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Abstract. We present a novel translation of systems that are tolerant of crash
failures to systems that are tolerant of Byzantine failures in an asynchronous en-
vironment, making weaker assumptions than previous approaches. In particular,
we assume little about how the application is coded. The translation exploits an
extension of the Srikanth-Toueg protocol, supporting ordering in addition to au-
thentication and persistent delivery. We illustrate the approach by synthesizing a
version of the Castro and Liskov Practical Byzantine Replication protocol from
the Oki and Liskov Viewstamped Replication protocol.
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1 Introduction

Developing applications that span multiple administrative domains is difficult if the
environment is asynchronous and machines may exhibit arbitrary failures. Yet, this is
a problem that many software developers face today. While we know how to build
replicated data stores that tolerate Byzantine behavior (e.g., [4]), most applications go
well beyond providing a data store. Tools like Byzantine consensus may help develop-
ing such applications, but most software developers find dealing with arbitrary failures
extremely challenging. They often make simplifying assumptions like a crash failure
model, relying on careful monitoring to detect and fix problems that occur when such
assumptions are violated.

We are interested in techniques that automatically transform crash-tolerant applica-
tions into Byzantine-tolerant applications that do not require careful monitoring and
repair.

This paper makes the following contributions. First we present a novel ordered
broadcast protocol that we will use as a building block. The protocol is an extension of
the Srikanth and Toueg authenticated broadcast protocol often used in Byzantine con-
sensus protocols [11], adding consistent ordering for messages from the same sender
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even in the face of Byzantine behavior. Second, we present a new way of translating a
distributed application that is tolerant of crash failures into one that tolerates the same
number of Byzantine failures, while imposing fewer restrictions on how the applica-
tion is constructed than previous approaches. Third, we show how a version of the
Castro and Liskov Practical Byzantine Replication protocol [4] can be derived from the
Oki and Liskov Viewstamped Replication protocol [10] using our translation technique,
something not possible with previous approaches.

We present background in Sect. 2. After describing a system model in Sect. 3,
we introduce three mechanisms used for translation: Authenticated Reliable broadcast
(Sect. 4), Ordered Authenticast Reliable broadcast (Sect. 5), and the translation mecha-
nism itself (Sect. 6). Correctness proofs for these appear in the appendix. In Sect. 7 we
demonstrate the translation mechanism.

2 Background

The idea of automatically translating crash-tolerant systems into Byzantine systems can
be traced back to the mid-eighties. Gabriel Bracha used a translation similar to ours to
generate a consensus protocol tolerant of t Byzantine failures out of 3t + 1 hosts [3].
Brian Coan also presents a translation [6] that is similar to Bracha’s. The most important
restriction in these approaches is that input protocols are required to have a specific
style of execution, and in particular they have to be round-based with each participant
awaiting the receipt of n − t messages before starting a new round. These requirements
exclude, for example, protocols that designate roles to senders and receivers such as
the primary role used in Viewstamped Replication [10]. Our approach makes no such
assumptions, and we will demonstrate our approach for Viewstamped Replication.

Toueg, Neiger and Bazzi worked on an extension of Bracha’s and Coan’s approaches
for translation of synchronous systems [9,2,1]. Their approach takes advantage of syn-
chrony to detect faulty hosts and eliminate them from the protocol. The extension can
be applied to our scheme as well.

Most recently, Mpoeleng et al. [8] present a translation that is intended for syn-
chronous systems, and transforms Byzantine faults to so-called signal-on-failure faults.
They replace each host with a pair, and assume only one of the hosts in each pair may
fail. They require 4t + 2 hosts, but the system may break with as few as two failures no
matter how large t is chosen.

3 System Model

In order to be precise we present a simple model to talk about machines, processes,
and networks. The model consists of agents and links. An agent is an active entity that
maintains state, receives messages on incoming links, performs some processing based
on this input and its state, possibly updating its state and producing output messages on
outgoing links.

Links are abstract unidirectional FIFO channels between two agents. Agents can
interact across links only. In particular, an agent can enqueue a message on one of its
outgoing links, and it can dequeue messages from one of its incoming links (assuming
a message is available there).
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We use agents and links to model various activities and interactions. Processes that
run on hosts are agents, but the network is also an agent—one that forwards mes-
sages from its incoming links to its outgoing links according to some policy. Agents
are named by lower-case Greek letters α, β, .... For agents that are processes, we will
use subscripts on names to denote which hosts they run on. For example, βi is an agent
that runs on host hi.

