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Abstract. Network overlays have been the subject of intensive research in recent
years. The paper presents an overlay structure, S-Fireflies, that is self-stabilizing
and is robust against permanent Byzantine faults. The overlay structure has a
logarithmic diameter with high probability, which matches the diameter of less
robust overlays. The overlay can withstand high churn without affecting the abil-
ity of active and correct members to disseminate their messages. The construction
uses a randomized technique to choose the neighbors of each member, while lim-
iting the ability of Byzantine members to affect the randomization or to disturb
the construction. The basic ideas generalize the original Fireflies construction that
withstands Byzantine failures but was not self-stabilizing.

1 Introduction

Network overlays have become a basic technique for routing among a dynamic set
of participants. The literature studies various efficiency measures and availability is-
sues. Recent papers address the issues of stabilization [1,2,3] and overcoming Byzan-
tine faults [4,5,6]. In the current paper we extend the Fireflies construction [6], making
it self-stabilizing. We call the resulting system S-Fireflies, for “stabilizing” Fireflies. S-
Fireflies provides robust support (middleware) for various peer-to-peer and distributed
applications, including Distributed Hash Tables ([7,8]) and reliable broadcast. For ex-
ample, Fireflies has been used for Byzantine video streaming [9] and secure dissemi-
nation of software patches [10], and S-Fireflies can make the same applications signifi-
cantly more robust.

S-Fireflies provides a dissemination structure along which members can exchange
messages. The structure is an overlay graph among currently active members, having
logarithmic diameter and adapting to churn (members coming and going). It overcomes
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Byzantine members who may try to prevent correct members from reliably communi-
cating, or to cause them to send a large amount of useless messages. We assume that the
networking facility underneath the overlay allows any two correct and active members
to establish a communication channel, resembling networking over the Internet.

Each member maintains communication channels to a subset of the active members.
The dissemination structure is composed of a dynamic number of “random subgraphs”
that determine neighboring members with whom a member communicates. The se-
quence of subgraphs is used also for constructing additional structures that monitor
availability of neighboring members.

Members may leave or crash, some may be Byzantine, and some or all may face tran-
sient faults that arbitrarily change values stored in their memory. S-Fireflies guarantees
that the system will maintain its robustness as long as the number of correct and active
members is sufficiently larger than the number of Byzantine members and the number
of members that have recently recovered. Moreover, if the system loses the required
ratio among correct and failed members, it will converge to a robust overlay once the
ratio is restored and remains so for a long enough period of time.

When the system recovers from a transient fault members may not know which are
the currently active members. Moreover, it may be that the system may find itself in
several disjoint components. In [1] the authors assume the existence of some failure de-
tection subsystem, and when instability is identified, members flood the network to form
a new stable membership. In [3] a gossiping style is used, with members occasionally
probing potential neighbors to identify whether they are active or not. Our technique
resembles this later one, though we reduce the ability of Byzantine members to probe
all members all the time.

A significant challenge of overcoming churn and facing Byzantine failures is to find
ways to limit the ability of faulty members to take advantage of high churn to destroy
the system’s structure. Mechanisms that deal with churn and transient faults may make
the system prone to replay attacks by Byzantine members. A typical use of counters
becomes problematic in the environment we envision, and special care need be given to
the use of digital signatures. While we address these issues in the S-Fireflies system, the
technique presented in this paper is general and can be applied to improve the robustness
of other overlay networks. Our protocols use randomization and the results are achieved
with high probability (whp).

1.1 Related Work

The structures that we create are intended to simulate random graphs, in contrast to
ring-based Distributed Hash Tables (DHTs) like Chord [7]. In Chord, members are orga-
nized in a single ring, with each member having log N “fingers” pointing across the ring
that provide routing shortcuts. Instead, in S-Fireflies each member has log N pseudo-
random neighbors, from which we construct the various structures. In both cases mem-
bers end up with log N neighbors, but an important difference is that in S-Fireflies the
neighbor relation is easily verifiable, preventing a Byzantine member from claiming to
be a neighbor of an arbitrary other member.

