
On Distributed Algorithms in a BroadcastDomain ?Danny Dolev??, Dalia Malki???The Hebrew University of Jerusalem, IsraelAbstract. This paper studies the usage of broadcast communication indistributed services. The approach taken is practical: all the algorithmsare asynchronous, and tolerate realistic faults. We study four problems ina broadcast domain: clock synchronization, reliable and ordered broad-cast, membership, and �le replication. The clock synchronization algo-rithm shows for the �rst time how to utilize broadcast communicationfor synchronization. The master synchronizes any number of slaves whileincurring a constant load. The approach taken in the �le replication tooluses snooping in order to enhance the availability of �le systems, at al-most no cost.1 IntroductionThis paper presents algorithms that use broadcast communication. The broad-cast primitive enables the dissemination of messages to multiple destinationsvia a single transmission. The motivation behind this work is practical: mostcomputer networks nowadays essentially provide a datagram broadcast service.Most transport protocols do not utilize the broadcast capability, though, be-cause the handling of faults and retransmissions is far more complicated thanpoint to point communication. Future networks designs also appear to possessthe broadcast capability (e.g. FDDI, MAN, wireless networks based on cellularcommunication).Thus, it is important to de�ne high level services over the datagram broad-cast layer, and examine how applications can utilize broadcast communication.Our work incorporates the broadcast primitive into the system model. We showvarious algorithms in this model that are substantially di�erent from their point-to-point counterparts. We focus on practical algorithms, and present their basicproperties. Therefore, all the algorithms are asynchronous, and tolerate realisticfaults.The �rst algorithm we present is for a clock synchronization service. While itis rather obvious that broadcast messages are capable of carrying data to multipledestinations e�ciently, we have not seen any use of it in synchronization. We? This paper appears in Intl. Conference on Automata, Languages and Pro-gramming, July 1993, Lund Sweden, pp. 371-387.?? also at IBM Almaden Research Center??? This work was supported in part by GIF I-207-199.6/91.

show how multiple clients can synchronize with a single time-source (\master")using broadcast messages. The master incurs a constant overhead of emittingthe broadcast messages, regardless of the number of clients being synchronized.The second service presented is a reliable broadcast service, that deliversmessages to a group of processes, while preserving their relative orders. Thispaper surveys some of the protocols suggested in the literature for these services.One of the interesting trade-o�s manifested in these protocols is whether toemploy a central coordinator for achieving an agreed order of delivery of themessages.Another category of distributed algorithms that are examined in the broad-cast domain are algorithms that need to achieve coordinated decisions. Theimpossibility result of [14] bounds all these problems within an asynchronousenvironment. The problem is the inability to distinguish between a slow machineand one that crashed. In practical asynchronous systems it is often preferable togive-up on a slow machine, rather than get stuck in waiting.The membership protocol we present circumvents this problem by maintain-ing the set of machines that appear active internally at any point. Moreover,other protocols can use the membership service instead of explicitly handlingthe dynamicity in the system. The speci�c membership protocol presented herehandles both failures and recoveries of machines, and network partitions and re-merges. We provide an informal de�nition of the requirements of the membershipservice, while allowing partitions.We conclude with a utility that exploits an unusual facet of broadcast com-munication, the ability to snoop and intercept broadcast messages. We showhow to use the snooping ability in order to enhance availability of �le system,at almost no cost.None of the above protocols explicitly uses any known theoretical solutionto coordination problems, even though these problems were extensively studied.Randomized protocols prove their usefulness in overcoming the impossibility ofconsensus ([14]). However, they proved to be too complicated for usage, andtypically exchange too many messages. Speci�cally to this context, we note thatthere are no randomized protocols that utilize available broadcast as a primitive.Another approach that was taken in manyworks, is to assume that the systemis synchronized. Thus, all machines perform their operations in a synchronouslock step. There were a few variations to this approach, but shared by all of themis the need to guarantee a tight synchronization. In practice this is not a validapproach, since distance, temporary load, and the independence in operation ofindividual machines prevents us from guaranteeing such a synchronization. It istrue that one can assume, for instance, that 90% of the messages arrive within asmall window of time, but the rest of the messages may take a much longer timeto arrive. Tight synchronization requires a single step of the protocol to be verylarge, so that all but few of the messages sent at that step will arrive correctly.The algorithms presented in this paper operate within a realistic model, andwere all implemented. We encourage other researchers to continue investigatingthe possibilities and tradeo�s within this framework, and explore the possibility