Hosts are containers for agents, and they are also the unit of failure. Hosts are either
honest, executing programs as specified, or Byzantine [7], exhibiting arbitrary behavior.
We also use the terms correct and faulty, but not as alternatives to honest and Byzan-
tine. A correct host is honest and always eventually makes progress. A faulty host is a
Byzantine host or an honest host that has crashed or will eventually crash. Honest and
Byzantine are mutually exclusive, as are correct and faulty. However, a host can be both
honest and faulty.

We do not assume timing bounds on execution of agents. Latency in the network
is modeled as execution delay in a network agent. Note that this prevents hosts from
accurately detecting crashes of other hosts.

Fig. 1. An agent model and a refinement

Figure 1 depicts an example of an
agent model and a refinement. Agents
are represented by circles, links by ar-
rows, and hosts by rectangles. The top
half models two application agents β1
and β2 running on two hosts h1 and
h2 communicating using a FIFO net-
work agent φ. The bottom half re-
fines the FIFO network using an unreli-
able network agent ν and two protocol
agents φS

1 and φR
2 that implement order-

ing and retransmission using sequence
numbers, timers, and acknowledgment messages. This kind of refinement will be a
common theme throughout this paper.

4 The ARcast Mechanism

The first mechanism we present is Authenticated Reliable broadcast (ARcast). This
broadcast mechanism was suggested by Srikanth and Toueg, and they present an imple-
mentation that does not require digital signatures in [11]. Their implementation requires
n > 3t. As shown below, it is also possible to develop an implementation that uses dig-
ital signatures, in which case n only has to be larger than 2t.

4.1 ARcast Definition

Assume βi, ... are agents communicating using ARcast on hosts hi, .... Then ARcast
provides the following properties:

1. bc-Persistence. If two hosts hi and hj are correct, and βi sends a message m, then
βj delivers m from βi;
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2. bc-Relay. If hi is honest and hj is correct, and βi delivers m from βk, then βj

delivers m from βk (host hk is not necessarily correct);
3. bc-Authenticity. If two hosts hi and hj are honest and βi does not send m, then βj

does not deliver m from βi.

Informally, ARcast ensures that a message is reliably delivered to all correct receivers
in case the sender is correct (bc-Persistence) or in case another honest receiver has
delivered the message already (bc-Relay). Moreover, a Byzantine host cannot forge
messages from an honest host (bc-Authenticity).

4.2 ARcast Implementation

x We assume there is a single sender βi on hi. We model ARcast as a network agent ξi,
which we refine by replacing it with the following agents (see Fig. 2):

ξS
i sender agent that is in

charge of the sending side
of the ARcast mechanism;

ξR∗ receiver agents that are in
charge of the receive side;

φ FIFO network agent
that provides point-to-
point authenticated FIFO
communication between
agents. Fig. 2. Architecture of the ARcast implementation

if the sender is on host hi

The mechanism has to be instantiated for each sender. The sending host hi runs the
ARcast sender agent ξS

i . Each receiving host hj runs a receiver agent ξR
j . There have to

be at least 2t + 1 receiving hosts, one of which may be hi. When ξS
i wants to ARcast

a message m, it sends 〈echo m, i〉i, signed by hi using its public key signature, to all
receivers. A receiver that receives such an echo message for the first time forwards it
to all receivers. On receipt of t+1 of these correctly signed echoes for the same m from
different receivers (it can count an echo from itself), a receiver delivers m from i.

Due to space considerations, we omit the (simple) correctness proof.

5 The OARcast Mechanism

ARcast does not provide any ordering. Even messages from a correct sender may be
delivered in different orders at different receivers. Next we introduce a broadcast mech-
anism that is like ARcast, but adds delivery order for messages sent by either honest or
Byzantine hosts.

5.1 OARcast Definition

OARcast provides, in addition to the ARcast properties, the following:
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4. bc-FIFO. If two hosts hi and hj are honest and βi sends m1 before m2, and βj

delivers m1 and m2 from βi, then βj delivers m1 before m2;
5. bc-Ordering. If two hosts hi and hj are honest and βi and βj both deliver m1 from

βk and m2 from βk, then they do so in the same order (even if hk is Byzantine).

