors
1s at least 4.

3. The Exponential Algorithm

In this section we describe an algoritlhun similar to
the original Byzantine Agreement algorithm of Pease,
Shostak, and Lamport [PSL]. A descriptive, but cum-
bersome name for our algorithm is “Exponential In-
formation Gathering with Recursive Majority Voting.”
Henceforth we refer to this algorithm as “the exponen-
tial algorithm.”

In the exponential algorithm each processor maintains
a large tree of height ¢t {each path from root to leaf
contains ¢t + 1 vertices). The vertices are labelled with
processor names as follows. The root is labelled s, for
Let v be an internal node in the tree. For
every processor name p not labelling an ancestor of v,
v has exactly one child labelled p. With this definition
no label appears twice in any path from root to leaf in
the tree. Thus, we say this tree is without repetitions.
{In Algorithm C, described in Section 4, we will extend
the tree to include repetitions. In that case all internal
nodes have n children.) Note that we may refer to a
vertex in the tree by specifying the sequence of labels
encountered by traversing the path from the root to the
vertex. Let o be such a sequence. The length of « is the
length of the sequence. The processor corresponding to
verlez a is the processor whose name labels vertex a,
1.¢., the last processor name m the sequence a.

source.

In the first round of the information gathering algo-
rithm the source sends its initial value to alln — 1 > 3¢

the source said

b said z said
the source said the source said

a said a said
a said b said z said
the source said the source said the source said

Ctree(sab») Ctree(sba))

z said
b said
a said
the source said

a said
the source said

b said

tree (sza)

tree(sabz)

The information gathering tree

Figure 1:

other processors. When a correct processor p receives its
message from the source it stores the received value at
the root of its tree (a default value of 0 € V is stored if
the source fails to send a legitimate value in V). In each
subsequent round each processor broadcasts the level
of its tree most recently filled in. With the messages
received each processor adds a new level to the tree,
stofing at vertex s...bg the value that g claims to have
stored in vertex s...b in its own tree {again, a default
is used if an inappropriate message is received). Thus,
ntuitively, p stores in vertex s...bg the value that “g
says b says ... the source said” (see Figure 1). We refer
to this value as tree,(s...bg), eliminating the subscript
p when no confusion will arise.

The value stored in tree,(s) (i.¢., at the root) is called
the preferred value of p. Information is gathered for t+1
rounds, until the entire tree has been filled in. At that
point each processor p applies to the tree a recursive
data reduction function, called resolve, to obtain a new
preferred value which we denote resolve,(s) (we drop
the subscript p when no confusion arises).

The value obtained by applying a reduction function

44

to the subtree rooted at a vertex a is called the reduced
value for a. The specific data reduction function used
in the exponential algorithm resolve, is essentially a re-
cursive majority vote, and is defined as follows:

resolve(a)
tree(a), if a is a leaf;

the majority value obtained by applying resolve to
the children of «, if & majority exists;

0, if is not a leaf and no majority exists.

The entire exponential algorithm is: gather informa-
tion for ¢+ 4+ 1 rounds; compute the reduced value for
s using the data reduction function resolve; decide on
this reduced value.

We now sketch a proof of correctness for this algo-
rithm.

During the data reduction stage of the algorithimn a
vertex o is common if each correct processor computes
the same reduced value for . Thus the algorithm is
correct if and only if

1. in every execution s is commeon, and

2. if the source is correct, every correct processor re-
duces s to the value received from s in round 1

(tree(s)).

If the source is correct these conditions are guaranteed
by the following lemma in the special case a = s.

Correctness Lemma: Any node a 1n the information
gathering tree that corresponds to a correct processor is
common and satisfies resolve,(a) = tree,(a) for every
correct processor p. O

The proof of the Correctness Lemma, omitted here,
relies on the fact that a strict majority of the children
of every non-leaf in an information gathering tree cor-
respond to correct processors. This is true because by
construction every internal vertex has at least 2¢ + 1
children, of which at most ¢ are faulty.

