JOURNAL OF ALGORITHMS 3, 245-260 (1982)

An O(nlog n) Unidirectional Distributed Algorithm
for Extrema Finding in a Circle

DANNY DOLEvV, MARIA KLAWE, AND MICHAEL RODEH*

IBM Research, K51-61F, 5600 Cottle Road, San Jose, California 95193
Received April 26, 1981; revised October 21, 1981

In this paper we present algorithms, which given a circular arrangement of n
uniquely numbered processes, determine the maximum number in a distributive
manner. We begin with a simple unidirectional algorithm, in which the number of
messages passed is bounded by 2nlog n -+ O(n) . By making several improvements
to the simple algorithm, we obtain a unidirectional algorithm in which the number of
messages passed is bounded by l.5alogn + O(n). These algorithms disprove
Hirschberg and Sinclair's conjecture that O(n?) is a lower bound on the number of
messages passed in undirectional algorithms for this problem. At the end of the
paper we indicate how our methods can be used to improve an algorithm due to
Peterson, to obtain a unidirectional algorithm using at most 1.356nlog n + O(n)
messages. This is the best bound so far on the number of messages passed in both
the bidirectional and unidirectional cases.

1. INTRODUCTION

Consider a circular arrangement of n asynchronous communicating
processes in which communication occurs only between neighbors around
the circle. Al processes have the same program, and differ only by having
distinct numbers (known only to the owners) stored in their local (non-
shared) memory. Our objective is to obtain an efficient algorithm which
finds the maximum of these numbers. ‘

Rapid progress has been made on this problem during the last few years.
In 1977 LeLann [6] presented an algorithm which requires O(n”) messages.
Chang and Roberts {2] in 1979, proposed an improved algorithm which uses
only O(nlog n) messages on the average (assuming that all permutations of
the data are equiprobable); however, their algorithm still requires o(n?)
messages in the worst case. Also in 1979, Gallager et al. [3] obtained, as part
of an O(e + nlogn) algorithm for finding a minimum spanning tree in a

*On sabbatical from IBM Israel Scientific Center, Technion City, Haifa, Israel.
245

0196-6774 /82 /030245-16 $02.00/0
Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

246 DOLEV, KLAWE, AND RODEH

network with e edges and n nodes, an algorithm which finds the maximum
in a circular arrangement of processes in O(nlog n) time. Another O(r log n)
algorithm was suggested by Hirschberg and Sinclair [4], and later improved
slightly by Burns [1], who also proved that Q(nlog n) is a lower bound on
the number of messages.

All of the O(nlogn) algorithms mentioned above depend on messages
being allowed to pass in both directions around the circle. In fact,
Hirschberg and Sinclair [4] made the conjecture that “models in which
message passing is unidirectional must, in the worst case, have quadratic
behavior and that bidirectional capability is necessary in order to achieve
O(nlog n) performance.” In this paper we begin by presenting a simple
unidirectional algorithm' which disproves this conjecture, since it requires at
most 2nlog n + n messages. (In this paper, by log n we mean log, n.) After
submitting the original version of our paper containing this algorithm, we
learned that Peterson had also submitted a paper [7] containing the same
algorithm. In revising our paper we managed to modify our algorithm to
obtain an algorithm using at most 1.5nlog n messages. After seeing our
modifications Peterson obtained a quite different and much simpler algo-
rithm using approximately 1.4402nlogn messages. By making analogous
modifications to Peterson’s new algorithm, we were able to obtain an
algorithm using at most 1.356nlog n messages, the lowest number so far in
either the unidirectional or bidirectional cases.

As far as average behavior is concerned, all the above algorithms send
O(nlog n) messages. Recently, Itai and Rodeh [5] proposed probabilistic
algorithms which solve the problem in linear time, assuming that the
processes are synchronous and that the size of the circle is known. Thus far,
no lower bound has been established on the average number of messages
needed to solve the problem in an asynchronous system. There is also no
nontrivial lower bound known for the synchronous versxon of this problem,
nor for the case that the size of the ring is known.

The computation model we use in this paper assumes that each process
has a queue in which incoming messages are stored and processed in first
come first serve order, and moreover that communication channels between
processes preserve the order of the messages sent. We also assume that each
process can only send messages to the process on its right, and only receives
messages from the process on its left.

In the next section we present the simple unidirectional algorithm using at
most 2nlog n + O(n) messages. We begin Section 3 by describing several
possible improvements to this algorithm, and then go on to prove that by
incorporating these improvements into our algorithm, we are able to bound
the number of messages by 1.5nlog n + O(n). Finally, in the last section we
indicate how Peterson’s new algorithm can be modified to obtain an
algorithm using at most 1.356rnlogn + O(n) messages.