As a result of bc-Ordering, even a Byzantine sender cannot cause two honest re-
ceivers to deliver OARcast messages from the same source out of order. bc-FIFO en-
sures that messages from honest hosts are delivered in the order sent. OARcast does not
guarantee any order among messages from different sources, and is thus weaker than
consensus.

5.2 OARcast Implementation

Fig. 3. Architecture of the OARcast implementation if the sender
is on host hi

We describe how OAR-
cast may be implemented
using ARcast. Again, we
show the implementation
for a single sender βi

on host hi. With mul-
tiple senders, the imple-
mentation has to be in-
stantiated for each sender
separately. We refine the
OARcast network agent
ωi by replacing it with the
following agents (see Fig. 3):

ωS
i sender agent that is in charge of the sending side of the OARcast mechanism;

ωO∗ orderer agents that are in charge of ordering;
ωR
∗ receiver agents that are in charge of the receive side;
φ FIFO network agent that provides point-to-point authenticated FIFO communica-

tion from the sender agent to each orderer agent;
ξ∗ ARcast network agents each provides ARcast from a particular orderer agent to all

receiver agents.

We need to run 3t + 1 orderers on separate hosts, of which no more than t may fail.
A host may end up running a sender, a receiver, as well as an orderer. A receiver ωR

j

maintains a sequence number cj , initially 0. An orderer ωO
k also maintains a sequence

number, tk, initially 0.
To OARcast a message m, ωS

i sends m to each orderer via φ. When an orderer ωO
k

receives m from ωS
i , it ARcasts 〈order m, tk, i〉 to each of the receivers, and increments

tk. A receiver ωR
j awaits 2t+1 messages 〈order m, cj, i〉 from different orderers before

delivering m from ωS
i . After doing so, the receiver increments cj .

We prove the correctness of this implementation in Appendix A.

6 The Translation Mechanism
In this section, we describe how an arbitrary protocol tolerant only of crash failures can
be translated into a protocol that tolerates Byzantine failures.
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6.1 Definition

Below we use the terms original and translated to distinguish the system before and af-
ter translation, respectively. The original system tolerates only crash failures, while the
translated system tolerates Byzantine failures as well. The original system consists of n
hosts, each of which runs an actor agent, α1, . . . , αn. Each actor αi is a state machine
that maintains a running state si, initially si

0, and, upon receiving an input message m,
executes a deterministic state transition function F i: (mo, s

i
c+1) := F i(m, si

c) where

– c indicates the number of messages that αi has processed so far;
– si

c is the state of αi before processing m;
– si

c+1 is the next state of si
c as a result of processing m (called F i(m, si

c).next);
– mo is a finite, possibly empty set of output messages (called F i(m, si

c).output).

The state transition functions process one input message at a time and may have no
computational time bound.

Actors in the original system communicate via a FIFO network agent φ. Each ac-
tor maintains a pair of input-output links with the FIFO network agent. When an actor
αi wants to send a message m to another actor αj (may be itself), αi formats m (de-
tailed below) and enqueues it on αi’s output link. We call this action αi sends m to
αj . φ dequeues m from the link and places it into the message buffer that φ maintains.
Eventually φ removes m from its buffer and enqueues m on the input link of αj . When
αj dequeues m we say that αj delivers m from αi. The original system assumes the
following of the network:

1. α-Persistence. If two hosts hi and hj are correct and αi sends m to αj , then αj

delivers m from αi.
2. α-Authenticity. If two hosts hi and hj are honest and αi does not send m to αj ,

then αj does not deliver m from αi.
3. α-FIFO. If two hosts hi and hj are honest and αi sends m1 before m2, and αj

delivers m1 and m2 from αi, then αj delivers m1 before m2;

Note that in the original system all hosts are honest. However, for the translation we
need to be able to generalize these properties to include Byzantine hosts.