of using randomized techniques in practice.2 System ModelThis section presents the assumed underlying model of the rest of the paper.We believe that the model below re
ects the basic concepts shared by most dis-tributed systems today. A distributed system comprises of a set of machines.that communicate using messages. The underlying network is completely con-nected and can transfer messages between any pair of machines. In addition, thenetwork provides a broadcast service. A machine emits a broadcast message atonce to all its destinations. A single copy of the message reaches all the machines,but might arrive at di�erent times to them.An essential property of the model is that broadcast messages incur the sameprocessing overhead as unicast messages at the sending and at the receivingmachines. Similarly, broadcast messages consume identical network capacity asunicast messages.A broadcast message is sent \anonymously" and does not require speci�caddressees. In this paper we will not distinguish between broadcast, which sendsa message to all the machines in the network, and a multicast, which sends amessage to a selected subset via a group-designation. The broadcast capabilityalso enables in some cases a non-targeted machine to snoop and intercept mes-sages. This might be a security concern for some environments; in this paper wepresent an advantageous facet of this property.A typical LAN architecture is composed of one or more broadcast segments,interconnected via bridging and gateway elements. The LAN might partition totwo sets of machines, in case a bridging/gateway element fails. In case that someother machine fails or disconnects from the network, the remaining machinescontinue to be connected and to pass messages undisturbed. Machine failure iseither fail stop or omission, thus a machine may fail to send messages, but willnot produce messages that are not part of the basic protocol. Thus, no byzantinefaults are assumed. Moreover, in the context of this paper it is assumed that ifa message arrives to its destination, its data is assumed to be uncorrupted.The broadcast service provided by the hardware media is an unreliable data-gram service. A single transmission can potentially reach all the machines, butit may fail to go out, or a single machine might miss it. Although message lossrate is not speci�ed explicitly, the protocols were designed under the assumptionthat it is low.The Basic Impossibility ResultAt the basis of any coordination problem in a distributed system lies some al-gorithm like atomic-broadcast and membership-maintenance which requires aconsensus at one level or another. Fischer Lynch and Paterson ([14]) were the�rst to point out that there is no way to reach consensus in an asynchronous dis-tributed system, when faults may occur. Moreover the asynchrony that producesthe di�culty can be very limited, as can be seen in [11].

The basic idea behind all these impossibility results is that there is no way todistinguish between a very slow machine and a failed one. Since any nontrivialcoordination problems should be determined on the
y according to the initialinputs to the individual machines, there should always be a case in which asingle machine may determine the general outcome. Thus, as long as the inputfrom this machine does not arrive, we cannot guarantee that all the correctlyoperating machines will perform the same operation (or reach the same decision).The Practical ApproachIn practice, coordination problems cannot be solved in \full", i.e. their solutionmay not comply with an outsider's view of the system and its view of \correct"processors. In order to be able to overcome the impossibility result, machineswill use inaccurate fault detectors, based on timeout. The coordination decisionsare reached only among the machines that are viewed internally as operational,and not necessarily \really" all the operational machines. Thus, in the cases thatthe fault detector errs, a correctly operating machine may be considered faulty,and will need to reconcile with the rest of the machines at some later time.The basic di�erences can be summarized as follows: in our approach individ-ual machines operate asynchronously, each one at its own pace. Prior to somedecision points some machine may need to wait for others, but instead of adeadlock, a timeout will detect failures, and will enable the machines to resumeoperation.3 Clock SynchronizationIn this section we will describe a new approach to clock synchronization. Theapproach utilizes the broadcast domain environment and enables synchronizingmany machines without explicitly exchanging messages with each one of them.Common to all clock synchronization algorithms is the need to exchange mes-sages between the synchronizer and the synchronized machine. This is true inmaster-slave protocols, as well as in all versions of distributed clock synchroniza-tion protocols. The need arises from the requirement to produce three events,two on one clock and a middle one on a di�erent clock. Once such events are iden-ti�ed, one can obtain an estimate on the di�erence between the clock readings.This estimate is used to adjust one of the two clocks.An access to an outside time source is a common way to obtain a precisetime service. And several researchers have o�ered to use the machine havingthat input as the master clock that will occasionally synchronize the rest.This approach seems to mean that in such a time service, if many machinesare connected via a LAN, and one of them is the master, it will need to explicitlyexchange messages with each one of them in order to synchronize all the clocks.When the LAN contains dozens of machines this becomes a real load on themaster machine. The problem is to �nd a way to broadcast the time informationto synchronize individual clocks without the need to explicitly exchange messagesbetween the master and the slaves.