EXTREMA FINDING IN A CIRCLE 247
2. THE SIMPLE UNIDIRECTIONAL ALGORITHM

2.1. The Algorithm

Before describing the algorithm formally, we give an intuitive explanation
of how the algorithm proceeds. The basic idea depends on the fact that,
since order of communication is preserved, the effect of the algorithm is as
though the activities of the system could be separated into synchronous
phases. Initially all processes are active. In each phase, sufficient messages
are passed so that each active process learns the current numbers of the two
closest active processes on its left. With this information, each active process
can determine if it is the active process immediately following a local
maximum. If so, it assumes the local maximum as its own number, and
continues as active on to the next phase. If not, it becomes passive and
merely acts as a communication relay, passing on the messages initiated by
active processes during later phases.

The algorithm uses messages of two types:

M1. of the form (1, i}, and

M2. of the form (2, i),
where i denotes one of the numbers stored in the processes. Each process v
has a variable max(v), in which initially its number is stored, and another
variable left(v) which it can use, when active, to store the number of the
active process to its left. As the algorithm proceeds, if v is an active process,
then max(v) will contain the number that v is currently representing.

Since passive processes simply pass on unchanged whatever messages they
receive, in order to describe the algorithm (hereby referred to as Algorithm
A) we need only define the behavior of an active process v, which is as
follows:

AO0. Send the message (1, max(v)). _
Al. If a message {1, i) arrives do as follows:
1. If i # max(v) then send the message (2, i),
and assign i to left(v).
2. Otherwise, halt—max(v) is the global maximum.
A2. If a message (2, j) arrives do as follows:
1. If left(v) is greater than both j and max(v)
then assign left (v) to max(v),
and send the message {1, max(v)).
2. Otherwise, become passive.

The behavior of a process consists of a sequence of steps of the form
A0, A1, A2, A1,A2, A1,A2,.... In Al the process handles messages of type
M1, while in A2 it handles messages of type M2. Because of the alternation
between the steps Al and A2, it is not really necessary in practice to

248 DOLEV, KLAWE, AND RODEH

distinguish between the two message types. Hence the algorithm could be
implemented using a single type of message of the form (i). We have
refrained from doing this as the message types M1 and M2 perform
different logical functions, and distinguishing between them helps in the
analysis of the algorithm. :

2.2. Correctness and Complexity

In order to deal more easily with the questions of correctness and
complexity, let us define the notion of phase a little more precisely. For an
active process we say that the pth phase begins immediately before it sends
its (p + 1)st message of type M1. Similarly, for a passive process we say
that the pth phase begins immediately before it receives its (p + 1)st
message of type M1. To be able to indicate precisely the value of max(v) at
certain stages of the execution of the algorithm,-we use p-max(v) to denote
the value that max(v) has at the beginning of the pth phase.

It is straightforward to verify the following facts about the behavior of
Algorithm A.

(2.2.1) During each phase each process sends exactly two messages.

(2.2.2) If u and v are distinct processes which are active in the pth phase,
then p-max(u) # p-max(v).

(2.2.3) If u is active in the pth phase, and if p-max(u) is a local maximum
among the processes active in the pth phase, then the process v, which is
closest to u on the right among those active processes, will be active in the
(p + Dst phase, and will have (p + 1)-max(v) = p-max(u).

Conversely if p-max(u) is not a local maximum, then no process v which
is active in the (p + I)st phase will have (p + 1)-max(v) = p-max(u).

(2.2.4) If there are at least two active processes in the pth phase, then for
each such active process v, the M1 message (1, i) it receives in the pth
phase has i # p-max(v).

Conversely if v is the only active process, then i = p-max(v).

These facts show that if the algorithm ever terminates, it does so cor-
rectly. We now observe that the algorithm must terminate in at most
log n + 1 phases.

LEMMA 2.2.5. The number of processes active in the (p + 1)st phase is at
most half the number active in the pth phase.

Proof. In any arrangement of k numbers on a circle, the number of local
maxima is at most k /2, since for any number which is a local maximum, the
number immediately following it is not. The proof is completed by observ-
ing that (2.2.2) and (2.2.3) guarantee that the number of processes active in

EXTREMA FINDING IN A CIRCLE 249

the (p + D)st phase is exactly the number of active processes in the pth
phase whose values are local maxima. (1

COROLLARY 2.2.6. The number of messages sent using Algorithm A is at
most 2nlogn + n.