Messages in the original system are categorized as internal or external. Internal mes-
sages are sent between actors and are formatted as 〈d, i, j〉, where d is the data (or
payload), i indicates the source actor, and j indicates the destination actor. External
messages are from clients to actors and are formatted as 〈d, ⊥, j〉, similar to the for-
mat of internal messages except the source actor is empty (⊥). Internal and external
messages are in general called α-messages, or simply messages when the context is
clear.

In the original system all actors produce output messages by making transitions
based on input as specified by the protocol. We call such output messages valid. We
formalize validity below.

External messages are assumed to be valid. For example, we may require that
clients sign messages. An internal message m sent by actor αi is valid if and only
if there exists a sequence of valid messages mi

1, . . . , m
i
c delivered by αi such that

m ∈ F i(mi
c, F

i(mi
c−1, F

i(. . . , F i(mi
1, s

i
0).next . . .).next).next).output. The
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Fig. 4. Translation: the original system (left) is simulated at each host in the translated system
(right). Dark circles are master actors. Dashed lines represent OARcast communication.

expression means that actor αi sends m after it has processed the first c input mes-
sages, be they internal or external. Note that external input forms the base case for this
recursive definition, as actors produce no internal messages until at least one delivers
an external message.1

In order for the original system to work correctly, each actor needs to make transi-
tions based on valid input. More formally,

4. α-Validity. If hi is honest and αi delivers m from αj , then m is valid.

The property is granted to the original system by default, because it is in an environment
where faulty hosts follow the protocol faithfully until they crash.

Besides the four α–properties, the original system requires no other assumptions
about communication among actors. However, the original system may require non-
communication assumptions such as “up to t hosts can fail.”

The Translation mechanism transforms a crash-tolerant system in which all hosts
require the four α-properties into a Byzantine-tolerant system that preserves the α-
properties.

6.2 Implementation

In the original system, each actor αi runs on a separate host hi. In the translated sys-
tem each host simulates the entire original system (see Fig. 4). That is, a host runs a
replica of each of the n actors and passes messages between the actors internally us-
ing a simulated network agent, called coordinator, that runs on the host. We denote the
coordinator running on host hi as κi.

To ensure that the different hosts stay synchronized, the coordinators agree on the
order in which messages are delivered to replicas of the same actor. The replica of αi

on host hj is called αi
j . We designate αi

i as the master replica and αi
j (i �= j) as slave

replicas. On honest hosts, the replicas of each actor start in the same initial state.
Each coordinator replaces φ of the original system by OARcast, i.e., OARcast is

used to send messages. OARcast guarantees that coordinators agree on the deliv-
ery of messages to replicas of a particular actor. Coordinators wrap each α-message

1 We model periodic processing not based on input by external timer messages.
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Fig. 5. Anatomy of host hi in the trans-
lated system

in a κ-message. κ-messages have the form
〈tag m, i〉, where tag is either internal or ex-
ternal, m is an α-message, and i indicates the
destination actor.

Each coordinator maintains an unordered
message bag and n per-actor-replica message
queues. By Bi we denote the message bag at
host i and by Qj

i we denote the message queue
for actor αj

i at host i (see Fig. 5). The pseudo-
code for a coordinator κi appears in Fig. 6. κi

intercepts messages from local actors, and it re-
ceives messages from remote coordinators. κi

places α-messages sent by local actor replicas
in Bi, and places α-messages received within κ-
messages from κj in Qj

i . When there is a match
between a message m in the bag and the head of
a queue, the coordinator enqueues m for the corresponding actor.

// Message from external client
On receipt of msg m = 〈x,⊥, i〉:

κi.send(〈external m, i〉);

// Message from actor j to actor k

On α
j
i .send(〈d, j, k〉):

Bi.add(〈d, j, k〉);
if k = i then

κi.send(〈internal 〈d, j, i〉, i〉);

// κ-message from j

On κi.deliver(〈tag m, j〉):
Q

j
i .enqueue(m);

// Head of queue matches msg in bag
When ∃j : Q

j
i .head() ∈ Bi:

m = Q
j
i .dequeue();

Bi.remove(m);
α

j
i .deliver(m);

// Head of message queue is external
When ∃j, d : Q

j
i .head() = 〈d,⊥, j〉:

m = Q
j
i .dequeue();

α
j
i .deliver(m);

Fig. 6. Pseudo-code of the Translation Mechanism
for coordinator κi

The translated system guarantees α-
Persistence, α-Authenticity, α-FIFO,
and α-Validity to all master actors on
honest hosts. Appendix B contains a
proof of correctness.