A Simpli�ed SolutionFirst concentrate on a simpli�ed model. Assume that the master machine hasa direct access to the LAN in the sense that it does not use any bu�er tostore messages it sends out. Moreover, assume that there are no other messagesproduced at the master machine. Thus all it produces are clock synchronizationmessages.Thus, when it decides to send a message it knows when this message is beingsent out. Thus it can produce a sequence of messages, each one being producedafter the previous one was actually sent out. The master will timestamp eachmessage in such a sequence, and will broadcast it over the LAN.Ignoring message loss, for a moment, we can study the
ow of messages ateach receiving machine. These machines naturally are busy with other functions,and when a machine reads its input, it may �nd several messages of the sequenceat its input bu�er at once. A machine needs to identify two events of the masterthat took place between one of its own events.The receiving machine marks the time it �rst notices a partial sequence sentby the master at its bu�er. Let this time be R1 and let x1; :::xk be the pre�x ofthe sequence it noticed at its input bu�er. At a later time, say R2 it reads itsinput again and sees some more messages of the sequence sent by the master.Let this new subsequence be denoted xk+1; xk+2; � � �. The simple model assuresthat each one of these messages was produced after the previous one was sent.On the other hand, we do not know that xk+1 was produced after time R1, sinceit is possible that this message was in transit when the receiver was reading itsinput bu�er. But in this case we know that xk+2 was not produced yet, thus itstimestamp is an event that took place after time R1 and before time R2. Thisimplies that the timestamp on this message, say Tk+2, can be used to synchronizethe receiver clock. Figure 1 exempli�es these events.
master

client

X X X1 2 3 X Xk k+1 k+2X

R R1 2Fig. 1. Event Xk+2 occurs between R1 and R2Adapting ideas from previous clock synchronization protocols, the receiver

can adjust its clock by, R2 � Tk+2 + (R2 � R1)2 :Notice that all receivers on the LAN can synchronize using the same method.Thus, the load on the master does not depend on the number of machines thatare currently connected.The general caseIn the general case there may be speci�c architectures in which more than onemessage might be in transit at once. In such architectures, the number of suchmessages is still bounded by a small constant number. The basic idea above caneasily be adopted to count for that.There might be cases where the master doesn't necessarily know when itsmessages are being sent out. In this case we can borrow another idea fromexisting clock synchronization protocols. We can assign a speci�c machine toecho back to the master whenever it receives each message. The master waits foran echo on its previous message before time-stamping and sending the next one.In a sense, the master and this machine follow the basic idea of a master-slaveprotocol. The rest of the receivers synchronize their clocks just by listening in.In the [13] the reader can �nd the complete study of this approach and variousoptimizations to the problem.4 Reliable BroadcastThe topic of consistent dissemination of information in distributed systems hasbeen the focus of many studies, both theoretical and practical. The pioneeringwork of the V system ([8]), deals with communication among groups of pro-cesses, via broadcast messages. In V, broadcast messages are not reliable, butprovide \best e�ort" delivery semantics. In addition, if messages are sent concur-rently from several sources, the order of their delivery at overlapping destinationsis unde�ned. Later work in the ISIS system ([6]), deals with providing higherlevel services, and supports reliable delivery, as well as various orderings. Manydistributed applications require such high degree of coordination among theirprocesses. The main di�culty facing the designer of a distributed application isthe consistency of information disseminated, and the control over the dissemina-tion of that information. Thus, the designer of a distributed system would wishfor a service that provides a guaranteed delivery-and-consistency of broadcastmessages. Having such a service, most distributed applications become mucheasier to implement and to maintain.In many systems, when a group of processes need to perform a coordinatedwork they interact via (reliable) point-to-point communication. This approachis costly when there are several participants. It would be preferable to use the