[4] describes defenses against various Byzantine behavior for Pastry [8], another
ring-based DHT. The paper suggest remedial approaches to impersonation [11], as well
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as to attacks on overlay routing table maintenance and message forwarding. An eclipse
attack is an attack where malicious members isolate correct members by filling the
neighbor table of a correct member with addresses of malicious members. [5] suggests
thwarting this attack by enforcing bounds on the in- and out-degrees of P2P members.
None of these approaches consider self-stabilization however.

There has been a variety of work on Byzantine-tolerant epidemic protocols, appar-
ently starting with [12]. These protocols consider the problem of correct members not
accepting any malicious updates without using unforgeable signatures, and use a form
of voting instead.

Drum [13] is a DoS-resistant multicast protocol. It uses a combination of gossip
techniques, resource bounds for certain operations, and random UDP ports in order
to fight DoS attacks, especially those directed against a small subset of the correct
members. These techniques are orthogonal to the ones used by S-Fireflies.

The issue of self-stabilization was studied in the context of group membership [1].
That work assumes that there is failure detection—once the system detects failure it
switches to a stabilization phase. The main objective is to reduce communication over-
head. The paper does not deal with permanent presence of Byzantine faults.

One observation in the current paper is that in order to overcome Byzantine members
there is a need for a high connectivity underlying graph. One could consider using
Harary graphs, or even Logarithmic Harary Graphs [14]. Unfortunately, despite its high
connectivity, such structures are fragile and cannot be built on-the-fly in the presence
of Byzantine members.

2 The Model

The system consists of a set P of members. Each member, m, has an identifier m.id ∈
P , that is randomly assigned by a central authority (CA). To simplify notations we as-
sume that all identifiers are in [1, . . . , |P|], and we use the convention m ∈ P . Members
can be active or passive. An active member participates in the protocol; a passive one
may be dead or detached. Some of the active members may be Byzantine. Members
may go through transient periods resulting in an arbitrary state of the various variables,
though the protocols (consisting of code and constants) are hard-coded and unaffected
by transient faults. We assume that members may dynamically fail; failed members may
recover and need to be re-integrated into the system.

We assume the existence of a public key cryptography scheme that allows each mem-
ber to verify the signature of each other member. We further assume that non-Byzantine
members never reveal their private keys,1 such that faulty members cannot forge signa-
tures. Member identifiers and their keys are part of their hard-coded state. The keys (as
well as the signed identifier) are acquired via a trusted CA.

We assume that after going through a transient failure period the system eventually
recovers, and at steady state the probability of an active member being Byzantine is
bounded by pbyz .2 We also assume that the communication network allows any two

1 A Byzantine member that reveals its private key can never recover and be considered correct.
2 One can assume that this holds only when the number of active members is more than some

small n0. One may generalize pbyz to be a distribution over the number of active members.
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active members to establish a secure communication channel. Moreover, there is a con-
stant δ that bounds, with high probability, the time it takes messages among active mem-
bers to reach their destination. Informally, we are interested in establishing an overlay
among a given set of members over the Internet.

Correct members have internal timers that run at a bounded drift from real time,
which enable them to measure periods of time with relative precision. We do not require
clock values to be synchronized.

Members that face transient failure may find themselves in an arbitrary state. There-
fore it may take some time to integrate them back into the system.

Definition 1. An active member is non-faulty if it follows its protocols, processes mes-
sages in no more than π real-time units and has a bounded drift of its internal timer. An
active member that is not non-faulty is considered Byzantine.

A member will be called faulty or Byzantine, interchangeably.

Definition 2. A member is correct if it has been non-faulty for Δmemb.

The value of Δmemb is determined in Theorem 2. The communication network itself
may face periods of time during which it deviates from its assumed properties.