7 Illustration: BFT

In 1999 Castro and Liskov published
“Practical Byzantine Fault Tolerance,”
a paper about a replication protocol
(BFT) for a Byzantine-tolerant NFS file
system [4]. The paper shows that BFT
is indeed practical, adding relatively lit-
tle overhead to NFS. In this section we
show, informally, that a protocol much
like BFT can be synthesized from the
Viewstamped Replication protocol by
Oki and Liskov [10] and the transfor-
mations of the current paper. The main
difference is that our protocol is struc-
tured, while BFT is largely monolithic.
In our opinion, the structure simplifies
understanding and enhances the abil-
ity to scrutinize the protocol. The BFT
paper addresses several practical issues
and possible optimizations that can be
applied to our scheme as well, but omit-
ted for brevity.
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(a) before translation (b) after translation

Fig. 7. A normal case run of (a) the original system and (b) the translated system. Dashed arrows
indicate the archive message from the primary. Between brackets we indicate the correspond-
ing BFT message types.

Viewstamped Replication is a consensus protocol. A normal case execution is shown
in Fig. 7(a).2 A client sends a request to a server that is elected primary. The primary
server sends an archivemessage to each server in the system. If a quorum responds to
the client, the request is completed successfully. In the case of failures, a possibly infinite
number of rounds of this consensus protocol may be necessary to reach a decision.

If we were to apply translation literally as described, we would end up with a pro-
tocol that sends significantly more messages than BFT. The reason for this is two-fold.
First, our translation does nothing to group related information from a particular sender
to a particular receiver in single messages. Instead, all pieces of information go out,
concurrently, in separate small messages. While explicit optimizations could eliminate
these, FIFO protocols like TCP automatically aggregate concurrent traffic between a
pair of hosts into single messages for efficiency, obviating the need for any explicit
optimizations. Note that while these techniques reduce the number of messages, the
messages become larger and the number of rounds remains the same.

Second, the translation would produce a protocol that solves uniform Byzantine con-
sensus [5], guaranteeing that if two honest servers decide on an update, they decide
on the same update. In a Byzantine environment, one may argue that this property is
stronger than needed. We only need that if two correct servers decide on an update,
they decide the same update. The reason for this is that clients of the system have to
deal with the results from Byzantine servers, and because Byzantine and crashing hosts
are both counted towards t it is not usually a problem that an honest server makes a
“mistake” before crashing. Such servers would be outvoted by correct servers.

BFT does not provide uniform consensus, but Viewstamped Replication does. Our
translation maintains uniformity. This arises in the bc-Relay property, which requires
that if an honest host delivers a message, then all correct hosts have to do the same. For
our purposes, it would be sufficient to require that if a correct host delivers a message,
all correct hosts have to follow suit.

2 Slightly optimized for our purpose by sending decide messages back to the client instead
of the primary.
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If we revisit the ARcast implementation, we see that the protocol maintains the orig-
inal uniform bc-Relay property by having a receiver await t + 1 copies of a message
before delivery. Doing so makes sure that one of the copies was sent by a correct re-
ceiver that forwards a copy to all other correct receivers as well. For non-uniform bc-
Relay this is unnecessary because the receiver itself, if correct, is guaranteed to forward
the message to all other correct receivers, and thus a receiver can deliver the message as
soon as the first copy is received. The echo traffic can be piggybacked on future traffic.

Using this modification, Fig. 7(b) demonstrates a normal run of the translated system
for t = 1. The figure only shows the traffic that is causally prior to the reply received by
the client and thus essential to the latency that the client experiences. In this particular
translation we used t additional hosts for OARcast only, but a more faithful translation
would have started with 3t + 1 servers. Nevertheless, the run closely resembles that of
a normal run of BFT (see Figure 1 of [4]).