available broadcast hardware where possible, for e�cient dissemination of mes-sages to multiple destinations via a single transmission. The problem is thatcurrent transport protocols provide only datagram broadcast services (e.g. UDP[22], IP-multicast [10]).Today, there are several projects that develop protocols for reliable broadcastservices while utilizing the broadcast hardware where possible, e.g. [18, 17, 3, 2]and the recent version of the ISIS system [7]. We discuss some of them in thissection. In this section it is assumed that the system consists of a static setof machines (the Membership Section shows how to maintain the set of activemachines up to date, and the protocols we present below can be extended todynamic environments once the membership layer is present).Causal BroadcastThis section presents the mechanism employed in the Transis communicationsub-system ([2]) for guaranteeing delivery of messages to all their destinations.The principle idea of reliable message delivery in Transis is motivated by theTrans algorithm ([18]) and the Psync algorithm ([21]).
1

1

2

1

1

2

T1

T2

T3

T4

T5

T6

A B C D

Fig. 2. A Transis ScenarioMessages are transmitted via a single transmission, using the available net-work broadcast. The \blobs" in Figure 2 represent broadcast messages. Eachmachine tags its messages with increasing serial numbers, serving as message-ids. For example, in the �gure, machine A emits at the time-mark T1 the �rst

message, machine B emits at T2 its �rst message, and so on. Acknowledgmentsto messages are piggybacked onto the next broadcast messages. The full arrowsrepresent acknowledgments: from message B2 to A1 and to B1, from C1 to B2,etc. An ACK consists of the sending machine-id and the serial number of the ac-knowledged message. A fundamental principle of the protocol is that each ACKneed only be sent once. Further messages, that follow from other machines, forma \chain" of ACKs, which implicitly acknowledge former messages in the chain.For example, Figure 2 could depict the following scenario on the network:A1 ; B1 ; A1,!B1,! B2 ; B2,! C1 ; C1,!D1 ; :::Machines on the LAN might experience message losses. They can recognizeit by analyzing the received message chains. For example, machine A recognizedthat it lostC1 after receiving the sequence: A1; B1; A1,!B1,! B2; C1,! D1 . Therefore,A emits a negative-ACK on message C1, requesting for its retransmission. In thiscase A acknowledges B2 and not D1, since messages that follow \causal holes"are not incorporated for delivery until the lost messages are recovered. In thisway, the acknowledgments form the causal relation among messages directly.The delivered messages are held for backup by all the receiving machines.In this way, retransmission requests can be honored by any one of the partici-pants. Of course, messages cannot be kept for retransmission forever. When allthe machines have acknowledged the reception of a message, it can be safelydiscarded.If the LAN runs without losses then it determines a single total order of themessages. Since there are message losses, and machines receive retransmittedmessages, the original total order is lost. The piggybacked acknowledgments areused for reconstructing the original partial order of the messages.Agreed BroadcastOne of the characteristics of the Trans and the Transis protocols, is that theyallow completely spontaneous transmission of messages by any machine. Con-sequently, two machines may send messages within a small interval apart, nonereceiving each other's message �rst. In this case, there will be no acknowledg-ment between these messages. This means that additional processing is requiredif there is a requirement to deliver the messages in the same total order at alltheir common destinations.An agreed broadcast service guarantees that messages arrive reliably and inthe same total-order to all their destinations. There are several completely dis-tributed algorithms that build a total order from the local information and reachagreement ([18, 12, 21]). It is perhaps easiest to understand a naive all-ack al-gorithm that is also completely distributed. The above referred algorithms areessentially optimizations on this principle. The all-ack idea is:{ Wait until at least one message is received from each machine.