By (2.2.1) at most 2n messages are sent in each phase. Furthermore, in the
last phase at most n messages are sent as only one process is active. Finally,
the preceding lemma shows that there are at most log n + 1 phases, which
completes the proof. [

3. THE IMPROVED UNIDIRECTIONAL ALGORITHM

3.1. Improvements to Algorithm A

Algorithm A is based on the recognition of local maxima. In this section
we investigate techniques by which we can avoid sending type M2 messages
as often as possible, while still guaranteeing that local maxima (or at least
the global maximum) are recognized. Let u, v, and w be three consecutive
active processes. According to Algorithm A, process v sends (1, max(v)) to
w, and then w waits for v to send on (2, max(u)) in order to check whether
max(v) is the largest of max(u), max(v) and max(w). A straightforward
observation is that the relationship between max(u) and max(v) is known
to v as soon as it receives the message (1, max(u)). Thus v could simply
send w one bit of information, 1 if max(«) < max(v) and 0 otherwise. This
modification reduces the number of bits sent but does not influence the
number of messages.

Now let us reconsider the case max(u) > max(v). In this case w will
become passive independent of the relationship between max(v) and
max(w). If v refrains from initiating any message of type M2, the next
message w receives will be of type M1. By modifying the algorithm so that
any active process receiving two consecutive M1 type messages becomes
passive, the algorithm still functions correctly when active processes like v
(i.e., receiving an M1 message with value higher than their own) do not
initiate an M2 message. In implementing this modification, we add a third
state for processes, the “waiting” state. This modification clearly reduces
the number of messages sent, but it can be shown that by itself it does not
suffice to bring the number down to (3/2)nlogn + O(n).

Next, let u and v be two adjacent active processes with v to the right of u.
If v is still active in the next phase, the value it will represent is max(u).
Thus if in some way we can determine that max(u) is not the global
maximum, then we could make v passive without affecting the correctness

250 DOLEV, KLAWE, AND RODEH

of the algorithm. Such an opportunity occurs if there is some (passive)
process x lying between u and v, with max(x) > max(u). When passing on
the M1 message initiated by u, x can observe that max(u) is not the global
maximum. Our second modification, again resulting in the saving of some
M2 messages, is as follows. If the above process x then receives an M2
message initiated by u, x does not send on this M2 message towards v. As a
consequence v becomes passive at the start of the next phase. Note that x
must pass on u#’s M1 message in order to allow v to initiate an M2 message
if need be, since max(v) could be the global maximum.

The third modification deals with the possible existence of unusually long
sequences of passive processes. The problem with the first two modifications
is that if, after the first few phases, it happens that all the active processes
are situated in a small fraction of the circle, it is possible that all the savings
of M2 messages occur on that small section, whereas one M2 message is
passed on for almost the entire length of the circle. We concentrate now on
preventing this from occurring. Our aim is to guarantee that an M2 message
initiated in the pth phase will never travel farther than 27 from its initiator.
To accomplish this, we add a counter with the initial value of 27 to each M1
message initiated in the pth phase. Active processes receiving M1 messages
process them as before, but passive and waiting processes decrement the
counter before sending the message on. Moreover, whenever a passive or
waiting process © receives an M1 message with counter value = 1 and
number at least max (v), after sending on the decremented M1 message, v
then enters the waiting state, setting max(v) to the number carried in the
M1 message. If the next message v receives is of type M2 then v will be
active in the next phase; otherwise, v will return to the passive state.
Combining this modification with the first two, guarantees that if an active
process u initiates an M1 message in the pth phase, and then also initiates
an M2 message in the same phase, the M2 message will stop within distance
27 at some process v which is either in the waiting state, or has max(v) >
max(u).

The first two changes, though reducing the number of M2 messages sent,
did not significantly alter the behavior of the algorithm. The third, however,
definitely does. In particular, processes which become passive during some
phase may become active again at a later phase. Moreover, there may be
values represented by active processes in the pth phase, which are not local
maxima among the values represented by active processes in the (p — 1)st
phase. In spite of these differences, we will prove that the algorithm does
function and terminate correctly. In fact we will show once again that it
terminates in at most log n + 1 phases. In addition we will be able to show
that the number of M2 messages sent in the pth phase is at most n2”/
(27*! — 1) which yields the desired bound on the number of messages.

v

R TR T TR

EXTREMA FINDING IN A CIRCLE 251

3.2. Algorithm B

Each process v maintains the following local variables:
(1) phase(v)—initially 0.
(ii) state(v)—-contains one of “active,” “waiting,” or “passive.”
(iii) id(v)—the number originally stored in v. :
(iv) max(v)—the accumulated maximum stored in v. Initially max(v)
= id(v).

This algorithm uses two types of messages, M1 and M2, similar to those
in Algorithm A. The form of M2 is unchanged, while M1 is of the form
(1, i, phase, counter), where 0 < counter < 2 phase

The behavior of the processes is as follows:

Bl. An active process v initiates the message

” «

(1, max(v), phase(v), 2Pbase(®)y,

When a message of the form (1, i, p, ¢) arrives, the process executes
the following program:
if i> max(v)) then begin

max(v): =i
state(v) : =“waiting”;
end;

else begin

state(v) : =“passive”;
send (2, max(v));
end.