8 Conclusion

We presented a mechanism to translate a distributed application that tolerates only crash
failures into one that tolerates Byzantine failures. Few restrictions are placed on the ap-
plication, and the approach is applicable not only to consensus but to a large class of
distributed applications. The approach makes use of a novel broadcast protocol. We
have illustrated how the approach may be used to derive a version of the Castro and
Liskov Practical Byzantine Replication protocol, showing that our translation mecha-
nism is pragmatic and more powerful than previous translation approaches.
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A Correctness of OARcast

Lemma 1. Say hi and hj are honest and m is the cth message that ωR
j delivers from ωS

i ,
then m is the cth message that ωS

i sent.

Proof. Say m is not the cth message sent by ωS
i , but it is the cth message delivered by

ωR
j . ωR

j must have received 2t+1 messages of the form 〈order m, c−1, i〉 from different
orderers. Because only t hosts may fail, and because of bc-Authenticity of ARcast, at
least one of the order messages comes from a correct orderer. Because communication
between ωS

i and this orderer is FIFO, and because the sender does not send m as its cth

message, it is not possible that the orderer sent 〈order m, c − 1, i〉. ��

Lemma 2. Say m is the cth message that a correct sender ωS
i sends. Then all correct

receivers receive at least 2t + 1 messages of the form 〈order m, c − 1, i〉 from different
orderers.

Proof. Because the sender is correct, each of the correct orderers will deliver m. As all
links are FIFO and m is the cth message, it is clear that for each orderer ωO

k, tk = c − 1.
Each correct orderer ωO

k therefore sends 〈order m, c − 1, i〉 to all receivers. Because at
least 2t + 1 of the orderers are correct, and because of ARcast’s bc-Persistence, each
correct receiver receives 2t + 1 such order messages. ��

Theorem 1. OARcast satisfies bc-Persistence.

Proof. Assume the sending host, hi, is correct, and consider a correct receiving host
hj . The proof proceeds by induction on c, the number of messages sent by ωS

i. Consider
the first message m sent by ωS

i . By Lemma 2, ωR
j receives 2t + 1 messages of the form

〈order m, 0, i〉. By Lemma 1 it is not possible that the first message that ωR
j delivers is

a message other than m. Therefore, cj = 0 when ωR
j receives the order messages for m

and will deliver m.
Now assume that bc-Persistence holds for the first c messages from ωS

i . We show that
bc-Persistence holds for the (c+1)st message sent by ωS

i . By Lemma 2, ωR
j receives 2t+1

messages of the form 〈order m, c, i〉. By the induction hypothesis, ωR
j will increment cj

at least up to c. By Lemma 1 it is not possible that the cth message that ωR
j delivers is a

message other than m. Therefore, cj = c when ωR
j receives the order messages for m

and will deliver m. ��

Theorem 2. OARcast satisfies bc-Authenticity.

Proof. This is a straightforward corollary of Lemma 1. ��

Theorem 3. OARcast satisfies bc-Relay.
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Proof. By induction on the sequence number. Say some correct receiver ωR
j delivers

the first κ-message m from ωS
i . Therefore, ωR

j must have received 2t + 1 messages
of the form 〈order m, 0, i〉 from different orderers when cj = 0. Because of the bc-
Relay property of ARcast, all correct receivers receive the same order messages from
the orderers. By Lemma 1 it is not possible that a correct receiver ωR

j′ delivered a κ-
message other than m, and therefore cj′ = 0 when ωR

j′ receives the order messages.
Thus ωR

j′ will also deliver m.
Now assume the theorem holds for the first c κ-messages sent by ωS

i . Say some
correct receiver ωR

j delivers the (c+1)st κ-message m from ωS
i. Therefore, ωR

j must have
received 2t+1 messages of the form 〈order m, c, i〉 from different orderers when cj = c.
Because of the bc-Relay property of ARcast, all correct receivers receive the same order
messages from the orderers. Because of the induction hypothesis, the correct receivers
deliver the first c κ-messages. By Lemma 1 it is not possible that a correct receiver ωR

j′

delivered a κ-message other than m, and therefore cj = c when ωR
j′ receives the order

messages. Thus ωR
j′ will also deliver m. ��

Lemma 3. Say m is the cth message that an honest receiver ωR
j delivers from ωS

i , and
m′ is the cth message that another honest receiver ωR

j′ delivers from ωS
i . Then m = m′

(even if hi is Byzantine).

