Finding the Neighborhood of a Query in a Dictionary

Danny Dolev*

Yuval Harari

Michal Parnas

Institute of Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, ISRAEL

Abstract

Many applications require the retrieval of all words
from a fized dictionary D, that are “close” to some in-
put string. This paper defines a theoretical framework
to study the performance of algorithms for this prob-
lem, and provides a basic algorithmic approach. It is
shown that a certain class of algorithms, which we call
D — oblivious algorithms, can not be optimal both in
space and time. This is done by proving a lower bound
on the tradeoff beltween the space and time complexi-
ties of D — oblivious algorithms. Several algorithms
for this problem are presented, and their performance
is compared to that of “Ispell”, the standard speller of
Uniz. On the Webster English dictionary our algo-
rithms are shown to be faster than “Ispell” by a sig-
nificant factor, while incurring only a small cost in
space.

1 Introduction

Many applications require the retrieval of all words
from a fixed dictionary D, that are “close” to some
query string. In some cases the query string may be
erroneous, and the task is to identify all possible cor-
rections. In other cases, the goal is to list all words
related in a certain way to the query. We will refer to
this as the Approzimate Query Relrieval problem.
This problem can arise in many different fields. The
most obvious examples come from spellers and speech-
recognizers, while variations of the problem can be
found in fields such as the analysis of DNA sequences
and proteins in Chemistry and Biology and even the
study of bird-singing (see [SK] for a detailed descrip-
tion of these and many more applications).

The problem of string matching with k-differences de-
fined by Landau and Vishkin ([LV1]) reminds the ap-
proximate query retrieval problem. In [LV1] a text

*The research was supported in part by the Yeshaya Horow-
its Association.

0-8186-3630-0/93 $3.00 © 1993 IEEE

33

and a pattern are given, and the goal is to find all oc-
currences of the pattern in the text, each with at most
k differences. Algorithms for string matching typically
scan the whole text for each pattern (see [LV1], [LV2]).
This approach may be used also for approximate query
retrieval when the size, | D, of the dictionary is small
enough. Then it is feasible to search all the dictionary
for all the alternative similar words of a given input
word. However, when the dictionary is large, a more
efficient approach is required.

Although there are many practical applications to the
approximate query retrieval problem, only limited the-
oretical research has been done so far. One of the main
contributions of this paper is to define a theoretical
framework to study algorithms for this problem, and
provide a basic algorithmic approach.

Informally, we are given a dictionary of words D over
some alphabet ©. We consider algorithms that store
D in buckets, where each word may be mapped to one
or more buckets, and preprocessing of D is allowed.
Then the algorithm should be able to answer queries
of the sort “What are all the words in D at some
given bounded distance from a query word u?”. The
sequence of buckets probed by the algorithm in order
to answer a given query u, will be called the search
sequence of u.

An algorithm for which the mapping of words into
buckets and the search sequences are fixed for any dic-
tionary D, will be called D-oblivious. Such algorithms
are of course preferred, since they are usually easier
to design and implement. But more important they
are able to handle a dynamically changing dictionary
D, without having to change the data structure every
time a word is added to D or deleted from it.

However, we show that no D — oblivious algorithm
can be both space optimal (i.e., use space |D|) and
time optimal (i.e., answer a query in time linear in the
answer size). Furthermore, we give a lower bound on
the tradeoff between the space and time complexities

of such algorithms (see Section 3). Optimal space D—
oblivious algorithms are further studied in [DHLNP].

More efficient algorithms must therefore take into ac-
count the size of the dictionary D and the distribution
of words in D. For example, in Chemistry and Biology
applications, many words have the same prefix. The
English dictionary contains many words that share the
same suffix “ing” and so on. These observations may
help design a more efficient algorithm for the specific
application at hand. Another major concern should
be whether the dictionary is static or dynamic. If the
dictionary is static then preprocessing may be allowed,
so that the best time-space tradeoffs are achieved; and
even if the dictionary is dynamic, there may be some
pre-knowledge on the possible distribution of words,
that should be taken into account when designing the
algorithm.

A similar observation is true for hashing algorithms.
It was shown (e.g., [DKMMRT],[FS]) that if the dic-
tionary is dynamic then a deterministic hashing algo-
rithm cannot achieve constant search time using linear
memory. [FKS] showed that if the dictionary is static,
then it is possible to achieve constant search time us-
ing only linear memory.

Given the above, we next present four algorithms that
take into account the size of the dictionary D and
the distribution of words in it. We start by introduc-
ing two algorithms that are based on error correcting
codes (see [PW],[MS] for definitions of error correct-
ing codes). Both algorithms map the dictionary into
buckets by exploiting the property of error correct-
ing codes that partition the space into spheres around
code words. We show how to choose the code as to
optimize the time and space tradeoff for a given dic-
tionary D (see Section 4).