Note that the number carried in message of type M2 in Algorithm B is
different from that in Algorithm A, i.e., (2, max(v)) is sent rather than
(2, i). This difference is a key factor in our implementation of the second
modification, which we explain now in more detail. A passive process x
receiving the M2 message (2, max(v)) knows that it need not send it on if
max(v) < max(x). This is because the process waiting for that M2 message
in order to become active in the next phase would be representing max(v) if
it did become active, and max(v) is clearly not the global maximum.

Notice also that an active process never receives messages of the form
(2, j>. Such messages are received only by processes which are either
waiting or passive.

B2. A waiting process may receive messages of both types.

1. If a message of type M2 arrives then ;j must be equal to max(v).
In this case v sets:
phase(v): = phase(v) + 1 and
state(v) : =“active”;
and begins executing B1.

252 DOLEV, KLAWE, AND RODEH

2. If the arriving message is of type M1,
v sets state(v): =“passive”;
and continues the execution of step B3.1 (see below).
B3. A passive process v behaves as specified in B3.1 or B3.2 depending
on the type of the arriving message:
1. When (1, i, p, ¢) arrives, the following code is executed:
if ((= max(v) and ¢ = 1) then begin
max(v): = i;
if c>1thensend (1,7, p,c— 1);
else if ¢ = 1 then begin
state(v) : =*“waiting”’;

send (1, i, p,0);
phase(v): = p;
end;

end;

else send (1,7, p,0).
2. When a message (2, j) arrives, the process does the following.
if j < max(v) then skip
else begin
send (2, j);
end
As described above, the algorithm does not explicitly terminate. However,
it is easy to modify it slightly by always testing whether an arriving number
is equal to id(v). If this happens, then id(v) is the global maximum, and the
algorithm terminates. Another possible modification is to exclude the phase
number from messages of type MI1. Instead, every process could count
the number of messages of type M1 which pass by, and use this as the phase
number,

3.3. An Analysis of Algorithm B

We begin this section by establishing some properties of Algorithm B
which follow in a straightforward manner from its definition. We then
proceed to prove, using induction on the phase number, some slightly less
obvious statements about its behavior, which we will need for its complexity
analysis.

To begin with, note that for each p, each process receives exactly one
message of type M1 whose phase value is p. Thus, for each process v, we
can define p-max(v) by 0-max(v) = id(v) and for p = 1, p-max(v) is the
value of the variable max(v) immediately after v has received and processed
its M1 message whose phase value equals p — 1. We also define A(p) to be
the set of processes which initiate (as in step B1 of Algorithm B) an M1
message with phase value equal to p. In other words A(p) is the set of

EXTREMA FINDING IN A CIRCLE 253

processes which are active at the beginning of the pth phase, and p-max(v)
is the value of max(v) at that moment.

The following statements are easy to verify from the definition of Algo-
rithm B. We include the proofs of the first two statements to give the reader
the flavor of the arguments involved.

(3.3.1) If u and v are distinct processes in A(p) then p-max(u) #*
p-max(v).

Proof. This is obviously true for p = 0, so assume p =1 and that the
statement holds for p — 1. Now since the processes in A(p — 1) have
distinct (p — 1)-max values, it is clear that any pair of M2 messages in the
(p — D)st phase, which are initiated by different processes in A(p — 1),
must be carrying different values. Now since any M2 message causes at
most one process v to be in A(p), and moreover that v will have p-max(v)
equal to the value that the M2 message was carrying, it follows that the
processes in A(p) must have distinct p-max values. O

(3.3.2) During the pth phase each message of type M2 travels distance at
most 27 from the process which initiates it.

Proof. Let u be a process which initiates an M2 message in the pth
phase, and let v be the process in A(p) closest to u on the right. If the
distance from u to v is greater than 27, then the process y at distance exactly
27 from u enters the waiting state upon receiving the M1 message that u
sends in the pth phase. Thus u’s M2 message cannot travel beyond y,
because waiting processes do not pass on M2 messages. On the other hand if
the distance from u to v is no more than 27, then if max(v) < max(u), v
enters the waiting state after receiving u’s M1 message, and as before u’s
M2 message cannot travel beyond v. If max(v) > max(u), then again u’s
M2 message cannot travel beyond v, since the value carried by that M2
message is less than max(v), and hence v cannot send it on. {J

(3.3.3) During any phase at most one message of each type passes through
an edge.

(3.3.4) Let M be the largest of the values id(v) over all processes v. Then
if some u in A(p) has p-max(u) = M, then there is a process v in A(p + 1)
with (p + 1)-max(v) = M.

By induction on p, (3.3.4) immediately yields

(3.3.5) There is always some process v in A(p) with p-max(v) = M.
It is this fact that ensures the correctness of the algorithm.