There are at most ¢t faulty processors, and every path
in the mformation gathering tree is of length ¢ + 1, so
every path from root to leaf contains a correct proces-
sor. It therefore follows by the Correctness Lemma that
every path contains a common vertex, independent of
whether or not the source is correct. When every root-
leaf poth contains a commmon vertex we say the collection
of information gathering trees of correct processors has
a common frontier.

A: we have seen, the Correctness Lemma says the
algo1 thm works if the source is correct. We have also

Exponential
Information
Gathering

Information transfer/round
bits —

1T 3

Rounds —

5

Figure 2:

observed that in every execution in which at most ¢ pro-
cessors fail there is a comumon froutier, independent of
whether the source is correct. It remains to show that
even if the source is fanlty the existence of a common
frontier gnarantees agreement. This is immediate from
the the following lemma.

Frontier Lemuma: If there is a common frontier, then
s is common. O

To prove the Frontier Lemma we actually prove the
more general claim:

Claim: Let o be a vertex. If there is @ common frontier
in the subiree Tooted at «, then a is common (ic., a
itself constitutes a common frontier of the subiree).

The claim is proved by induction on the height of «
(backwards induction on the length of a).

In light of the above discussion we have the following

45

proposition.

Proposition: The Information Gathering Algorithm
reaches Byzantine agreement in t + 1 rounds tolerating
t <n/3 feults. O

We have shown that this simple variant of the original
{PSL] algorithm reaches Byzantine agreement in the op-
timal number of rounds [FL,DS]. In spite of the simplic-
ity of the algorithm, the message size and the amount
of local computation required grow exponentially with
t (see Figure 2). Later, to bound this growth, we will
apply a shift operator to reduce message size when it
threatens to exceed our bound. However, before we can
apply shifting, we must modify the algorithm for fault
detection and prove that the modified algorithm exhibits
the three important properties, persistence, fault detec-
tion, and fault masking, mentioned in the Introduction.

We begin with the persistence property. Generally
speaking, the persistence property says that if “enough”
correct processors share the same preferred value before
data reduction, then after reduction s is comumon. The
choice of how many processors constitute “enough” may
depend on the particular algorithm involved and the in-
tended application of the persistence property. In our
case the requirement is spelled out in the Persistence
Lemma below. The intended application is in construc-
tion of our hybrid algorithm, discussed in Section 4.

Persistence Lemuma: [f before reduction some set of
correct processors, sharing the same preferred value v,
constitute a strict majority of all processors, then s 1s
common and has reduced velue v. O

The Persistance Lemma follows easily from the Cor-
rectness Lemma and the choice of reduction function.
The value v described in the Persistence Lenmuma is called
a persistent value.

For any k < t + 1, if information gathering is run
for only k rounds, then the Correctness, Frontier, and
Persistence Lemmas hold, even though the paths in
the information gathering trees contain only & vertices.
Moreover, these lemmas hold if the preferred value of
each processor is a private initial value rather than
the contents of a message from the source. Thus, we
could run the information gathering algorithm for k
rounds, reduce the resulting tree to produce a single
value resolve(s), and treat this value as if it had been re-
ceived directly from the source, storing it in tree(s) and
continuing with the information gathering algorithm as
if it had just finished round 1. It is not difficult to
argue that any algoritlun constructed along these lines
will wotk correctly if the source is not fanlty. However,
becanse k < t + 1 we are not gunaranteed a common
frontier if the source is faulty. In this case faults other
than the source may be able to collude to prevent the

emergence of a persistent value. In order to bound the
number of times this can occur we introduce here fault
discovery and fault masking rules to be followed by each
processor. The intuition we wish to capture is that if a
faulty processor is effective at preventing the emergence
of a persistent value, then that processoris detected and
subsequently ignored.

We modify the exponential algorithm by giving each
processor p an extra data structure, L, (the subscript
1s omitted when no confusion will arise). L, initially
empty, contains the names of processors that p has dis-
covered to be faulty by applying the Fault Discovery

Rule stated below.

We will need the following definition. For all internal
vertices 3, a value stored at a strict majority of the
children of 3 is called the majority value for 3.

Fault Discovery Rule: Let p be a correct processor.
During information gathering, a processor b not already
m L, is added to L, if for some internal vertex ab in
tree,

1. there is no majority value for ab, or

2. a majority value for ab exists but other values are
stored at more than ¢ — |L,| children of ab not cor-
responding to processors already in L,.