Definition 3. A communication network is non-faulty if messages arrive at their desti-
nation within δ real-time, and the content of the messages as well as the identity of the
sender are not tampered with.

Definition 4. A communication network is correct if it has been non-faulty for Δnet

real-time.

The value of Δnet is chosen such that all messages that were sent before t1 or were
forged due to transient faults in the network are removed by t1 + Δnet.

Definition 5. A system is coherent if there is group G of correct members, such that
|G| ≥ N · (1 − pbyz), where N is the number of the currently active members, and the
network connecting the members in G is correct.

In the following, we will discuss only members from G, thus, when stating “correct
member m,” we actually mean “correct member m s.t. m ∈ G.”

Once the system is coherent, a message between any two correct members is sent,
received, and processed within d real-time units, where d includes δ, π, and drifts of
local timers. For simplicity we will assume that Δnet = 2d, though one can choose
different values.

3 The BSS Overlay Service Specification

Each correct member has a view, m.view, which is a subset of all members, P . Infor-
mally, m2 ∈ m1.view means that m1 believes that m2 is, at least until recently, neither
stopped nor exhibiting Byzantine behavior. Conversely, m2 /∈ m1.view means that m1
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believes that m2 is stopped or faulty.3 The subset m.neighbors of a member’s view
represents its neighbors.

An overlay G, G = (V, E), is a directed graph whose members, V ⊆ P , are the
active members and E = {(mi, mj)|mi, mj ∈ V, mj ∈ mi.neighbors}. A Byzantine-
Self-Stabilizing (BSS) overlay G, is an overlay G that is Byzantine-tolerant and self-
stabilizing. Thus, a BSS-overlay forms a usable routing substrate among the active
members that is highly robust. We refer to the graph spanned by the BSS-overlay in
which each directed edge is replaced by an undirected one as underlying-BSS-overlay .
For maintaining the BSS-overlay each member has an additional list: m.detect contains
members used for failure detection.

Our goal is to design a protocol that guarantees that when the system is coherent the
following properties hold with high probability:4

P1: There is a directed path in the BSS-overlay from any correct member to any other
correct member composed of only correct members;

P2: The diameter of the underlying-BSS-overlay is bounded by O(log(V ));

Our aim is to develop protocols that converge from any arbitrary initial state, once
the system stabilizes and there are enough correct members; i.e., the protocols spans a
BSS-overlay among the active members satisfying the properties above. Moreover, we
wish to reduce the time it takes for the system to converge and for a recovering member
to be considered correct, i.e., to obtain Δmemb as small as possible.

4 Data Structures

4.1 The Sequence of Subgraphs

The randomization used in the various structures of S-Fireflies are derived from a se-
quence of permutations. Each member m has a list m(r1), . . . , m(rj) of permutations,
where m(ri) is a permutation over P − {m}. For each permutation m should connect
to the first member in that permutation, and if that member is down, m will connect to
the next member in the permutation, and so on.

The solution proposed in this paper requires the list of permutations to be chosen
independently and uniformly at random. This list should have at least |P| · log(|P|)
permutations in it, since each member should have at most log N neighbors. According
to experiments done by [6], a collision-resistant hash function can provide the required
“randomization”.5 Therefore, we will assume the existence of a hash function

H : (P , N ) → permutations([1, . . . , |P|]),

where N is the set of natural numbers and permutations() is the set of all permutations
over some group, such that for each member and subgraph index there is a permutation
over the set P . It is assumed that each member knows all permutations.