We then describe two algorithms, Sub and Part, that
are based on the observation that two words are sim-
ilar if they have a common subword. Algorithm Sub
is D — oblivious and has low time and space complex-
ity if the words are relatively short (see Section 5).
Algorithm Part is more adaptive to D, and can be
designed to have almost optimal time and space com-
plexity (see Section 6). The performance of both algo-
rithms was tested on the Webster English dictionary
(i.e., || = 26), and compared to that of “Ispell”, the
standard speller of Unix. Both algorithms were found
to be significantly faster than “Ispell”, while incurring
only a small cost in space. For example, “Ispell” needs
time Q(n|X() to find all the words in the dictionary of
Hamming distance at most one from a given query of
length n, while Part gives an answer in time o(1).
These results are described in Section 7.

2 Problem Statement

Let U be a set of strings over an alphabet X. The
strings may be all of the same length n or of different
lengths. Let D C U be a dictionary of words, which
is usually a sparse subset of U.

Define the ¢ — neighborhood of u € U with respect to
U to be Ne(u) = {v|v € U, d(u,v) < c}, where d(u, v)
is some distance measure. The ¢ — neighborhood of
u € U with respect to D is defined in a similar way
as Ne(u,D) = {v|v € D, d(u,v) < ¢} = N(u)N D.
Let N. = |N.(u)| be the number of words in the ¢ —
neighborhood of any u € U.

The Approrimate Query Retrieval problem is to find
an algorithm that stores D using as little memory
as possible, and answers quickly queries of the sort
“Given a query u € U, return as answer the set
N¢(u, D).” Such an algorithm will be called an Ap-
prozimate Query Retrieval (AQR) algorithm.

2.1 Distance Measures

Different applications require different distance
measures. We will use two distance measures, the
Hamming Distance and the Levenstein Distance (see
[SK)).

The Hamming distance can be used only on words
u,v of the same length, and is simply the number of
coordinates in which u and v differ.

The Levenstein distance can be used on words u,v
of any given length, and is defined as the minimal
number of edit operations that transform u to v. The
edit operations that can be used are:

o Insert: Insert a letter to u.
e Delete: Delete a letter from u.

e Exchange: Exchange a letter of u with any letter
from L.

It is possible also to add the operation Swap (ie.,
swap two adjacent letters in u). Note that each one of
the operations exchange and swap can be achieved by
just performing a delete followed by an insert opera-
tion, while only doubling the distance.

2.2 The Model

Any AQR algorithm A performs two basic steps:
storing the dictionary D in memory and answering
queries. These two steps can be described formally as
follows:

1. Pre-process D: Use a multi-valued-function
STORE : U +~ {By,...,, By} to map each word
in D to one or more buckets B;. Notice that the
function STORE may depend on the dictionary

D. 1t is possible for A to store in memory only
buckets that are not empty, using some hashing
scheme (e.g., [FKS]).

2. Answer Queries: Use a multi-valued-function
SEARCH : U — {By,..., By} to associate a se-
quence of buckets S, with every word v € U,
such that N.(u, D) is contained in this sequence
of buckets. The sequence S, will be called the
search sequence of u. Then A can answer a query
u by searching the buckets B; specified by the
search sequence Sy, and returning as answer only
the words that are in Nc(u, D).

If the functions STORE and SEARCH are oblivious
to D, that is, the mapping into buckets and the search
sequences are fixed and independent of D, then the
algorithm A is called D-Oblivious.

2.3 Complexity Measures

The performance of an AQR algorithm A can be
measured by the space it uses to store D, and the
time it needs to answer a query u € U. We define
these measures as:

SPACE(A,D)=Y_|Bil,

TIME(A,D,u) = |Su|+ Y _ |Bil.
€Sy

Notice that we add the length |Sy| to the time com-
plexity, since the algorithm has to access |S,| buckets,
and each such access can result in a separate costly
disk access.

Algorithm A is space optimal if SPACE(A,D) =
O(| D)), for every dictionary D. Algorithm A is time
optimalif TIM E(A, D, u) = O(1+|N,(u, D)|), for ev-
ery dictionary D and for every query u € U (we add
one, for one disk access).

Remark: It is possible also to measure the complexity
of computing the functions STORE and SEARCH.
Note, that it is more important to have an easy to com-
pute function SEARCH, since the algorithm should
be able to answer queries fast. Whereas, the function
STORE will usually be used while pre-processing D,
and therefore can be allowed to be more complicated
to compute.

2.4 Two Basic AQR Algorithms

In order to demonstrate the above definitions and
concepts, we introduce two simple AQR algorithms
and state their performance.

¢ Optimal space algorithm: There is a bucket
B, for each u € D, defined by B, = {u}. Given

35

a query u, the algorithm checks for each word
i € N.(u) if the bucket B; is not empty and if so
returns the word i as part of the answer 1. Thus:
|Su| = |Ne(u)] = N., Time: N, + |Nc(u, D),
Space: |D| (optimal).

e Optimal time algorithm: There is a bucket B,
for each word u € U, defined by B, = N.(u, D).
Given a query u, the algorithm returns as answer
all the words in the bucket B,. Thus:
|Sy| = 1, Time: 1+|N(u, D)| (optimal), Space:
S uev INe(t, D)l = Lyep INe(w)| = NelDI.