If at most t processors fail and L, contains only faulty
processors, then any processor added to L, under the
Fault Discovery Rule is necessarily faulty.

The Fault Discovery Rule has an extremely useful
corollary, the Hidden Fault Lemuna. It is helpful to think
of the fanlty processors as being controlled by an adver-
sary. The Persistence Lemma implies that in order to
prevent the occurrence of a persistent value the adver-
sary ust arrange to split the correct processors mto
at least two sets, neither of which has size '-‘-:z‘i, where
processors in different sets prefer different values. The
Hidden Fault Lemma will be used to show that, if the
adversary is successful in preventing a persistent value,
then some faulty processor is discovered by all correct
processors, i.e., it is detected. Once a faulty processor is
detected, all correct processors view it as sending only
the default value, so it can never again be used to split
the correct processors.

Hidden Fault Lemma: Let p be a correct processor
and let ab be any internal vertez inp’s information gath-
ering tree. Lel k be the length of ab and let m be the
number of children of ab. If all the processors in ab are
faulty, but b ¢ L, after round k + 1 (1.e., after p stores
values at the children of ab), then the set of processors
corresponding to the children of ab at which the major-

46

ity value is stored contains at least m —t + |L,| nodes
corresponding to correct processors. O

Let p be a correct processor and g a faulty processor.
Any correct agreement protocol must be able to tolerate
any behavior of g, provided the resilience of the protocol
is not exceeded. In particular, if g were always to send
zeros to p, regard) :ss of what g should be sending, the
protocol should still work. This can be proved formally,
providing a justification for the following Fault Masking
Rule.

Fault Masking Rule: If b is added to L in round r,
then any messages from b in round » and any subsequent
round are replaced by messages in which each value is
the default 0. In other words, once a processor discovers
that b is faulty, it “acts as if” b sends only zeros.

Under the Fault Masking Rule, once a processor has
been discovered faulty by all correct processors, it is
essentially forced to send the same values (zeros) to all
correct processors. As we will see; in the new algorithms
fault masking will limit the ability of a fanlty processor
to prevent the correct processors from obtaining a per-
sistent value.

We assume for the rest of this paper that the fault
discovery and fault masking rules are applied in each
round of information gathering. However, we stress that
Fault Masking is never used to fill in the root, tree(s).

Section 4. Shifting

All of our new algorithms are based on applications
of shifting to the exponential algorithim with fault dis-
covery and fanlt masking. We introduce an operator
Shift;f that uses some conversion process to change the
data structures appropriate to the end of round & into
those appropriate to the end of round 7. This operator
can be applied repeatedly to prevent the data structures
from growing past the size of those associated with the
end of round k (see Figures 3 and 4). In order to spec-
ify an algorithm that uses shifting, we need only specify
the original algorithm, the points at which shifting is to
take place, and the conversion process. When we con-
vert from larger to smaller data structures, we refer to
the process as compression. We can even specify shift-
ing from one algorithm to another, if we can specify an
appropriate compression process. However, there is no
guarantee that indiscriminate shifting will result in al-
gorithius that achieve the desired objective of Byzantine
agreement.

In this paper we focus on three algorithms, two of
which take a parameter that yields a family of algo-
rithms when varied, and show that it is possible to shift
among these algorithms.

w—1

], tp = (54, and 1o = [(n/2)172).

LCt ’A ——{_

Information transfer/round
bits —

Informatiqn transfer/round
bits —

49
Shift3

5 7 9

Rounds —

Figure 3:

Shift3

7 10

Rounds—»

Figure 4:

11

47

Algorithm A has resilience t4. When run with pa-
rameter d, 1 < d < t - 2, Algorithm A requires
[11(d + 2) rounds of communication and employs
messages of length strictly less than n?*'. The to-
tal local processing time expended by each processor is
O(n*+?[£1]). (One can do slightly better in the special

casesd =t—1land d =1t.)

Algorithm B has resilience tp. When run with pa-
rameter d, 1 < d < t — 1, Algorithm B requires
[“21(d + 1) rounds of communication and employs
messages of length strictly less than n%. The total
local processing thme expended by each processor is
O(n'*+1[H11). (One can do slightly better in the special
case d = t.)