3 We do not provide Virtual Synchrony properties such as consensus on views.
4 The probabilities can be tuned to any desired probability.
5 One can have the CA randomly select the permutations and send them to each member, ex-

changing practical performance with theoretical robustness.
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Table 1. Additional View Lists

List Description Duration Action

rcnt suspected members that were recently 2Δ remove from m.view
suspected move to rcnt removed

rcnt removed members that were recently removed Δ remove
to be joined recently accepted members Δ move to m.view

Members are aware of their successors and predecessors on the various subgraphs,
where a successor m of m′ on the ith subgraph is the first active member along the ri

permutation of m′ as perceived by the view of m′; if m is a successor of m′ then m′ is
the predecessor of m (on subgraph i). The actual number of subgraphs that a member
uses may differ in different structures and will be specified for each one accordingly.
On subgraph i:

succi(m) = min
j

{m(ri)j |m(ri)j ∈ m.view} ,

predi(m) = {m′|m ∈ succi(m′)} ,

Recall that m �∈ m(ri). Note that predi(m) might contain several members. When the
specific subgraph is clear from context we omit the subscript i. Our notations resembles
those of [2].

We introduce operators that represent the segment of potential successors or prede-
cessors of a member in a subgraph:

seg succi(m) = {m(ri)j |j < location(succi(m), m(ri))} ,
seg predi(m) = {m′|m′ = succi(m), location(m′, m(ri)) �= 1)} ,

where location(m, perm) returns the index of m in the permutation perm. Observe
that these operators depend on the current view of the member, and different members
might have different views.

4.2 The Views

High churn in the system and uncertainty about the time at which various members
update their views require that each member maintains temporary lists of additional
members, as described in Table 1. S-Fireflies members gossip on the BSS-overlay dis-
semination structure (Section 5), and the connectivity is chosen so with high probability
all members learn of new gossip within Δ time units.

A member that is suspected as failed (as described in Section 6) is listed on the
rcnt suspected list and if it does not rejoin within 2Δ (as described in Section 7) it is
removed from m.view (and from rcnt suspected). During the uncertainty period mem-
bers in this list are still considered as potentially connected. The process of joining is
also a double step. A joiner that will be accepted (as described in Section 7) is first
placed in the to be joined list, and will be integrated into m.view only after being in
the list for Δ time units, giving the rest of the members a chance to identify the new
addition.
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S-Fireflies does not reach agreement on views, therefore views can always differ.
At steady state the difference among the views of two correct members is due to the
lists above and due to Byzantine behavior. To accommodate for that flexibility, when a
member m considers its view, m.view, to check whether m′ is allowed to connect to
m, it will actually consider rcnt removed’s and to be joined’s effect on m.view; that is,
m will accept m′ to connect to it if there is an update of m.view with members from
rcnt removed ∪ to be joined such that m′ ∈ predi(m) (for some i ≤ r′m, as defined in
Section 5). In such a case we say that the view of m′ is close to the view of m. However,
when m considers which members to connect to, it will consider m.view only. Such a
behavior will allow the required flexibility for m and m′ to connect to each other in the
presence of joining and leaving members.

4.3 The Epoch and Epoch List

The assumed existence of digital signatures reduces the ability of Byzantine members to
mislead correct members. But since members may fail and recover, Byzantine members
can replay old signed messages. In a self-stabilizing environment it is challenging to
identify replayed messages.

In order to reduce the ability of Byzantine members to perform a convincing replay
attack, a member needs a mechanism that produces some randomization to its new
identity when it recovers. To achieve that, a member chooses periodically (and during
recovery) a new random incarnation number. A new epoch of a member is the signed
pair (prev inc, new inc), where prev inc is its previous incarnation value and new inc
is its new incarnation value. The incarnation values are random numbers from a large
enough space (much larger than the memory space of the faulty members), so that the
probability that a member repeats the pair (prev inc, new inc) is negligible, and the
ability of a faulty member to replay such a pair is even smaller. We will ignore this
small probability of error.

The introduction of a random epoch is similar to choosing a random id. Therefore, in
our protocols, whenever a member sends a signed message it should include its current
epoch. We assume that members send signed messages, and members ignore any mes-
sage that is not signed properly or does not carry the matching epoch. We will ignore
these details when describing the protocols.