Before proving the next lemma we introduce some notation to make our
task a little easier. First of all, for any two processes u and v we use d(u, v)
to denote the distance from u to v on the circle, travelling to the right from u

254 DOLEV, KLAWE, AND RODEH

(i.e., in the clockwise direction from u). We also use u < v < w to signify
that if we travel to the right around the circle from u, we will encounter v
before w. When necessary we will use < instead of < to denote the
possibility that two of the processes are the same. Finally for any number j
we will use origin(j) to denote the process v which had j as its original
value, i.e., which has id(v) =j.

LEMMA 3.3.6. Let v be a process in A(p).
(a) d(origin(p-max(v)), v) =27 — 1.
(b) p-max(y) = p-max(v) for each process y with
origin(p-max(v)) < y < v.
(c) If wis a distinct process from v in A(p), then d(w, v) = 27,

Proof. The statements are obviously true for p = 0, so assume that p = 1
and that they hold for p — 1. Let u be the process in 4(p — 1) which is
closest on the left to v. Since v is in A(p), in the (p — 1)st phase v must
receive an M2 message which was initiated by u. Thus p-max(v) = (p — 1)
max(u), and moreover, by (3.3.2), d(u, v) = 27!, For convenience let us
denote p-max(v) by j. Since v received u’s M2 message, for each process y
with u <y < v we must have (p — 1)-max(y) =<, which in turn shows that
p-max(y) = j. We now claim that d(u, v) = 277 . This follows from (c) in
the inductive hypothesis if vis in A(p — 1). If vis not in A(p — 1), then the
only way v could enter the waiting state in the (p — 1)st phase (and hence
possibly become active) is if d(u, v) = 27~ . Thus we have in any case that
d(u, v) = 277!, and hence :

d(origin(j), v) = d(origin(j), u) + d(u, v)
=2r1] 4207
=2 —1

as desired.

In order to prove (b), all that remains to be shown is that if origin(j) <y
< u, then p-max(y) = j, since we have already covered the case u <y < v.
By the inductive hypothesis we have (p — 1)}-max(y) =7, and hence it
suffices to show that the M1 message y receives in the (p — 1)st phase
carries a max-value less than j. Let x be the process in A(p — 1) closest on
the left to u. Then as d(x, u) = 277!, we have x < y < u, and hence the M1
message y receives in the (p — 1)st phase is the one initiated by x. Now we
are done since the fact that u initiated an M2 message implies that the value
carried in x’s M1 message, (p — 1)-max(x), is less than j.

To prove (c), it suffices to show that if 0 < d(y, v) <27, then y is not in
A(p). However, this follows immediately from (a), (b) and 3.3.1, since if
d(y,v) <27, then origin(j) < y < v, and hence p-max(y) = j = p-max(v),
which shows that both y and v cannot be in A(p). O

DOLEV, KLAWE, AND RODEH 255

COROLLARY 3.3.7. For each p, | A(p)|< n/2°.
Proof. 'This follows directly from Lemma 3.3.6(c). O

LeMMA 3.3.8. Let u be a process which initiates an M2 message in the pth
phase, let f be the furthest process to the right of u which sends on u’s M2
message in the pth phase, and let g be the process with d(f, g) = 27 — 1.
Then for any process y with f <y < g, y does not send an M2 message in the
pth phase.

Proof. Since f is the last process to send on u’s M2 message, and since
“only processes in A(p) can initiate M2 messages in the pth phase, it suffices
to show that there is no process y in A(p) with f <y =< g which initiates an
M2 message in the pth phase. Let w be the process in A(p) which is closest
to u on the right. First suppose that p-max(w) < p-max(«). Then w does not
initiate an M2 message in pth phase, and if z is any process in A(p) other
than u or w, then we cannot have f <z =< g, since d(u, z) = d(u,w) +
d(w,z)=2°%! by Lemma 3.3.6(c), but d(u, g) =d(u, f)+d(f, g)<
27%' — 1 by 332

Suppose now that p-max(w) = j > p-max(u). In this case we are able to
show that w is to the right of g, and hence there is no process in A(p)
between f and g. To see this, notice that since p-max(origin(j)) =j >
p-max(u), even if origin(j) receives the M2 message initiated by « in the
pth phase, origin(j) does not send it on. This shows that f is to the left of
origin(j). By Lemma 3.3.6(a) d(f, w) = 27, and hence we have f<g<w. [J

COROLLARY 3.3.9. The number of messages of type M2 sent in. the pth
phase is at most n2? /(2°+! — 1), '

Proof. This follows immediately from 3.3.2 and Lemma 3.3.8. O

THEOREM 3.3.10. The total number of messages sent is less than
B/nlogn + (8/3)n.