Algorithm C has resilience te, and is closely related
to the early stopping algorithm of Dolev, Reischuk, and
Strong [DRS] of the same resilience. This algoritlun
requires {c + 1 rounds of communication and employs
messages of length at most n — 1. Local processing time

is O(tn*).

We describe algorithm B first because it is sim-
plest. Algorithm B is simply the repeated application
of Shift! tothe exponential information gathering algo-
rithm. Figure 4 shows the pattern of information gath-
ering with d = 4. Data compression is accomplished by
applying the resolve function of the previous section to
obtain a reduced value for s.

If the number of faults is bounded by ¢5 then the
Hidden Fault Lemuma has an important corollary.

Corollary 1: Let n be fired and let the number of faulis
be bounded by tg. Let ab be an internal verter in the
tnformation gathering tree, and let all processors in ab
be faulty. If under the reduction function resolve ab 1s
not common, then all correct processors discover that b
s faulty.

Proof: For the sake of contradiction let us assume cor-
rect processors p and g compute different reduced values
for ab and that g does not discover b to be faulty. By
the Hidden Fault Lemma the majority value for ab in
tree, is stored in at least

n-—1

n—2tp+|L,|>n-2tg >

children of ab corresponding to correct processors, con-
tradicting the assumption that ab is not common. (We
are using here the fact that » > 4¢p.) O

Proposition: Algorithm B solves Byzantine agreement
and achieves the bounds on resiliency, message length,
and number of rounds of communication siated in The-
orem 2.

Proof Sketch:

If the source is correct then by definition there is a
persistent value, to wit, the value that the source broad-
cast in round 1. However a persistent value is obtained,
the Persistence Lemma implies that at the next appli-
cation of reduction s will be common.

We now consider the case in which the source is fanlty
and there is no persistent value. Consider the tree just
before reduction. By the Frontier Lemma, if there is
a common frontier, then s is common. We therefore
need ouly consider the case in which there is a path
p from root to leaf containing no common node. By
the Correctness Lemma all processors corresponding to
vertices in p are faulty. By Corollary 1 these faults are
all detected.

With the exception of the source, which is repeat-
edly detected, once a processor is detected, nodes corre-
sponding to it are comumon. This is because faults other
than the source are masked according to the Fault Mask-
ing Rule. Thus each block of d — 1 rounds that produces
trees without a common frontier results in the detection
of at least d - 2 new faults in addition to the source. Let
us write tg — 1 = (d — 2)z + y, where y < d — 2. Then
the number of rounds required by Algorithm B to reach
Byzantine agreement is (d —~ 1)z +y+ 2. O

In order to improve upon the resilience of Algorithm
B we modify the data reduction function of the exponen-
tial information gathering algorithm and apply Shif t‘f
to the resulting algorithm.

The new reduction function, resolve’, is defined as
follows:

resolve'(a) =
tree(a), if a is a leaf;

the unique value occurring at least t4 + 1 times
among the values obtained by applying resolve’ to
the childrenr of a, if one exists;

L, if a is not a leaf and no such unique value exists.

Note that we have introduced a new value, 1. Al
though used during the redunction process, L is never
used in the information gathering tree itself. If, at the
end of some reduction, resolvey,(s) = 1 for some correct
processor p, then p uses the default value (0) as its new
preferred value.

Note that the Persistence Lemma as stated in Sec-
tion 3 no longer holds when the reduction function used
is resolve’ and up to “—;i processors may fail. However,

a weaker version of this lemma does hold.

Weak Persistence Lemma: If before reduction all
correct processors prefer the same wvalue v, then after
reduclion s is common and has reduced value v. C

The exponential information gathering algorithm
solves Byzantine agreement using either of +esolve or
resolve’. Moreover, this holds for any set V of legiti-
mate input values. For technical reasons Algorithm A,
obtained by applying Shift{ to the exponential infor-
mation gathering algorithm modified to use resolve’ in
the reduction process, can only handle sets V of cardi-
nality 2. In order ‘o allow it to handle arbitrary sets ¥V
we Increase the power of the Fault Discovery Rule by
applying it during the reduction process.