Each member maintains as part of its view the latest epoch of each member in the
view (“the epoch list”). A receiver of a signed message will consider the message cur-
rent only if the epoch matches the last epoch the receiver knows of. If the recent epoch
was received less than Δ ago, it can still accept signed messages containing the pre-
vious epoch value. The message is current also when the member did not receive the
new epoch yet, but its latest copy of the epoch matches the prev inc part of the epoch
of the received message. When a member m1 updates its epoch (done once in Δepoch)
it will send a special message containing the new epoch; this message is disseminated
the same as other messages in the system. If a member m2 receives such a message
and m2’s current epoch is equal to m1’s prev inc then m2 updates its view of m1’s
epoch.
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5 The Dissemination Structure

The dissemination structure is defined according to the neighbor relations induced by
the set of subgraphs as determined by the size of the views of individual active members.
Let Nm = |m.view| and define gm, the number of active members m establishes a
connection to, as

gm = g0 + 	 1
1 − pbyz

ln Nm
,

where g0 is a minimal number of neighbors (defined in Theorem 1). Member m estab-
lishes a secure channel with the gm different members of m.view that are succ(m) in
one of the first r(m.view) subgraphs, where r(m.view) is the minimal number of such
subgraphs satisfying

rm(m.view) = min
i

(
∣
∣
⋃

j≤i

{m′|m′ = succj(m)}
∣
∣ = gm)

r(m.view) and rm will also be used. These gm members are the members of the
m.neighbors set, and member m will gossip its messages along these channels. Note
that whp rm = gm.

Since views of different members may differ, member m accepts a connection re-
quest from each active member m′ who is pred(m) in one of r′m permutations of m′,
defined as:

r′m = r(m.view ∪ rcnt removed ∪ to be joined) · (1 + pbyz).

Thus, m estimates the number of subgraphs of m′ within which it appears as a
succ(m′) in order to accept the connection. In such a case we say that the view of
m′ is close to the view of m. This notion of “close” intends to allow for two correct
members to differ by the potential presence of current Byzantine members and view
changes that are in transit. As in [6], if the request arrives from a member that is not
pred(m), a message is returned containing an update.

The dissemination structure that defines the BSS-overlay is composed of the active
members and the secure channels they establish with their neighbors. Each member m
has gm outgoing links.

Theorem 1. A gossip protocol over BSS-overlay completes with high probability within
Δ = (lnN + c0) · d, where N is the number of currently active and correct members
and c0 is a constant that depends on the probability of message loss and on pbyz .

Proof. Sketch: Kermarrec et al. [15] show that it is possible to build effective gossip
protocols if each member only has a small set of uniformly chosen members it gossips
with. In the dissemination structure, each member m effectively gossips with some gm

neighbors from its view uniformly at random, where gm is large enough to create a
connected graph of correct members; if we have k neighbors, then pbyz · k neighbors
will by Byzantine (in expectation), hence we would like to have (1+p

byz
) ·k neighbors;

now we have an additional p2
byz

· k Byzantine neighbors, and so on. Using
∑∞

i=0 pi
byz

=
1

1−p
byz

, we obtain the definition of gm.
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Detection of a Crashed Member /* executed at member m */
/* others members act upon receiving appropriate message */

/* all gossip along the BSS-overlay */
Monitoring m:

If suspects crashing of m′ = succi(m) then
add m′ to rcnt suspected;
disseminate “suspect(m, epochm, m′, epochm′)”,

where epoch is m’s epoch and epochm′ is m′’s;
Member m′′:

when received “suspect(m, epochm, m′, epochm′)” from m and m′ �= m′′ do
if epochm and epochm′ current and m = pred(m′) and m �∈ banned(m′) then

add m′ to rcnt suspected;
disseminate “suspect(m, epochm, m′, epochm′)”,

when received “suspect(m, epochm, m′, epochm′)” from m and m′ = m′′ do
if epochm and epochm′ current and m = pred(m′) then

add m to banned(m′′)
if |banned(m′′)| > fm′′ then banned(m′′) =⊥
invoke a new incarnation of m′′