These two algorithms are two extreme members of the
class of D — oblivious algorithms. Each one of them
is optimal in one aspect (i.e., space or time), but is
inefficient in the other. In the next section we show
that this is not a coincidence, and indeed there is a
tradeoff between the time and space complexities of
D — oblivious algorithms.

3 Lower Bounds for D — oblivious Algo-
rithms

In [DHLNP] a tradeoff for optimal space D —

oblivious AQR algorithms is proved, between the
length k of the search sequences and the size of the
buckets. It is shown that the size of the largest bucket
grows exponentially in n/k, where n is the length
of the words. From their results it is possible to
show that for any optimal space D — oblivious al-
gorithm A, there exist a dictionary D and a query
u € U, for which the search time is TIM E(A, D,u) =
Q(nN.(u, D)).
We further strengthen their results and give a series of
tradeoffs between the space and time complexities of
D—oblivious AQR algorithms that are not necessarily
space optimal.

3.1 Time-Space Tradeoffs

Define for any AQR algorithm A two parameters T4
and Sy, that bound the performance of A compared
to that of an optimal space and time AQR algorithm:

T _maxTIME(A,D,u)
AT WD |N(u,D)|+1°
54 = mgs SPACEALD)

For the rest of this section, assume that U = £" (i.e.,
all words are of length n), and that the Hamming dis-
tance is used. Thus, the size of a c—neighborhood in U
is No = S50 (D (IZ]-1) . Let I = |[Ne(u1)NNe(u2)|

1The “Ispell” standard speller of Unix is based on such an
algorithm.

be the number of words in the intersection of the
¢ — neighborhoods of two queries uy, us € U for which
d(u1,uz) = k. Note that the size of I}, depends only on
the distance k between u; and uz, and not on u,, us.
A few extreme values of I} for the Hamming distance
are specified bellow (the exact value of I; for a general
k is computed in Appendix A):

 h=35 708 - 1.
. = ().
o It =0fork>2c+ 1.
The main theorem we prove in this section is:

Theorem 3.1 Let A be a D — oblivious AQR algo-
rithm with parameters Ty and Sy4.

If Sa < Ne/2|ZF~' + 1) then Ty > (\/TZ+ 4N, —
Ix)/4 for any k > 0 (and vice versa).

Corollary 3.1 Let A be a D — oblivious AQR algo-
rithm with parameters Ty and Ts. Then:

o If A is space optimal, that is Sy = O(1), then

Ta = Q(V/N).

® If A is time optimal, that is Ty = O(1), then
Sa = Q(N,).

Notice that the space complexity of the opti-
mal time algorithm of Section 2.4 matches this
lower bound, while there is a gap of /N, be-
tween the lower bound and the time complex-

ity of the optimal space algorithm presented
there.
Ta
Wcﬂ.-.—.__-_
10~
l_]
T I T T T T) T i SA
! 1 1 N

Nc/4

Figure 1: The tradeoff between T4 and Sy
forn=10,X =26, c = 4.

The underlying idea of the proof is to show that if
the space used is small, then many queries access the
same bucket, but each one may find in that bucket
many irrelevant words. Thus saving in space results
in an increased time complexity. The proof itself is

36

composed of two parts. First, we show that for any
D — oblivious algorithm there exists a bucket B, such
that N, /(2T) words are mapped to B, and the search
sequences of N./(25,) queries include B. Next, we
show a tradeoff between the number of words mapped
to a bucket and the number of queries that access that
bucket. Then by comparing the quantities, a lower
bound on T4 and Sy, is derived.

We start with the first part. Let u € U. We will
say that u finds a word w € N,(u) in bucket B, if w
is mapped by the function STORE to the bucket B,
and the search sequence S, of u includes the bucket B.
The bucket B will be called big, if at least N./(2T4)
words are mapped to it by the function STORE. Oth-
erwise B will be called small.

Lemma 3.1 Let A be a D — oblivious algorithm with
parameters Ty and Sp. Then, Yu € U,

Hwld(u,w) < ¢, u finds w in a big bucket}| > N_/2.

Proof: The length of the search sequence of
any query u, satisfies: |Sy| < T4. Otherwise,
TIME(A, D,u)/(|Ne(u, D)| + 1) > T4, for a dictio-
nary D for which N.(u, D) = .

Assume the claim is false. Thus, u finds more than
1/2 of the words of N.(u) in small buckets. But this
implies that the length of the search sequence of u is
larger than Ty, in contradiction to the above.]

Lemma 3.2 Let A be a D — oblivious algorithm with
parameters Ty and S4. Then, 3w € U,

Huld(u,w) < ¢, u finds w in a big bucket}| > N/2.
Proof:
{(u, w)|d(u, w) < ¢, u finds w in a big bucket}|

= E Hwld(u,w) < ¢, u finds w in a big bucket}|
uelU
2 IUINC/zv
where the last inequality follows from Lemma 3.1.
Suppose the claim is false, then

H{(u, w)ld(u, w) < ¢, u finds w in a small bucket}|

= Z {uld(u,w) < ¢, u finds w in a small bucket}|
welU

> |UIN,/2.