{ Then go through the machines in ascending order, and deliver the �rst mes-sage from each machine unless it directly acknowledges another message.The common characteristic of these algorithms, is that they do not incur anyextra message exchange for achieving agreement on the total order. They havepost-transmission delay, from the time a message is transmitted and receiveduntil it is ordered in the right place. Interestingly, this cost is most apparentwhen the system is relatively idle, and waiting for responses from all (or some) ofthe machines incurs the worst-case delay. On the other hand, these methods cansustain steady transmission loads that are close to the network limits, when allthe machines are fairly uniformly active (e.g. the ToTo protocol was measureddelivering around 500 1K messages per second over an Ethernet of 10 Indigostations, see [12]).A di�erent family of protocols orders the messages in a total order by em-ploying a centrally controlled ordering scheme ([7, 3, 17]). The Isis ABCASTprotocol ([7]) employs a token-holder within each group of communicating pro-cesses. ABCAST messages are broadcast at will, and their delivery is delayed byall the receiving processes except for the token holder. Periodically, the tokenholder sends a message indicating its order of delivery for all received ABCASTmessages, and all the other processes comply with it.The Amoeba system contains a di�erent variation of this scheme, imple-mented within the operating system kernel ([17]). A sequencer kernel is desig-nated as the central controller. Every message is sent to it via point to pointcommunication, and the sequencer broadcasts it to all the machines. The FIFOorder of sequencer-transmissions determines a total order for all the messages.The Totem protocol ([3]) uses a revolving token that holds a sequence-numberfor messages. The holder of the token can emit one or more broadcast messages,and update the token sequence accordingly. In order to transmit a broadcastmessage, a processor must obtain the token. The token itself regularly revolvesamong all the processors.The cost in these protocols is in obtaining access to the central controller, beit a processor or a token. This cost is apparent both in the delay occurring untilthe control is obtained, and in extra messages exchanged. Once it is obtained,transmission and ordering is done immediately. Therefore, we say that they havea pre-transmission delay. The advantage of central control is that it regulatesthe
ow of messages e�ciently. It is not entirely clear what are the trade-o�sbetween distributed and centralized control in these protocols. In particular, thebehavior of these protocols when the communication pattern is \chaotic" needto be further investigated.5 Membership in Broadcast EnvironmentsA point to point communication protocol needs to maintain information aboutone machine, \the other party." A reliable broadcast communication systemneeds to maintain information about a set of machines of a variable size. The