Fig. 1. Handling Suspicions

A classic result of Erdös and Rényi [16] shows that in a graph of n members, if the
probability of two members being connected is pn = (log n + c + o(1))/n, then the
probability of the graph being connected goes to exp(− exp(−c)). The proof follows
this line of arguments, using the potential difference between views of different mem-
bers, their additional lists, and their estimate of the number of currently active members.
The value of g0 is determined by c and the initial n for which the estimates hold. ��

6 Membership Maintenance

The membership maintenance draws upon ideas presented in [6]. The basic idea is
that members exchange accusations regarding suspected misbehavior of other members.
They keep track of other members using the detection structure (defined below) and
gossip their accusations using the dissemination structure.

In the detection structure, each member maintains outgoing links (some of which
may overlap with the links of other structures) with its successors in a number of sub-
graphs such that each member in its view has gm different pred(m) members. The
number of detection subgraphs that an active member considers is determined as fol-
lows: Increase the number of subgraphs until for every m′ ∈ m.view there exist at
least gm different members of m.view as their predecessors on the different subgraphs.
More formally:

detect(m) = min
r

(
⋃

i≤r

{predi(m)}| ≥ gm).
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Each member maintains secure channels with the set of its successors along these
subgraphs. When a member is requested to establish a secure channel it checks that the
requester is in pred for one of the subgraphs implied by that view (while considering
to be joined and rcnt removed).

The detection structure is the graph spanning the active members and all channels to
their successors in one of the detection subgraphs, as defined above. Member m moni-
tors succi(m), for each i ≤ detect(m), and is expected to be monitored by predi(m).

We use the pinging techniques of [6]. If a member suspects that the member it moni-
tors fails, it gossips along the dissemination structure an accusation message as defined
in [6], except that each such message carries the epoch as defined above. Observe that
the pinging technique does not have long term state and therefore introduces no diffi-
culty to stabilization of the system.

To prevent faulty members from continuously sending accusation messages about
correct and active members, each member maintains a list banned-members flagging up
to fm of its predecessors as disabled. A predecessor that is disabled cannot disseminate
any accepted accusation of a member. Figure 1 presents the schematic protocol that
handles crash detection.

The view of each member includes not only the identities of members it assumes to
be active and correctly operating, but also for each member the latest signed epoch and
the vector of disabled predecessors.

Observe that the detection structure does not need to use the technique of skipping
across accused members, used in [6], in order to guarantee that each member has a
monitoring member. Our detection structure has that property by construction.

Members also track the activities of other members and if they can prove Byzantine
behavior they can disseminate such a proof and members can remove the faulty member.
We will not elaborate on that optimization.

Lemma 1. A crashed member will be removed from the view of every correct and active
member within 3Δ, whp.

Proof. When the system becomes coherent correct members exchange messages within
Δ whp. A crashed member has at least one correct and active predecessor that is not in
its banned-members list. That member will detect the crash and will be able to dissem-
inate that to all correct and active members whp. Within Δ it will reach all correct and
active members, and within an additional 2Δ those members will update their views.

��

7 Recovery of Members

Due to the self-stabilizing requirement, the system must cope with transient faults.
Members can be subject to such faults, and may be able to identify them via incon-
sistencies in their internal state, or they may realize that other members suspect them as
failed. In such cases, the member needs to recover and integrate back into the system.

Observe that the new epoch cannot be disseminated as is because simple gossiping
will enable faulty members to gossip about past values, thus enabling replay attacks.
The first step of recovering a member is to ensure it has an updated epoch list.
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Sending epochs and views to all members /* executed at member m

every Δ1/|P| time units */
Member m:

Send epoch and m.view to member i;
i := i + 1(mod |P|);

Member m′:
upon receiving epoch and view from m, update epoch list with m’s epoch, and update

m′.view with m.view

Fig. 2. Background process: sending epochs and views to all members

7.1 Epoch Renewal and Epoch List Stabilization

The usage of signatures handicaps Byzantine members to some degree; however, the
Byzantine members may replay signed messages. To prevent this, each member p has
a counter that it includes in each message and increments for each message. Receiving
members will not accept a message from a member with a lower counter than expected.
Due to transient faults, members in the system may have invalid values for these coun-
ters. Moreover, Byzantine members may replay messages of higher counters in case of
a transient fault that caused the correct members to think that there are lower counter
values.