But since the total number of pairs
is |[{(u, w)|d(u,w) < c}| = |U|N., a contradiction is
derived. 0

Corollary 3.2 Let A be a D — oblivious algorithm
with paramelers T4 and Sp. Then there ezists a
bucket B, such that N./(2T4) words are mapped to B,
and the search sequences of N./(254) queries include
B.

Proof: By Lemma 3.2, there exists a word w, for
which at least 1/2 of the queries u € Nc(w) find w in
a bucket with at least N./(2T4) words.

The word w € U is mapped to at most S4 buckets.
Else, SPACE(A, D}/|D| > Sa, for a dictionary D
that includes only w.

Therefore by the pigeon hole principle, one of the
buckets to which w is mapped, includes at least
N./(2T4) words and at least N./(254) queries access
it. m)

We now turn to the second part of the proof. That
is, we show a tradeoff between the number of words
mapped to a bucket and the number of queries access-
ing that bucket.

Lemma 3.3 Let A be a D — oblivious algorithm with
parameters Ty and Sa. If |Z|¥~1+ 1 queries access a
bucket B, then at most I + 2Ty words are mapped to
B. .

Proof: In any set of |Z[¥~! + 1 words there exist
two words u;,u; with distance d(uy,u2) > k. For
these two words |N(u1) N N.(u2)| < Ii.

It is also easy to see that if A is a D — oblivious al-
gorithm with parameter T4, and u is some query that
accesses a bucket B, then at most T4 of the words
mapped to B do not belong to Nc(u). Otherwise,
let D be a dictionary for which N.(u,D) = @, but
that includes all other words mapped to B. Then,
TIME(A, D,u)/(|Nc(u, D)| + 1) > Ty.

Therefore, at most I} + 274 words are mapped to B.
Else, there are more than T4 words that do not belong
to Nc(uy) or to Ne(usz). n}

By combining the two parts we can now prove Theo-
rem 3.1:

Proof of Theorem 3.1:

By Corollary 3.2, there exists a bucket B, such that
N./(2T4) words are mapped to B and N./(2S4)
queries access B. Hence by Lemma 3.3, if N./(254) >
|Z¥=1 + 1 then N./(2T4) < It + 2T4. Solving these
two inequalities proves the claim. a

4 Algorithms Based on Error Correct-
ing Codes

We present two AQR algorithms CODE1l and
CODE?2 that use error correcting codes as a main

37

building block. Both algorithms exploit the structure
of code words and spheres around them, in order to
map the space U efficiently into buckets. For the rest
of this section assume the Hamming distance is used,
and all words are of length n.

Let C be an error correcting code over U, where U =
7. The code C is called an (n,t,d) — code if { is
the maximum value such that the spheres of radius ¢
around code words are disjoint, and d is the minimum
value such that the spheres of radius ¢t + d cover U
(see [PW] or [MS] for a comprehensive description of
error-correcting codes).

The following AQR algorithms are a generalization of
the two basic algorithms described in Section 2.4 (for
t=d=0).

4.1 Informal Description of CODFE1

Let C be an (n, t,d)—code. There is a bucket B, for
each code word z € C. The function STORE maps a
word w € D to the bucket of the nearest code word.
The function SEARCH associates with each query u
a search sequence Sy, that includes all the buckets of
code words at distance at most t + d + ¢ from u. The
¢—neighborhood of u may have been mapped to these
code words (and only to them), since each word is at
distance < t + d from some code word.

4.2 Informal Description of CODE2

Let C be an (n,t, d)—code. There is a bucket B, for

each code word z € C. The function STORE maps
a word w € D to the buckets of all the code words at
distance at most ¢ + d + ¢ from w.
The function SEARCH associates with each query u
a search sequence Sy, that includes just the bucket of
the nearest code word to u. This bucket includes the
¢ — neighborhood of u, by the nature of the function
STORE.

4.3 Complexity of Algorithms CODE1
and CODE?2

The following lemma will be used in the analysis of
the algorithms:

Lemma 4.1 Let C be an (n,t,d)-code. Then the num-
ber of code words at distance at most t + d + ¢ from
some word u € U is O((2)%+<(|Z| — 1)%*°).

Proof: Denote by Z; the number of code words at
distance ¢ + i from u, where i = 0,1..,d+c.

There are (7)(|Z| — 1)} words at distance i from u.
Call them the ¢ — neighbors of u. Let = be some code
word at distance ¢ + ¢ from u. Then, exactly ("!’i)

of the ¢ — neighbors of u belong to N;(z). Since the
spheres of radius ¢ around code words are disjoint,

z< (F)om-7(* 1) < @rami- .