Proof. Say not. ωR
j must have received 2t + 1 messages of the form 〈order m, c − 1, i〉

from different orderers, while ωR
j′ must have received 2t + 1 messages of the form

〈order m′, c − 1, i〉 from different orderers. As there are only 3t + 1 orderers, at least
one correct orderer must have sent one of each, which is impossible as correct orderers
increment their sequence numbers for each new message. ��

Theorem 4. OARcast satisfies bc-Ordering.

Proof. Corollary of Lemma 3. ��

Theorem 5. OARcast satisfies bc-FIFO.

Proof. Evident from the FIFOness of messages from senders to orderers and the se-
quence numbers utilized by orderers and receivers. ��

B Correctness of Translation

We prove correctness of the Translation mechanism assuming the bc-properties. In par-
ticular, we show that the collection of coordinators and slave replicas that use the Trans-
lation mechanism preserves the α-properties: α-Persistence, α-Authenticity, α-FIFO,
and α-Validity, for the master replicas {αi

i}.
For convenience, we combine bc-Relay and bc-Ordering to state that coordinators

on correct hosts deliver the same sequence of κ-messages from any κk, even if hk is
Byzantine. This is put more formally in the following lemma:

Lemma 4. For any i, j, and k, if hi and hj are correct, then κi and κj deliver the same
sequence of messages from κk.
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Proof. bc-Relay guarantees that κi and κj deliver the same set of messages from κk.
bc-Ordering further guarantees that the delivery order between any two messages is the
same at both κi and κj . ��

In the proof we need to be able to compare states of hosts. We represent the state of
host hi by a vector of counters, Φi = (c1

i , . . . , c
n
i ), where each ck

i is the number of
messages that (the local) actor αk

i has delivered. As shown below, within an execution
of the protocol, replicas of the same actor deliver the same sequence of messages. Thus
from ck

i and ck
j we can compare progress of replicas of αk on hosts hi and hj .

Lemma 5. Given are that hosts hi and hj are correct, αk
i delivers m1, . . . , mc, and

αk
j delivers c′ ≤ c messages. Then the messages that αk

j delivers are m1, . . . , mc′ .

Proof. By the Translation mechanism, the first c′ messages that αk
i and αk

j deliver
are the contents of the first c′ κ-messages that κi and κj delivered from κk, resp. By
Lemma 4, the two κ-message sequences are identical. This and the fact that links from
coordinators to actors are FIFO imply that the first c′ messages that αk

i and αk
j deliver

are identical. ��

In the remaining proof we use the following definitions and notations:

– hi reaches Φ = (c1, . . . , cn), denoted hi � Φ, if ∀j cj
i ≥ cj ;

– Φ = (c1, . . . , cn) precedes Φ′ = (c′1, . . . , c
′
n), denoted Φ < Φ′, if (∀i ci ≤ c′i) ∧

(∃j cj < c′j);
– Φ = (c1, . . . , cn) produces m if m ∈

⋃n
i=1

⋃ci

c=1(F
i(mi

c, s
i
c−1).output),

where mi
c is the cth message to αi and si

c−1 is the state of αi after it processes the
first c − 1 input messages.

Corollary 1. If Φ produces m on a correct host, Φ produces m on all correct hosts that
reach Φ.

Proof. By Lemma 5 and because replicas of the same actor start in the same state and
are deterministic, if Φ produces m on a correct host, Φ produces m on all correct hosts
that reach Φ. ��

We now show that if a correct host is in a particular state then all other correct hosts
will reach this state.

Lemma 6. If there is a correct host hi in state Φ, then, eventually, all correct hosts
reach Φ.

Proof. By induction on Φ. All correct hosts start in state Φ0 = (0, . . . , 0), and ∀Φ �=
Φ0 : Φ0 < Φ.
Base case: All correct hosts reach Φ0 by definition.
Inductive case: Say that correct host hi is in state Φ = (c1, . . . , cn), and the lemma
holds for all Φ′ < Φ (Induction Hypothesis). We need to show that any correct host hj

reaches Φ.
Consider the last message m that some actor replica αp

i delivered. Thus, m is the
cth
p message that αp

i delivered. The state of hi prior to delivering this message is Φ′ =
(c1, . . . , cp − 1, . . . , cn). It is clear that Φ′ < Φ. By the induction hypothesis hj � Φ′.