To overcome both these issues a member should select a new epoch every so often
(depending on the system security requirements); with each new epoch the message
counter is reset. However, there might be a mismatch between a receiving members’
value of prev inc of p and p’s value of prev inc; this will lead to members not accept-
ing the new incarnation.

We consider two scenarios: The first is a scenario in which a majority of correct
members have undergone transient faults, and their epoch lists are not valid anymore;
in the second scenario only a small portion of members have undergone transient faults
(this is likely the more common case in practice).

To solve the first case – when many members have undergone transient faults – we
use a background process that periodically sends the epoch and view to each mem-
ber (see Figure 2). The second case is solved by contacting the immediate neighbors
and updating the list of epochs and views according to their majority agreement (see
Figure 3).

Transient faults may disturb other data structures as well as the epoch list. If the value
of m.view is too far off to even connect to other members to gather information about
the epoch list then m has to wait Δ1 time for the algorithm in Figure 2 to update its
epoch list. In case m.view approximately represents which members are up and which
not then the algorithm in Figure 3 will operate correctly and “re-update” the epoch list
of m within Δ1′ time.

In Figure 3, the size of the group to request the epoch list from (Nepoch) affects
tolerance to multiple transient failures. To increase tolerance this size can be increased.
Let ptrans be the probability of having a transient fault at some member. If (pbyz +
ptrans) < 1/2 then the larger Gepoch is, the higher the probability of “hitting” enough
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Getting epoch list /* executed at member m every Δ1′ time units */
Member m:

Gepoch :=randomly select Nepoch active members from m.view;
request epoch list and view from all members in Gepoch;
upon receiving responses (wait at most 2d to collect responses):

for each member, select the epoch that appears most often.
for each member, select the state that appears most often.

Fig. 3. Background process: getting epoch list and views from members

Choosing a new epoch
Member m:

either once every Δepoch or if m has been accused:
randomly select a new epoch;
disseminate the new epoch;

Member m′:
upon receiving information about a new epoch of member m, if m′ epoch list contains

m’s prev inc then update the epoch list with the current epoch of m;

Fig. 4. Background process: choosing a new epoch

correct members in the search for epoch lists. Moreover, if m.view was subject to some
transient faults, then the larger Gepoch is, the larger group out of m.view is examined,
which increases the probability of reaching enough correct members.

Assume that each member renews its epoch to ensure that the epoch is always fresh
every Δepoch period (as specified in the next subsection).

Lemma 2. Starting from any state, each correct member has an updated epoch list
within Δ1 + Δepoch.

Note that from this point on correct members can communicate safely among each
other; also, Byzantine members cannot use replay attacks because all epochs have been
changed.

7.2 Periodical Epoch Update

A member m creates a new epoch every Δepoch and disseminates the message among
all members (see Figure 4).

Lemma 3. An active and correct member that renews its epoch in less than Δ from the
time the first correct and active member suspects it as failed succeeds to do so before it
is removed from the view of any correct and active member, whp.

Proof. Sketch: The renewal message carries the new epoch that matches the last epoch
at all active and correct members in its previous view. Since dissemination takes less
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than Δ, whp, its renewal message reaches and is accepted by each such member before
it is removed from the rcnt suspected list of any such member. Note that the renewal
message may reach members that are not aware of the suspicion. If an old suspicion
message will be received in such a case its epoch will not match and the message will
be ignored. ��

Note that the lemma also claims that a member that renews its epoch without it be-
ing in rcnt suspected of any correct member also has its epoch accepted by all correct
members within Δ whp.