Hence the number of code words at distance at most
t+ d + ¢ from u is:

d+ec n
D% = 0Bl -)*e).
i=0

Complexity of Algorithm CODE1

The space complexity of algorithm CODE1 is opti-
mal, since each word w € D is mapped to exactly one
code word. Thus

SPACE(CODE1, D) = |D|.

The time needed to answer a query u is composed of
two parameters: the number of buckets that are ac-
cessed and the number of words found in each bucket.
The length of search sequence of u is bounded by the
number of code words at distance < t + d + ¢ from u.
Also, if z is a code word, then the bucket B, includes
at most | N¢y4(z, D)| words. Thus by Lemma 4.1:

TIME(CODE1,D,u) <

O((Y*(IZ] = 1)*) + 3| Nisa(z, D)

z€C
d(u,z)<t+d+e

Complexity of Algorithm CODE?2

The length of the search sequence of any query u is
exactly one, and includes the bucket of the nearest
code word to u. Denote this nearest code word by z,,.
The words that are mapped to the bucket of z,, are all
the words at distance < t 4+ d + ¢ from the code word
z,. Hence the time complexity is:

TIME(CODE?, D, 'U.) =1 + |Nt+d+c(zu, D)l
To compute the space complexity we again use
Lemma 4.1, since each word w € D is mapped to all

code words at distance < t 4+ d + ¢ from it:

SPACE(CODE?2, D) = 0(|D|(;)d+°(|2| — 1)%t9),

Remarks:

e As already stated, each access to a bucket can
result in a costly disk access. Thus algorithm
CODE? has an advantage in this sense over al-
gorithm CODE]1, since each query accesses ex-
actly one bucket. The advantage of CODE2
grows when the dictionary D is sparse, because
then its time complexity decreases. Where as
the time complexity of CODFE1 stays large, since
each query accesses a large number of buckets in
any case.

e The complexity of the functions STORE and
SEARCH of both algorithms depends on the ef-
ficiency of decoding the code. Finding the near-
est code word to some word, can be done by
simply using the decoding function of the code.
Again, algorithm CODE?2 has some advantage
over CODE1, since the function SEARCH 1is
easier to compute in CODE?2.

4.4 Choosing a Good Code

The complexity of algorithms CODFE1 and
CODE? depends highly on the parameters ¢ and d
of the code. Since it is always possible to find a code
with d < t, we concentrate first on choosing an opti-
mal t. We then describe briefly some bounds on d.

4.4.1 Choosing t

The dictionary D is usually sparse in U, and thus
we can assume that most buckets will include signif-
icantly less words than were mapped to them. If we
assume also that D is uniformly distributed, then we
can choose t as to optimize the space and time com-
plexity of the algorithms. The details are omitted and
can be found in [H].

4.4.2 Boundson d

Both algorithms use a general (n, ¢, d)—code, and their
efficiency depends also on d. Hence an important ques-
tion is to try to determine an upper bound on d that
would guarantee the existence of an (n,t,d) — code,
for any given n and ¢. An upper bound of d < t is
easy to show, but no better general bound is known.
This question is of independent interest to the study
of error correcting codes, and some bounds were given
for special types of codes (see [CKMS]).

A special subclass of codes are the perfect codes. An
(n,t)-perfect code, is a code for which the spheres of
radius ¢t are disjoint and every vector is at distance
at most ¢ from some code word (i.e., d = 0). Perfect
codes exist for only very restricted values of n and ¢.

The Hamming code is a binary perfect code for t = 1
and n = 2" — 1. The Golay code is perfect for n = 23
and ¢t = 3. It was proven that no other interesting
perfect codes exist ([V]).

An (n,t)-quasi perfect code is a code for which spheres
of radius ¢ around code words are disjoint, and every
vector is at distance at most ¢t + 1 from some code
word (i.e., d = 1). For ¢t = 1 there exists a binary
quasi perfect code for any n = 2" — 2; for ¢ = 2 there
exists a binary quasi perfect code for any n = 4" — 1
(see [GS]). Many other quasi-perfect codes were found
(see [MS]).

A list of all known best cods for n < 128 can be found
in [B}. For most practical applications these codes will
do.

5 Algorithm Subwords — Subqueries

In this section we present an AQR algorithm called
Subwords — Subqueries (Sub), which is based on the
observation that words are similar if they have a com-
mon subword. The space and time complexity of this
algorithm depends on the length of the words (and
not on X), and thus the algorithm is efficient when
the words and queries are relatively short. The algo-
rithm can find the neighbors of a given query for either
the Levenstein or the Hamming distance.

A word z will be called an i — subword of w, if it
is possible to derive = from w by 7 delete operations.
Thus of course d(z,w) < 1.

5.1 Informal Description of Sub

There is a bucket B; for each z that is an 7 —
subword of some word in D, for i = 0,1,...,¢. The
function STORFE maps a word w € D to all the buck-
ets of its i — subwords, for i = 0,1, ...,c.

The function SEARCH associates with each query
u € U a search sequence Sy, that includes the buckets
of all the i — subwords of u, for i = 0,1,...,¢. The
buckets accessed by S, include all the words at dis-
tance at most ¢ delete and c insert steps from u. Thus
they also include all words that are at most ¢ exchange
or swap steps from u.