Proof. By Corollary 3.3.7 the algorithm terminates in at most logn + 1
phases. As in Algorithm A, no M2 messages are sent in the last phase, and
thus by Corollary 3.3.9 the number of M2 messages sent is less than
(1/2)nlog n + (5/3)n. Finally, the number of M1 messages is obviously at
most n(log n + 1), which completes the proof. [

To evaluate the number of bits sent, notice that every message of type
M1, assuming that the phase number has been eliminated, contains 1 +
log n + m bits, where m is the size of the representation of the individual
numbers. By modifying the algorithm to represent messages of type 2 as a
single bit, the number of bits sent in the algorithm becomes nlogn X
(logn + m) + O(nlog n). This is worse than the optimized version of
Algorithm A which uses nmlog n + O(nlog n) bits.

256 DOLEV, KLAWE, AND RODEH
4. THE MODIFIED PETERSON ALGORITHM

In this section we present an algorithm which uses the least number of
messages known so far. We begin by describing a new algorithm due to
Peterson {7], and stating several of its properties. Because of the similarity of
Peterson’s new algorithm to the simple algorithm in Section 2, we are able
to make analogous modifications which reduce the number of messages
sent. For the sake of brevity we will not include proofs which are directly
analogous to those in Section 3, but rather concentrate on the new ideas
which are necessary to analyse the performance of the modified Peterson
algorithm.

We now present Peterson’s new algorithm which he proved uses at most
cnlog n messages, where ¢ = 1/log((1 + /5)/2) = 1.440420. We actually
present a version which is slightly different from Peterson’s in order to make
the task of modification easier. We can think of the algorithm proceeding by
alternating between two types of phases. Each process is active at the
beginning of phase 0, and later becomes passive at some point during the
execution of the algorithm.

At the beginning of each even-numbered phase, each active process
initiates an M1 message containing its current max value. This message is
passed on by passive processes until it reaches the next active process. When
an active process receives an M1 message containing the value i, if i is
greater than its own max value, the process becomes passive. Otherwise it
starts the next phase (odd-numbered) by initiating an M2 message con-
taining its own current max value, which likewise is passed on by passive
processes until it reaches the next active process. When an active process
receives an M2 message containing the value i, if / is less than its own
current max value, the process becomes passive. Otherwise it changes its
current max value to 7, and begins the next even-numbered phase, issuing an
M1 message containing i. We also assume that whenever a passive process v
passes on an M2 message carrying a value / which is greater than its own
max value, the process v updates its own max value to i.

As before let A(k) denote the set of processes which are active at the
beginning of the k th phase. Peterson obtained the 1.44042...nlogn + O(n)
bound as follows. He first observed that | A(k)|=|A(k + 1)| +|A(k + 2)|
for each k, which shows that if the algorithm terminates in p phases, then
h=F(p+1), the (p+ 1)st Fibonacci number. Since F(p + 1) =
(A + y5)/2)7*' /45 + 0(1), solving for p yields the desired result.

Peterson’s algorithm also has the following properties, which are not hard
to prove by induction on the phase number. As before, k-max(v) denotes
the current max value held by the process v at the beginning of the kth
phase, and origin(i) denotes the process which held i as its initial value. For
convenience, if v is a process in A(k), we define the left neighbor of v in

EXTREMA FINDING IN A CIRCLE 257

"A(k) to be the process in A(k) which is closest to © on the left. Also, as
noted before, F(j) denotes the jth Fibonacci number, where we assume
F(0) =0, F(1) = 1, etc.

4.1. Let u and v be in A(k) such that u is v’s left neighbor in A(k). If k is
even then k-max(u) > k-max(v) implies that d(u,v) = F(k + 1), and k-
max(u) < k-max(v) implies that d(u,v) = F(k +2). If k is odd then
k-max(u) > k-max(v) implies that d(u, v) = F(k + 2), and k-max(u) < k-
max(v) implies that d(u, v) = F(k + 1).

4.2, Let k be odd and u € A(k). Then
d(origin(k-max(u)), u) = F(k + 1) — 1.

4.3. If u and v are different processes in A(k) then k-max(u) # k-max(v).

4.4. If uisin A(k) then for each process y with origin{ k-max(u)) <y < u,
we have k-max(y) = k-max(u).

4.5. If u and v are in A(k) and u is v’s left neighbor, then for each
process x with ¥ < x < v, we have k-max(x) < k-max(v).

As a consequence of these properties it is straightforward to verify that
the following modifications will not affect the correctness of the algorithm.