Making Distributed Applications Robust 245

By the Translation mechanism we know that 〈tag m, p〉 (for some tag) is the cth
p

κ-message that κi delivers from κp. Lemma 4 implies that 〈tag m, p〉 must also be the
cth
p κ-message that κj delivers from κp. Since hj � Φ′, αp

j delivers the first cp − 1
α-messages, and thus κj must have removed those messages from Qp

j . Consequently,
m gets to the head of Qp

j . (1)
Now there are two cases to consider. If m is external, then κj will directly remove

m from Qp
j and enqueue m on the link to αp

j . Because αp
i delivered m after delivering

the first cp − 1 messages (Lemma 5), and αp
i and αp

j run the same function F p, αp
j will

eventually deliver m as well, and therefore hj � Φ.
Consider the case where m is internal. By definition, Φ′ = (c1, . . . , cp − 1, . . . , cn)

produces m at host hi. By Corollary 1, Φ′ produces m at host hj . Thus, eventually κj

places the message in the message bag Bj . (2)
(1) and (2) provide the matching condition for κj to enqueue m on its link to αp

j .
Using the same reasoning for the external message case, hj � Φ. ��

We can now show the first two communication properties. (The proof for α-FIFO has
been omitted for lack of space.)

Theorem 6. (α-Persistence.) If two hosts hi and hj are correct and αi
i sends m to αj ,

then αj
j delivers m from αi.

Proof. Suppose hi is in state Φi when αi
i sends m to αj . By Lemma 6, hj � Φi.

Thus, αi
j sends m to αj as well. By the Translation mechanism, κj places m in Bj and

OARcasts 〈internal m, j〉. By bc-Persistence, κj delivers 〈internal m, j〉 (from itself)
and places m on its queue Qj

j . (1)

By the Translation Mechanism, each external message at the head of Qj
j is dequeued

and delivered by αj
j . (2)

Let us consider an internal message m′ at the head of Qj
j . Since hj is correct, the

Translation mechanism ensures that κj has delivered 〈internal m′, j〉 (the κ-message
containing m′ and from κj). bc-Authenticity ensures that κj has indeed sent the κ-
message. By the Translation mechanism, κj always puts a copy of m′ in Bj before
sending 〈internal m′, j〉. Thus, m′ in Qj

j is matched with a copy in Bj , and αj
j delivers

m′. This together with (2) show that αj
j delivers all internal messages in Qj

j . (3)

(1) shows that m sent by αi
i arrives in Qj

j , and (3) shows that αj
j delivers all internal

messages in Qj
j . Together they show that αj

j delivers m from αi. ��

Theorem 7. (α-Authenticity.) If two hosts hi and hj are honest and αi
i does not send

m to αj , then αj
j does not deliver m from αi.

Proof. Assume αj
j delivers m from αi, but αi

i did not send m to αj . By the Transla-

tion mechanism, a necessary condition for αj
j to deliver m from αi is that κj delivers

〈internal m, i〉. By bc-Authenticity of OARcast, κi must have OARcast 〈internal m, i〉.
Then by the Translation mechanism, αi

i must have sent m, contradicting the
assumption. ��

We introduce a lemma that helps us show α-Validity:
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Lemma 7. Actor replicas on honest hosts only send valid messages.

Proof. Suppose not. Let m sent by αi
j be the first invalid message sent by an actor

replica on an honest host. Since hj is honest, there must be a sequence of messages
mi

1, . . . , m
i
c that αi

j delivered, such that

m ∈ F i(mi
c, F

i(mi
c−1, F

i(. . . , F i(mi
1, s

i
0).next . . .).next).next).output

Since m is the first invalid message sent by an actor replica, all internal messages in
the sequence mi

1, . . . , m
i
c must be valid. Moreover, external messages are valid by def-

inition. Thus, all messages mi
1, . . . , m

i
c are valid. But then, m is valid by definition,

contradicting the assumption. ��

Theorem 8. (α-Validity.) If hi is honest and αi
i delivers m from αj , then m is valid

(even if j �= ⊥ and hj is faulty.)

Proof. If m is an external message, then it is valid and unforgeable by definition.
If m is an internal message, the fact that αi

i delivers m from αj implies that αj
i has

sent m to αi. By Lemma 7, m is valid. ��
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