If we want to find only neighbors for the Hamming
distance, then it is enough to store and search only
the ¢ — subwords of each word (since two words of the
same length at distance at most ¢ from each other,
must have a common ¢ — subword).

5.2 Complexity of Algorithm Sub

Each word w € D is mapped to the buckets of all
its i — subwords, for i = 0,1, ..., c. If the length of w
is |w], then w has Y¢_; (') such subwords. Denote
by Dj; the set of all words in D of length j, and let

maz be the length of the longest word in D. Then the
total space used is:

SPACE(Sub, D) = 'f |D,-|ij (:) <D| Z ("‘;‘”).

ji=1 =0 £=0 .

Given a query u € U, we search the buckets of all
its ¢ — subwords, for i = 0,1,...,c. Thus the length
of the search sequence of u is 3;_, (":'). Denote by
N.(u, D) the set of all words in D at distance at most ¢
delete operations and c insert operations from u. The
buckets searched include only words from N.(u, D) (at
most ¢ delete steps to get from u to the subword z that
represents a given bucket B, and at most ¢ insert
steps to get from z to another word in B;). Hence:

TIME(Sub, D, u) < 2 (";') +|N.(u, D)| g (";').

The analysis for the Hamming distance is similar.

6 Algorithm &k — Partition

We now present an AQR algorithm called & —

Partition (Part), which is based on ideas similar to al-
gorithm Sub, that is, storing and searching subwords.
The worst time and space complexity of this algorithm
may be as bad as that of the algorithm Sub, but in
most practical applications its performance is much
better.
The basic idea is to partition each word and query into
k parts, using some fixed partition P, where k > c.
Any two words u,w with distance d(u,w) < ¢, have
at least k — c identical parts, and can be compared
using these parts. The partition P will be called a k-
partition. A word z will be called a (P, k, ¢) — subword
of w, if it is composed of exactly k — ¢ parts of w,
under the partition P. We first show how to find
neighbors of Hamming distance at most ¢ from a given
query, and then generalize the algorithm for the Lev-
enstein distance (see Appendix B).

6.1 Informal Description of Part for the
Hamming Distance

Denote by maz the length of the longest word in D.
For all the words of length i (i = 1,2, ..., maz) choose a
fixed partition P; that partitions words of length ¢ into
k parts. Any partition into k parts is allowed; that is,
each part can include any set of letters (not necessarily
consecutive) but the parts must be disjoint. Define a
bucket B, for each word z that is a (P;, k, ¢)— subword
of some word of length i in D.

The function STORE maps a word w € D to all the
buckets of its (Pluy, k, ¢) — subwords.

The function SEARCH associates with each query
u € U a search sequence S, that includes the buckets
of all the (Py|, k, ¢) — subwords of u.

6.2 Complexity of Algorithm Part

Each word w € D is mapped to the buckets of
all its (P, k, ¢) — subwords, for some partition P that
partitions w into k parts. The number of (P, k,c) —
subwords is exactly (t) (i.e., all the ways to choose
k — c parts from a total of k parts). Therefore:

SPACE(Part, D) = (’z) ID.

The length of the search sequence of any query u is
(’c’) for the Hamming distance, and slightly more for
the Levenstein distance. The problem is to determine
the total number of words in the buckets accessed by
the search sequence of u, and the number of words in
these buckets that do not belong to N.(u, D).

The performance of the algorithm can be improved
significantly by choosing a partition that does not cre-
ate large buckets. If large buckets do occur, then it
is possible to use a second partition to distribute the
words in them to sub-buckets. This process can con-
tinue until every bucket contains only a constant num-
ber of words. Recall that these computations can be
done during the preprocessing stage of D.

In Section 7 it is shown that for the English dictionary,
there exists a partition for which the average bucket
includes only a constant number of words. Thus the
average time complexity for the English dictionary is
TIME(Part, D,u) = O((*) + |N.(u, D)|). However,
there are dictionaries for which any partition creates
large buckets (e.g., a dictionary that includes all the
words in some large sphere). It is an open problem
to determine for what dictionaries there exists a good
partition.

6.3 Examples of k — partitions

The simplest possible 2 - partition splits each word
to a prefix and suffix of equal length. Such a partition
can find neighbors at distance at most one from a given
query. Consider the following dictionary and the set
of buckets created for it:

[creature | junction | juncture | position |

The query “pisition” will be searched by its prefix
and suffix. Its prefix, “pisi”, does not match any of the
prefix-buckets, but its suffix “tion”, matches bucket 4.
Therefore, we search bucket 4 for neighbors and find
the word “position”.

40

Prefix buckets:

[orea | posi |

< Y

1

2 3
Now consider a partition to ¥ = 4 parts, such
that each subword includes 2 parts. Such a par-
tition can find neighbors at distance at most 2
from a given query, as shown in the following fig-

Suffix buckets:

I junc

ure:
The dictionary word: The query word:
lardhitlecdurd ar kitlecqura?
is kept in 6 different buckets: looks for 2-neighbors in 6 buckets:

[arclhit

arc

arclkit ?
ect]|<" ‘harclcct?

arc|ura ?

kil|ect ?