machines may fail and recover. The underlying communication network maypartition and reconnect, thereby partitioning the set of participating machines.This dynamicity is one of the main reasons that reliable broadcast protocols aremore complex than their point-to-point counterparts.The membership problem is to maintain the set of participating machines inagreement among all the machines. This basic problem of distributed computinghas received considerable attention in the past (see [9, 1, 19, 20, 23, 24, 16, 3, 4]).We are mainly interested in membership protocols for broadcast communicationenvironments. In these environments, the membership changes are reported viaspecial messages, that are delivered to the upper level application among thestream of regular messages.In distributed applications, the machines typically act upon regular messagesaccording to their installed membership. Thus, in addition to the agreement onmembership changes, it is desired that the machines see the membership changesin the same order. Furthermore, in order for all the machines to respond in thesame manner to broadcast messages, they should see the same messages betweenevery pair of membership changes. This valuable principle is de�ned in [5], andis called virtual synchrony.Informally, we require that membership changes maintain:{ Membership changes occur in the same order at all the machines that viewthem.{ Every failed or disconnected machine is removed from its membership withina �nite time.{ Every two operational machines that are connected for su�ciently long timejoin in a common membership.{ Membership changes preserve virtual synchrony with respect to regular mes-sages.We brie
y present a protocol that satis�es all these requirements here. Theprotocol relies on broadcast communication that preserves causality.4 This pro-tocol is completely symmetrical. Joining with other machine(s) is triggered whena message from a machine that does not belong to the current membership viewis intercepted in the broadcast domain. Fault handling is triggered by timeout.(A closely related membership protocol that satis�es the above requisites is pre-sented in [1]).Whenever the membership protocol starts, each machine sends a messagewith the best suggestion it has for the current membership. Each membershipsuggestion contains two sets: all the known machines, called M , and all thesuspected faulty/detached machines, called F . In order to accept the membershipsuggested in < M , F > , all the machines in M n F need to broadcast identicalsuggestions. If a membership suggestion < M 0, F 0 > from M n F di�ers from <M , F > , then there are a few cases:4 We say that two messages m;m0 are related in the causal order cause�! , if they arein the transitive closure of: (1) m cause�! m0 if deliverq(m;�) ! broadcastq(m0), (2)m cause�! m0 if broadcastq(m)! broadcastq(m0)

{ If M 0 �M and F � F 0, then this message is ignored.{ If M 0 or F 0 contains machines that are not contained in M , F , and thesender of this suggestion did not agree already to < M , F > , then M 0, F 0,are merged into M , F and a new membership suggestion is broadcast.{ If M 0 or F 0 contains machines that are not contained in M , F , and thesender of this message is already marked as agreeing to < M , F > , then themessage is queued for future membership instances. This handling is crucialfor the consistency of the membership decision.If there are machines in F 0 that are not included in F , they will not berequired to agree to the < M , F > suggestion (this could lead to a deadlock).In this case, all the machines in M n (F [F 0) must send their agreementboth to the < M , F > suggestion, and to the suspected machines in F 0.As shown in these cases, the suggestion of each participating machine maychange during the execution of the membership protocol, one or more times.Therefore, this protocol cannot be classi�ed as a k-phase protocol for any spe-ci�c k, and the number of rounds of message exchanges depends on the speci�cscenario.During an instance of the membership protocol, the suspected machines arenot removed from M , but are only added to F . A machine that is suspectedin F , cannot be removed from F either. This guarantees that the protocol willterminate within a �nite time. For example, during a period of instability in thenetwork, a certain machine might detach and re-connect frequently. The removalof this machine fromM might lead to an endless process of removing and addingit to M . In our scheme, it can be added and removed at most once during theexecution of the protocol. Consequently, our scheme might mistakenly removefrom the membership an operational machine. This machine can later re-jointhe membership. Note that in an asynchronous environment, there is no way toprevent the removal of a slow machine from the membership. Thus, in our view,the means for reducing the potential of such mistakes are practical means: �ne-tuning of the system timeouts, and a robust fault-detection mechanism, involvingconsulting with a few machines. These practical details are not relevant for thecorrectness of the membership protocol.This protocol also preserves virtual synchrony with respect to other regularmessages in the system. In order to understand the main di�culty in preservingvirtual synchrony, envision a system of four machines, A, B, C, D. Machine D hascrashed, and its last message md is received only by C. If C sends its member-ship suggestion < fA;B;C;Dg, fDg > (for excluding D) before it receives md,how will A and B know they must deliver this message before the membership-change? There may be more complicated scenarios, for example if �rst D crashes,and C is the only receiver of md, and then C crashes, but has sent a message mcreferring to md. The rule for message delivery in our protocol is the following:Between every two membership changes, all the messages that follow any oneof the identical membership suggestion-messages of the �rst membership-changeand do not follow any one of the identical membership suggestion-messages ofthe second membership-change are delivered. This set of messages can be proved