Fault Discovery Rule During Reduction: During
reduction a processor b not already in L is added to L
if for some internal vertex ab corresponding to b

1. thereis no majority value among the reduced values
for the children of ab, or

[$-]

such a majority value v exists, but for more than
tp — |L| processors y ¢ L, resolve’(aby) # v.

Clatm: The proofs of the Correctness, Frontier, and Hid-

43

den Fault Lemmas hold when the reduction function
resolve’ s used tn place of resolve.

The Hidden Fault Lemma has two new corollaries,
one from the new choice of reduction function, and one
from the additional fault discovery rule.

Corollary 1 said that if an internal vertex is not
common then its corresponding processor is discovered.
However, the proof of Corollary 1 relied on the assump-
tion that the number of faults does not exceed tg. Some-
thing slightly weaker than Corollary 1 holds even if the
number of faults reaches t4. Moreover, this weaker re-
sult can be used to show that Corollary 1 does indeed
hold for all vertices of height at least 2 in the presence
of up to t,4 faults.

Corollary 2: Let ab be an internal verter in the in-
formation gathering tree, and let all processors in ab be
faulty. If under the reduction function resolve’ two cor-
rect processors p and g obtain different reduced values
for ab, netther of which ts L, then both p and g discover
b to be faulty during reduction of ab.

Corollary 3: Let ab be an internal verter in the infor-
mation gathering tree that is not the parent of a leaf. If
all processors in ab are faulty, and if some correct pro-
cessor g does not discover b either by the Fault Discov-
ery Rule or the Fault Discovery Rule During Reduction,
then ab ts common.

We zan now prove the following proposition.

Proposition: Algorithm A solves Byzantine agreement
and achieves the bounds on resiliency, message length,
and number of rounds of communication stated in The-
orem 1.

the source said

I've just finished I've just finished

veetd round 3 round 2
the source said a said zsad o} reduce o
the source said the source said the source said g :> g
0 =77 o
[o] Q

round 3 round 2

the source said the source said asaid N 2 said . z sai_g data data
the source said 2z said 2z said the source sai z sai)
the sozrce said the source said the source said the source said the source said structures structures

(tree(sss) ’ Cuee(sst ‘ tree(sza)) ‘ tree(ssz)] Ctree(szzo

Reordering of the leaves and repetitions for algorithm C.

Figure 5:

Proof Sketch:

If the source is correct then after round 1 all correct
processors prefer the same value, so by the Weak Per-
sistence Lemma s will be common with reduced value v
after reduction.

As in the proof of the previous proposition, if there
15 a common frontier then s is common. We therefore
discuss only the case in which the source is faulty and
the imformation gathering tree after d rounds contains
a path p containing no common nodes. Once again the
Correctness Lemma implies that all processors corre-
sponding to vertices on p are fanlty. Let ab be the label
of a node on p that is neither a leaf nor the parent of
a leaf. Let us a:sume there exists a correct processor g
that has not discc rered b to be faulty. By Corollary 3 ab
is commmon. This liuplies that each block of d — 1 rounds
that produces trees without a comimon frontier results
m the detection of at least d — 3 new faults in addition
to the source. Let us write t4 — 1 = (d — 3)z +y, where
y < d—3. Then the number of rounds required by algo-
rithin A to reach Byzantine agreement is (d - 1)z +y+2.
a

We now describe Algorithm C. Consider first the fol-
lowing 3 round algorithm.

¢ Run information gathering for three rounds build-
ing a tree with repetitions and performing fault dis-
covery and fault masking at each round.

¢ Reorder the leaves of the resulting tree of height 2
so that tree(spg) « tree(sqgp) for all processors p
and g (sec Figure 5).

After the reordering, the leaves in the subtree rooted
at sg are the values received from g in round 3. Al
gorithm C is the repeated application of Shift3 to this

49

‘Processor p Processor p

Application of Shiftg at processor p
Figure 6:

3 round algorithm. The compression needed for the shift
is achieved by computing reduced values for all parents
of leaves according to the function resolve. The result-
ing two level tree is taken as the data structure produced
after virtual round 2, resolve(s) being the new preferred
value. Thus, beginning with the third actual round of
the 3 round algorithm a reduction is performed after
each round. Fault Discovery is applied each round to
the original tree (leaves ordered as in Figure 1) before
reduction.