Each M2 message initiated in the kth phase will now carry, as well as its
usual max value, a counter which is initialized to F(k + 2). When a passive
process x receives an M2 message carrying max value i and counter value ¢,
then if i > k-max(x) and ¢ > 1, x decrements the counter value, sets
k-max(x) = i, and sends on the M2 message. If i > k-max(x) and ¢ = 1
then x sets k-max(x) = i, becomes active, and begins the (k + 1)st phase,
sending out an M1 message. Finally if / < k-max(x), the process x does
nothing, thereby stopping the M2 message. f

As before it is necessary to introduce a waiting state, into which active
processes enter after initiating M2 messages. Waiting processes handle
arriving M2 messages in the same way as passive processes, except that in
the case i < k-max(x) the process x becomes passive instead of doing
nothing. From the next remark it can be seen that the case i > k-max(x)
and ¢ > 1 can never arise when x is a waiting process.

It is straightforward to verify that the modified algorithm still has
properties 4.1, 4.2, 4.3, 4.4, and 4.5, where now of course A(k) and all the
other notation refers to the modified algorithm. Thus by 4.1, the algorithm
still terminates in at most 1 /log((1 + /5)/2)log n phases. As in the modified
Algorithm B of Section 3, it is easy to see that because of the presence of
counters in M2 messages, each M2 message in the kth, phase carrying a
value which survives into the next phase, travels distance exactly F(k + 2).
As a consequence, for any v in A(k + 1) where k is odd, if u is the process

258 DOLEV, KLAWE, AND RODEH

in A(k) which initiated the M2 message received by v in the k th phase, then
d(u,v) = F(k + 2).

For k = 2 and even, and v a process in A(k), we say that v is cramped if
the distance between v’s left neighbor and v is less than F(k + 2). Let C(k)
denote the cramped processes in A(k). First notice that if v is in C(k) then
v is not in A(k + 1), since if u is ©’s left neighbor in A(k), by 4.1 we have
k-max(u) > k-max(v), and hence v becomes passive during the kth phase.
This shows that | C(k) |<|A(k)|—|A(k + 1)|, hence | C(k)| +| C(k + 1)|
+ - +| C(p) |=|A(k)|, where p is the number of the last even-num-
bered phase.

LeEMMA 4.6. Let v be a process in A(k)\ C(k) where k is even and = 2,
and let {(v) be v’s left neighbor in A(k). Also, let D = {x: {(v) < x < v such
that x sent an M2 message in phase k — 1}. Then

|D|< (2F(k+ 1)/ (F(k+3)— 1)) d(¢(v), v).

Proof. Let u be the process in A(k — 1) which initiated the M2 message
which v received in phase & — 1. If there are no processes x in A(k — 1)
with €(v) = x <u then |D|< F(k + 1) since every M2 message in the
(k — 1)st phase travels distance at most F(k + 1), and since d({(v), v) =
F(k + 2) = F(k + 3)/2, we are done,

Thus suppose we have £(v) < ov(l) < -+ <ov(s) = u with each v(i) in
A(k — 1) for i=1,2,...,5 and s =2, such that no other processes in
A(k — 1) lie between £(v) and . Since £(v) is v’s left neighbor in A(k), we
must have (k& — 1)-max(v(i)) < (k — 1)-max(v(i + 1)) for i=1,2,...,
s — 1. Thus for each {, the M2 message initiated by v(i) could not travel
further than origin((k — 1)-max(v(i + 1))). By 4.2 we see that between v(i)
and v(i + 1) there are at least F(k) — 1 processes which do not send an M2
message, and as before, at most F(k + 1) processes which do send an M2
message. Also no processes between f(v) and v(1) send an M2 message.
This shows that | D|< sF(k + 1) and that d(8(v), v) = (s — I F(k) — 1)
+ | D|. Thus

| D|< (sF(k + 1)/ ((s — 1)(F(k) — 1) + sF(k + 1)))d(t(v), v)
<2(F(k+1)/(F(k +3) — 1)) d(¢(v), v)
since (s — 1)(F(k) — 1) + sF(k + 1) = (s/2)F((k + 3)) for k= 2. O

COROLLARY 4.7. The number of M2 messages sent in phase k — 1 is at
most

| C(k) | F(k+ 1)+(n—|C(k)|F(k + 1))QF(k + 1)/ (F(k + 3) — 1)).

Proof. Let v be in C(k), let £(v) be v’s left neighbor, and let u'be the
process in A(k — 1) which initiated the M2 message received by v in phase

EXTREMA FINDING IN A CIRCLE 259

k — 1. We claim that there is no x in A(k — 1) with {(v) < x < u. This is
easy to see, since if there were such an x we would have d({(v), v) =
d(x, u) + d(u,v) = F(k) + F(k + 1) = F(k + 2), and hence v would not
be in C(k). This shows that the total number of M2 messages sent in the
(k — 1Dst phase by processes which lie between some process v in C(k) and
its left neighbor £(v) in A(k), is at most F(k -+ 1}| C(k)|. Combining this
with the preceding lemma yields the desired bound. OJ