to be identical among all the machines that install the same two membership-changes.6 Warm Replication by SnoopingThis section deals with a less obvious facet of broadcast communication, theability to intercept messages by non-target machines (snooping). We propose away to exploit this ability in order to enhance availability of system services.The snooping ability o�ers a novel way for cheaply replicating services in thenetwork.To exemplify our ideas, we use the Sun Network File System (NFS) environ-ment, available at Unix environments. In an NFS environment, applications ac-cess �les throughout the network in an automatic, transparent way. We can viewthe entire network as providing a global �le system service that is distributedamong di�erent machines. While very convenient in all ways, this distributionleads to a reliability problem: The failure of any one of the machines that provide�le-system services can block an application from running.In these environments, local-area broadcast networks such as Ethernet andtoken-rings are becoming a standard de-facto. These broadcast media carry thepoint-to-point NFS messages and enable snooping by unlisted parties.A warm-backup service (WB) provides a per-application replication service.The main mechanism of WB is quite simple: When an application asks for WBservice, a second replica will be created for each �le that the application opens.The warm-backup service will keep the two replicas up-to-date and consistent bysnooping, and intercepting the �le-modi�cation messages. WB performs thesechanges on the replica. When that �le is not needed any more, the new replicawill be deleted. In order to enhance availability even more, the same scheme canwork with any number of additional replicas for each �le, instead of only one.Another option of the WB service is to provide a per-directory warm replica-tion service. When this option is speci�ed for the WB server, then only �les inthe speci�ed directory sub-hierarchy are automatically replicated. We anticipatethis to be a most useful option for the WB tool.The WB server di�ers from other known replication systems in that it pro-vides a per-application/per-directory replication service in order to increase theaccessibility of �les throughout the application's lifetime. The main novelty isthe use of snooping in broadcast environments for providing replication cheaply.It does not require any special hardware such as multiple-access disks, yet it pro-vides warm replication that is consistent at every moment. In addition, unlikefully-replicated �le systems, the WB architecture does not require modi�cationto the basic �le-system structure or semantics.Concurrent-Write WBIn the general case, multiple processes from di�erent machines may access thesame �le concurrently. In order to keep the primary �le copy and its replica(s)

WB

(a)

snoop

NFS
server

mediator WB

(b)

snoop

application

I/O lib

application

I/O lib

NFS
server

SEQ

SEQFig. 3. Concurrent-Reader WBconsistent, the modi�cations to the �le should be made at the same order in allthe replicas. For this case, we propose the architecture shown in Figure 3(a-b)(for simplicity, we only discuss the single-replica case; similar results apply inthe multi-replica case). This paradigm works as follows:1. The NFS and the WB server are noti�ed by the application at startupwhether it wishes to be warmly backed-up (and which directories to backup).2. When the NFS server receives a modify-request from a WB application, itmust wait for a sequence-message from its warm-backup.3. The WB server snoops for all NFS messages. When it receives an NFSmodify-request from a WB application, it issues the modify-operation onthe replica, and sends a numbered sequence-message with an identi�cationof the request to the NFS server in the site of the accessed �le.4. The NFS server executes the modify-requests it has received according tothe order set by the sequence-messages it receives from the WB server. Itreturns the results to the application.5. If either the NFS server or the WB server loses a message from the ap-plication, the application will time-out and re-issue the request (this is thestandard fault handling protocol of the NFS).The modi�cation of the NFS server can be done internally (Figure 3(a)), orby placing a special server on the NFS server's machine that mediates betweenthe application and the NFS server (Figure 3(b)).