Proposition: Algorithm C solves Byzantine agreement
and achieves the bounds on resiliency, message length,
and number of rounds of communication stated in The-
orem 3.

Proof Sketch (based on [DRS]):

It is easy to show that the Persistence Lemma holds
for Algorithm C, so, if the source is correct, then all
correct processors will agree on its value.

It remains to show that after the first round of Al-
gorithm C if there is a Tound In which no new fault is
detected during information gathering, then after reduc-
tion a persistent value is obtained. Moreover, we also
show that at the end of the earliest round in which all
tc faults have been discovered a persistent valne is ob-
tained. The second claim is used to show that tc + 1
rounds suffice even if only one fault is discovered in each
of rounds 2 through to + 1.

In round 2, if the source is not detected, then some
processor a does not discover the source to be faulty. By
the Hidden Fault Lemma, there is a valne v stored at at
least n. — t children of s in tree,. Thus at least n — 2to
correct processors had v as preferred value after round 1.

Recall that we have assumed throughout that n > 3.
Thus n — 2¢¢ is a majority of the n processors, and so v
is a persistent value. In particular, if a correct processor
b were to compute resolve;(s) after round 2, then it
would obtain v as the reduced value. Consider the tree
of a correct processor p after reordering, in round 3.
The children of sb in p's reordered tree are the values
received by p from b. Because b is correct and b would
have reduced s to v at the end of round 2, we have that
resolve,(sb) = v at the end of round 3.

By the above discussion, we need only consider the
case In which the source is detected in round 2. If
the source is the only faulty processor, then, after fault
masking, the round 2 trees of all correct processors are
identical, so again a persistent value is immediately ob-
tained. Thus we may assume tc > 1. Consider the first
round i which no new fault is detected. If a is any cor-
rect processor then before reordering all processors agree
on tree(sza), for all processors . Also, since the source
has been detected, all processors have tree(szs) = 0 for
all z. Moreover, if a, b, and ¢ are all correct, then all
processors have tree(sbe) = tree{sba), before reordering
(because b tells the same thing to a as it tells to ¢, and
a and c report these values correctly). Thus, if @ and ¢
are correct then, after reordering, the values stored at
children of sa corresponding to correct processors must
agree with the values stored at the children of s¢ corre-
sponding to correct processors. It follows that if any of
the at most t¢ — 1 undetected faults had distinguished
more than tc — 1 such subtrees from the others (all with
roots corresponding to correct processors), it would have
been discovered by all processors applying Fault Discov-
ery before reordering. Thus at least n—tc —(tc—1)z cor-
rect processors a correspond to nodes labelled sa with
identical children (after reordering) for all processors.
By choice of f¢ this number is a majority of n, so all
correct processors agree on resolve(s).

Finally, consider the earliest round in which the last
fault is detected. After fault masking, but before reduc-
tion, all the children of s are common, and therefore, s
is common. O

We are now ready to discuss shifting from one algo-
rithm to another. Shifting from one algorithm to an al-
gorithm of equal or greater resilience is not difficult. It is
shifting down in resilience, even when the total number
of faults is unchanged, that requires care. Clearly, shift-
ing can safely occur only after some number of rounds
have been executed, as otherwise it would be possible
to reach agreement with, say, an L‘-;—l--resilicnt algorithm
in the presence of 231 faults. The specific number of
rounds after which it is safe to shift between algorithms
depends on the particular pair of algorithms involved.
Since we are interested in producing a hybrid algorithm

50

for the Main Theorem, we will first describe conditions
under which we can shift from Algorithm A to Algo-
rithm B, and then describe shifting from the hybrid to
Algorithm C.