E| 512
- |=] =
1E B
=
-
®

kit|ura ?

ectlura ?

[
(¢}
E

7 Comparison of Algorithms

In this section we give a short comparison of the
performance of three AQR algorithms on the Web-
ster English dictionary (i.e., |X| = 26). The Webster
dictionary includes 234,936 words. The algorithms
checked were: “Ispell” , Sub and Part. All three al-
gorithms were supposed to find all the neighbors at
distance at most one (i.e., ¢ = 1) from a given query.
The space used by each algorithm is specified in Table
1. “Ispell” uses an algorithm similar to the Optimal
space algorithm described in Section 2.3, and thus uses
optimal space.

Algorithm Sub stores a word of length j in j buck-
ets for the Hamming distance (the buckets of all its
1 — subwords), and j + 1 buckets for the Levenstein
distance (the buckets of all its 1 — subwords and the
bucket of the word itself). Denote by D; the set of
English words of length j, and by maz the length of
the longest English word. Then the total space used
by Sub is E;";f j|Dj| for the Hamming distance and
|D|+3"7F | D;| for the Levenstein distance (see Sec-
tion 5.2).

The partition used for algorithm Part was a partition
into k = ¢+ 1 = 2 parts. Therefore each word was
stored in 2 buckets, thus using a total space of 2| D).

In order to compute the time complexity, we checked
for each algorithm how many words were mapped to
each bucket (worst and average case), and how many
buckets each algorithm accessed in order to answer a

query.

Algorithm | Space used for | Space used for
Hamming Dist. | Levenstein Dist.
Ispell D| |D]
Subd 6.96|D 7.96|D
Part 2|D 2|D
Table 1: Space used for the English dictionary

for ¢ = 1, where |D| = 234,936 words.

Algorithm | # buckets | largest | average | average
accessed | bucket | bucket time
Ispell 226 1 1 226
Sub 9 7 1.06 18.54
Part 2 27 1.45 4.90
Table 2: Performance results for the Hamming

distance, for queries of length n = 9 and forc = 1.

Algorithm | # buckets | largest | average | average
accessed | bucket | bucket | time
Ispell 495 1 1 495
Sub 10 7 1.06 20.66
Part 6 312 2.96 23.76
Table 3: Performance results for the Levenstein

distance, for queries of length n = 9 and fore¢ = 1.

The average time needed to answer a query was then
computed by adding the number of buckets accessed
(i-e., the length of the search sequence) to the average
number of words found in all buckets accessed. These
results are described in Tables 1 and 2. Note that all
the units in the tables are units of words.

The length of the search sequence of “Ispell” for a
given query u is |N.(u)|. Thus for ¢ = 1, the length of
the search sequence is 1 +n(}X| — 1) for the Hamming
distance, and 1+ n(|JZ| — 1) + n + (n + 1)|Z| for the
Levenstein Distance. We used the length of the search
sequence as a lower bound on the time needed by “Is-
pell” to answer a query; although in practice the time

41

complexity may be even larger when the algorithm
actually finds neighbors and has to read them.

The length of the search sequence of algorithm Part
for ¢ = 1,k = 2, is 2 for the Hamming distance, and
6 for the Levenstein distance. The best partition into
2 parts that was found for words of length 9 is: the
1st, 3rd, 6th, 8th letters in one part, and the 2nd, 4th,
5th, 7th, 9th letters in the second part. For the Leven-
stein distance, each word was partitioned to a prefix
of length 4 and a suffix of length 5. Note that the
results for Part are better for the Hamming distance,
when it is possible to choose the partition.

The length of the search sequence of algorithm Sub
for queries of length j, is j for the Hamming distance
and j + 1 for the Levenstein distance.

In general, the results show that for the Hamming
distance and ¢ = 1, “Ispell” uses space |D| and needs
Q(n|XZ|) time to answer a query. Algorithm Sub uses
space n|D| and average time O(n), while algorithm
Part uses space 2|D| and average time O(1). For the
Levenstein distance algorithm Sub is slightly faster
than Part, and both are superior to “Ispell”.

References

[B] A.Brouwer. Best Known Codes for n < 128. To
be published in IEEE Transactions on Inf., 1993.

[CKMS] G.D. Cohen, M.G. Karpovsky, H.F. Mattson
and J.R. Schatz. Covering Radius - Survey and
Recent Results. IEEE Transactions on Informa-
tion Theory, Vol 31, No. 3, 1985.

[DHLNP] D. Dolev, Y. Harari, N. Linial, N. Nisan and
M. Parnas. On Neighborhood Preserving Hashing.
Technical Report 92-31. Hebrew University.