Corollary 4.7 shows that the total number of M2 messages sent is
bounded by n2{2F(k + 1)/(F(k +3) — 1): k=2 and even} +
Z{((F(k) — 1)/(F(k + 3) — 1))F(k + 1)|C(k)|: k=2 and even}. The
first of these sums is easy to estimate since F(j) = ¢///5 + O(1), where
¢ = (1 + /5)/2. Thus the first sum is bounded by 0.382 pn + O(n) where,
as before, p is number of the last even-numbered phase. The next lemma
gives an easy estimate of the second sum, which can be used to obtain a
bound of 1.376nlog n + O(n) on the total number of messages sent. We
will also sketch how to obtain a better bound on the second sum, which
yields the desired 1.356nlogn + O(n) bound on the total number of
messages.

LemMa 4.8. The sum

S = S{((F(k) = 1)/ (F(k + 3) = 1))F(k + 1) | C(k) | : k = 2 and even)

=0.07295pn + O(n).

Proof. Since the function ((F(k) — 1)/(F(k+3)— 1)F(k+ 1) is
strictly increasing in k, and since | C(k)| +|C(k + 2)| + --- +|C(p) |=
|A(k)|=[n/F(k + 1)}, it is clear that an upper bound for S can be,
obtained by setting |C(k)|=1+[n/F(k+1)] =[n/F(k+3)] =1+
n(F(k + 2)/F(k + 1)(F(k + 3)). Using the fact that F(j) = ¢//,5 + O(1)
and that p < log,n + O(1), we see that S < pn/(2¢*) + O(n) = 0.07295pn
+0(n). O

COROLLARY 4.9. The total number of messages sent is bounded by 1.376n
logn + O(n).

Proof. From Lemma 4.8 and the remarks preceding it we see that the
total number of M2 messages is bounded by 0.455pn + O(n). Since the
total number of M1 messages is 0.5pn + O(n), the total number of mes-
sages is bounded by 0.955pn + O(n). Now since F(p + 1) = n as observed
before, this implies that p < (log n/log ¢) + O(1), and hence p <
1.44051og n + O(1). Combining these together yields the stated bound. [

260 DOLEV, KLAWE, AND RODEH

We now indicate how to improve the bound on the sum S in Lemma 4.8.
For each even k = 2 and v in C(j) forj an even number greater than £, let
u(k, v) be the process in A(k) such that k-max(u(k, v)) = j-max(v). As
u(k, v) cannot be in C(k), the distance from u(k, v)’s left neighbor in A(k)
to u(k, v) must be at least F(k + 2). This yields the inequality F(k + 1)
| C(k)| +F(k + 20| C(k + 2)| +| C(k + 4| +--- +|C(p)) =n. It is
quite straightforward to check that if for some k > 2 we have F(k + 1)
| Ck)| +F(k +2)(|C(k +2)| +|C(k+ 4|+ ---+|C(p)]) <n, then
by increasing C(k) to make equality hold, and decreasing C(k — 2) by the
appropriate amount so that F(k — 1) | C(k — 2)| + F(k)(| C(k)| +] C(k +
2)| + -+ +|C(p)|) = n, the rest of the inequalities still hold, and the
value of the sum S is increased. Thus an upper bound on S can be obtained
by solving the equations F(k + 1)| C(k)| +F(k + 2)(| C(k + 2)| +| C(k
+4)|+---+|C(p)]) =n for {|C(k)|} and substituting them into §.
This method yields § =< 0.0591pn + O(n). Combining this with the other
bounds as before achieves the bound of 1.356nlog n + O(n) on the total
number of messages.

REFERENCES

1. J. E. Burns, “A Formal Model for Message Passing Systems,” TR-91, Indiana University,
September 1980.

2. E. CHANG AND R. ROBERTS, An improved algorithm for decentralized extrema-finding in
circular configurations of processes, Comm. ACM 22 (1979), 281-283.

3. R. G. GALLAGER, P. A, HUMBLET, AND P. M. SPIRA, “A Distributed Algorithm for
Minimum Spanning Tree,” MIT, LIDS-P-906-A, October 1979.

4. D. S. HIRSCHBERG AND J. B. SINCLAIR, Decentralized extrema-finding in circular configura-
tions of processes, Comm. ACM 23 (November 1980).

5. A. Itar AND M. RoDEH, “The Lord of the Ring or Probabilistic Methods for Breaking
Symmetry in Distributive Networks,” RJ-3110, IBM Research Report, April 1981.

6. G. LELaNN, “Distributed Systems—Toward a Formal Approach,” Information Processing
77, pp. 155-160, North-Holland, Amsterdam, 1977.

7. G. L. PETERSON, An O(nlog n) unidirectional algorithm for the circular extrema problem,
to appear in Transactions on Programming Languages and Systems.

A

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