Proof Sketch for the Main Theorem:

Assume at most ¢4 faults. Owur idea is to run Al-
gorithm A until either we have a persistent value or &
faults have been detected, for some k < t4 — tp yet to
be determined. Note that a value is persistent in Al-
gorithm A only if it preferred by all correct processors
(because only the Weak Persistence Lemma holds if the
reduction function is resolve’). Thus, if a value is per-
sistent in Algorithm A it will persist after the shift to
Algorithm B, in which the requirement {or persistence is
weaker. The intuition is that if after & rounds of Algo-
rithm A a persistent value has not been obtained, then
there are fewer than ¢tz undetected faults, so we should
be able to shift into the end of round 1 of Algorithm B
rather than into the end of round 1 of Algorithm A. On
the other hand, if a persistent value has been obtained
then by the Persistence Lemma we should again be able
to shift into the end of round 1 of Algorithm B and the
value obtained during the first resolution in Algorithm B
will be the persistent value.

It remains to determine %k so that, if no persis-
tent value has been obtained during execution of Al-
gorithm A, application of the Hidden Fault Lemma
once we shift into Algorithm B works as in Algo-
rithm B, even though t4 > tp processors may actu-
ally be faulty. Specifically, after the shift we want that
if ab is any internal vertex and some correct processor
does not discover b, then ab is cominon. That is, we
want Corollary 1 to hold. This is achieved provided
n—-2ty+k> [i;,'—l-_] Thus we must take kb > ['—,:,LJ
Let us write |[44] = 2(d — 3) +y, where y < d - 3.
Then we can run Algorithm A with parameter d for
3+ z(d - 1) + y rounds and then shift to Algorithm B.
We write [%4] = w(d ~ 2) + z, where = < d ~ 2. Then
after the shift Algorithm B can be run with parameter d
for 1+ w(d —1)+2z rounds to produce a hybrid algorithm
with resilience t; that reaches Byzantine agreement in
4+ (z +wj)(d—-1)+y+ z rounds.

It only remains to shift from this algorithm into Algo-
rithm C after either a persistent value has been reached
or a sufficiently large number m of faults has been de-
tected. Interestingly, we can shift to the end of round 2
of Algcrithm C (until now we have always been shifting
to the end of round 1). In consequence, the number of
rounds remaining will be exactly the maximum number
of undetected faults remaining. By reasoning similar to
the explanation of our choice of k, we find that m must
satisfy n —t4 ~(tq —m)* > %. Solving for m. we obtain

m >ty — 4/ '-t‘z,tl— Let m be the smallest such integer.

Let us write m — [14] = p(d — 2) + ¢, where g < d - 2.
Then the final hybrid of A, B, and C can be run in
44+ (z+p)(d-1)+y+qg+ts — mrounds. Conversion
to the bounds of the Main Theorem is straightforward.
a

8. Concluding Remarks

We have constructed a set of algorithms for which it
is possible to shift between any two. However, we do
not have explicit necessary or sufficient conditions for
an algorithm to be added to this set. We leave as an
open question the characterization in general of when
it 1s safe to shift from one algorithm to another with a
given overall resilience.

We believe further study of hybrid algorithms may
shed new light on the open question of a lower bound
on the number of rounds required to reach Byzantine
agreement with communication polynomial in the re-
silience.

References

[C1] Coan, B.A. “A Communication-Efficient Canoni-
cal Form for Fault-Tolerant Distributed Protocols,”
Proceedings of the Fifth ACM Symposium on Prin-
ciples of Distributed Computing, 1986,

(C2] Coan, B.A., PhD Thesis, MIT (in preparation).

[DRS] Dolev, D., Reischuk, R., and Strong, H.R.,
“Early Stopping in Byzantine Agreement,” IBM
Research Report RJ5406 (55357), 1986.

[DS] Dolev, D. and Strong, H.R., “Polynomial Algo-
rithams for MUItiple Processor Agreement,” Proc.
Fourteenth Annual ACM Symposium on Theory of
Computing (1982), pp. 401-407.

[FL] Fischer, M. and Lynch, N., “A Lower Bound for
the Time to Assure Interactive Consistency”, Infor-
mation Processing Letters, 14(4) (1982), pp. 183-
186.

[PSL] Pease, M., Shostak, R., and Lamport, L.,
“Reaching Agreement in the Presence of Faults,”
JACM 27(2) (1980), pp. 228-234.

51