[DKMMRT] M. Dietzfelbinger, A. Karlin,
K. Mehlhorn, F. Meyer auf der Heide, H. Rohn-
ert and R.E. Tarjan. Dynamic Perfect Hashing
- Upper and Lower Bounds. 29th Symposium on
Foundations of Computer Science, 1988.

[FKS] M.L. Fredman, J. Komlos, E. Szemeredi. Stor-
ing a Sparse Table with O(1) Worst Case Access
Time. J.ACM 381, 1984, pp. 538-544.

[FS] M.L. Fredman and M.E. Saks. The Cell Probe
Complexity of Dynamic Data Structures. 21st An-
nual ACM Symposium on Theory of Computing,
1989.

[GS] J.M. Goethals and S.L. Snover. Nearly Perfect
Binary Codes. In Discrete Mathematics 3, 1972,
pp. 65-88.

[H] Y. Harari. Algorithms and Lower Bounds for Re-
trieval of Neighbors from a Dictionary. M.Sc. the-
sis. Hebrew University, 1992. In Hebrew.

[L] K. Lindstrom. The Nonexistence of Unknown
Nearly Perfect Codes. Ann. Univ. Turku., Ser.
A, No. 169, 1975, pp. 3-28.

[LV1] G.M. Landau and U. Vishkin. Efficient String
Matching in the Presence of Errors. Proc. 26th
IEEE Symposium on Foundations of Computer
Science, 1985.

[LV2] G.M. Landau and U. Vishkin. Introducing Effi-
cient Parallelism into Approximate String Match-
ing and a New Serial Algorithm. Proc. 18th An-
nual ACM Symposium on Theory of Computing,
1986.

[MS] F.J. MacWilliams and N.J.A. Sloane. The The-
ory of Error Correcting Codes. North-Holland
Publishing Company, 1977.

[PW] W.W. Peterson and E.J. Weldon. Error Cor-
recting Codes. MIT Press, 1972.

[SK] D. Sankoff and J.B. Kruskal. Time Warps,
Strings Edits and Macromolecules: The Theory
and Practice of Sequence Comparison. Addison-
Wesley Publishing Company, Inc., 1983.

[V} J.H. Van Lint. A Survey of Perfect Codes. Rocky
Mountain Journal of Mathematics, Vol. 3, No. 2,
1975, pp. 199-224.

A Computing I;
Lemma A.1
c i c n—k ,
=y 3y (" F)em-
i=0 s=0j=s

k 1— 8 i
_oyi+i—k-2s
x(k—i+s)(i+j—k—2s)(p:| 2

Proof: Let z and y be two words in U with
Hamming distance d(z,y) = k. We want to find
the number I; of words in the intersection of their
¢ — neighborhoods. We will do so by computing the
number of words at distance ¢ from z and j from y,
and summing for all possible pairs ¢ and j.

So let w be a word such that d(z,w) = i and d(y, w) =
j. The words z and y agree on n — k coordinates and
disagree on k. It is possible to construct w in the
following way:

Choose s coordinates from the n — k coordinates in
which z and y agree and change them, and let the

42

other n—k —s coordinates of w be as they are in and
y. This can be done in (”;k)(|)3| — 1)° ways. From
the k coordinates that z and y disagree on, choose
k—i+stobeaszand k—j+ s to be as y. The rest
i+ j — 25 — k coordinates of w will be different from
z and y. This can be done in (k—I:+s) (i+j'——k‘,—2&)(|2| -
2)i+i k=2 ways.

Putting all this together, and letting 7, j and s range
over the correct domain, proves the claim.]

B Algorithm Part for the Levenstein
Distance

In a similar way to the algorithm for the Hamming
distance, choose partitions P;, for i = 1,2,...,maz.
Now, the only partitions allowed, are those that par-
tition the words into k parts, such that each part is
composed of a sequence of consecutive letters. For ex-
ample, if we partition the words into k = 2 parts, then
each word must be partitioned into a suffix and prefix
(not necessarily of the same length).

The function STORE maps a word w € D to all the
buckets of its (Pw|, k, c) — subwords.

Answering a query u is slightly more complex. We
demonstrate the search procedure for ¢ = 1, that is
neighbors of distance at most 1 from u. The general-
ization to a larger ¢ is straight forward.

Given a query u of length n, the possible neighbors of u
in D are of length n—1,n,n+1 (for ¢ = 1). Neighbors
of length n, are at Hamming distance 1 from u. Thus
using the partition P, on wu, it is possible to search for
all these neighbors as described in Section 6.1.

A possible neighbor v of length n + 1 has one extra
letter in one of its k parts. Assume this extra letter is
in part j. Construct the (Pn41,k,c) — subword of u
that does not include part j, as follows:

Parts 1,2,...,5 — 1 of u will be computed using par-
tition P,4;. Part j of u will be one letter shorter
than it is in partition P, and will be omitted. Parts
J+1,7+2,...,k of u will thus be shifted one letter to
the left, and computed according to partition Pn41.
Then v can be found in the bucket of this subword.
This process is repeated for j = 1,...,k, and then a
similar search is carried out for neighbors of length
n—1.