Lemma 4. A correct and active member will not enter the rcnt suspected list of any
correct and active member as long it remains active, whp.

7.3 Stabilization of the Overlay Network Structures

In Section 7.1 it was shown that all correct members eventually agree on their epoch
list. However, due to transient failures, members might disagree on the dissemination
structures.

In the following the self-stabilization of the overlay network structures is consid-
ered (assuming the epoch list has stabilized). Consider all correct members in the sys-
tem to be in an arbitrary state. That is, a member m has arbitrary values for m.view,
rcnt suspected, etc. By the algorithm in Figure 2 after Δ1 all members will have similar
view sizes; hence they will agree on the value of gm.

Since each member continuously monitors the members in seg succi (for all i ≤ rm)
and in seg predi (for all i ≤ r′m), then eventually each member will have connec-
tions with the members it should be connected too. (Note that the lists rcnt suspected,
rcnt removed, to be joined, and banned are cleared when the items in them are old
enough.)

From this point on all disseminations are performed correctly, as messages are sent
and received along the “correct” connections; however, members still do not have valid
views of all the network, and it will take time for this view to become consistent. Note
that this view inconsistency is not an issue, as it only affects new connections in case
some member leaves the overlay network and since seg succ and seg pred are always
monitored, such failures will be detected.

In addition, members’ states are continuously disseminated along the network (for
example, due to periodic distribution of new epochs described in Section 7.2). Since
each active member is connected to the overlay, once the overlay network has its con-
nections set each member will disseminate its sate. Hence, after an additional Δ time
units all members will receive each such dissemination and will have up-to-date views
of the status of all other correct members.

Note that this stabilization will take no more than O(Δ + Δscan) time whp (where
Δscan is the interval for scanning seg pred and seg succ, and is also the rate at which
members refresh their banned-members list). Define the stabilization period Δ2 =
O(Δ + Δscan).

Theorem 2. Starting from an arbitrary state, each disjoint set of the system converges
within Δmemb = Δepoch + Δ1 + Δ2.



356 D. Dolev, E.N. Hoch, and R.van Renesse

Proof. Sketch: Starting from an arbitrary state, after Δepoch + Δ1 time all non-faulty
and active members agree on each other’s epochs. From this step on, secure commu-
nication can commence. In addition, all members agree (approximately) on the view
size. Hence, they all consider the same gm which leads to the construction of a working
overlay network; after an additional Δ2 time, all correct members will have up-to-date
overlay structures in their connected subgraph. ��

Theorem 3. The BSS-overlay with the detection and the integration structure satisfies
properties P1 and P2, with high probability.

Proof. Sketch: We prove that once the system is coherent the system converges from an
arbitrary state to a safe state and that once it is in a safe state it remains in such a state
unless the system becomes incoherent.

Let G be the set of members that are active and non-faulty for Δepoch + Δ1 + Δ2.
Within Δepoch + Δ1 after the system becomes coherent each one of them will go
through its subgraphs and will end up learning about all possible connected compo-
nents. Within Δ2 each member m will connect to at least gm members. Observe that in
these bi-lateral exchanges members add to their view each member they found active.

Within Δ each one will establish connections with gm and will connect the BSS-
overlay. Members that crash disappear from views and correct and active members
remain in views. ��

8 Conclusion

The paper presents a robust and self-stabilizing overlay network. In order to establish
self-stabilization while overcoming Byzantine faults some unique techniques are devel-
oped. These techniques can help turn other constructions into self-stabilizing systems
that withstand Byzantine faults. The basic techniques are: 1) the use of randomization
to create permutations of the list of members; 2) the use of a pair of random numbers
to form a member’s epoch, instead of an ordinal number; 3) the introduction of inte-
gration and detection structures that enable dealing with high churn without the need to
reconstruct the overlay network when members fail and recover.
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