RecoveryThe modi�ed NFS server and the WB server need to dynamically detect eachother's failures and recoveries, and bring the system to a consistent state uponrecoveries. In case of the primary NFS server failure, the WB server holds up-to-date copies of all the accessed �le. The WB can also \take over" the primary NFSserver role for those �les, and allow currently running applications to continue.In order that a running application will turn to the WB server for backup �le-service, it needs to be modi�ed as well. It is su�cient to transparently replacethe system-calls library and no change is required to the application itself. Thedetails of the takeover algorithm, for moving the application from the primaryserver to the backup, are standard for such a system, and are beyond the scope ofthis compact presentation. Likewise, the matter of re-integrating an NFS serverupon recovery are detailed elsewhere ([15]).Exclusive-Write WBOne of the drawbacks of the above architecture is that it requires changes to theNFS server, thus a�ecting the entire system and not only the WB applications.In this section we o�er a more restrictive solution, that does not require changesto the NFS server. This solution work under the assumption that there are noconcurrent accesses by di�erent applications to the same �le.
WB

NFS
server

snoop

ACK

application

I/O lib

Fig. 4. Exclusive-Reader WBIt is a known belief that the majority of modify-accesses to �les in Unix aredone by processes exclusively and not concurrently. The Unix loose semantics onconcurrent-modify on �les encourages this style of usage. In order to replicate�les for the exclusive writer case, we propose the architecture shown in Figure4. Each application that wishes to obtain the WB services, links with a modi�edsystem-call library. The �les accessed by this applications must be dedicated to

the WB server, and should be not accessed by \regular" NFS clients. The modifyaccesses to �les is done as follows:1. The WB server is noti�ed by the application at startup whether it wishes tobe warmly backed-up (and which directories to back up).2. When the application issues a modify request on a �le, it sends the requestas usual to the NFS server.3. There is no change to the NFS server: it executes each received request andreturns the results to the application.4. The WB server \snoops" on the network for NFS requests. When it receivesa modify-request from a WB application, it performs the modify-operationon the replica, and returns an acknowledgment (ACK) message to the ap-plication.5. The application waits for the returned results from the NFS server and forthe acknowledgment message from the WB server. If it times out on any oneof them, it re-issues the request. If either the NFS server or the WB serverloses a message, it will receive the retransmission.Practical ConsiderationsThe WB architecture is designed for incurring a minimal overhead on the mes-sage tra�c in the system. All the dashed-arrows in Figures 3, 4 are almostcost-free, and are done by network snooping (the reason for saying that thisalmost cost free is that in case the WB server loses a message, it needs tobe re-transmitted). Furthermore, note that in all the proposed paradigms, theextra-messages employed by the WB system are very short messages that donot carry data (e.g. the sequence-message and the ACK message). Thus, forwrite-operations on �les, the written data is sent only once over the network.The common source of delay in all the proposed paradigms is the need to waitfor an extra message from the WB server. We have implemented a prototypeof the WB server over the Sun Network Interface Tap (NIT), and are currentlyexperimenting with the performance of the system proposed in Figure 4.The WB server snoops for messages addressed at multiple NFS servers.Therefore, it needs to put the network-interface in its machine in promiscu-ous mode, and �lter the relevant messages among the multitude of messagestransferred in the system. This requires the machine(s) that run the WB serverto be fairly lightly-loaded. This indicates that for best results, the WB servershould probably run on a designated machine by itself, the backup machine.7 ConclusionsThe hardware media of computer networks provide the capability to broadcastmessages. This o�ers an e�cient way to disseminate messages to multiple desti-nations. Essentially, this is a practical consideration; however, if we incorporatethe broadcast capability into the system model, we arrive at distributed algo-rithms that are quite di�erent from their sequential counterparts. Moreover, in

the case of the warm-replication application, the ability to snoop within a broad-cast network has led us to devise a completely new scheme for replication. Thus,these practical considerations can be of signi�cance to the designer of distributedservices.Future networks such as the high-speed FDDI ring, and wireless networks,also possess the broadcast capability. Therefore, understanding the potential inbroadcast communication is important. Our experience with some of the pro-tocols presented in this paper indicates that there are interesting tradeo�s thatneed to be exlored. The choice between having a distributed control and a cen-tralized control is not fully understood yet. Similarly, we note that quantitativemeasures may e�ect their conduct. For example, the reliable broadcast proto-cols we presented behave quite di�erently under various communication-loadconditions, and when di�erent loss-rates of underlying network messages areexhibited.Randomized techniques have proved their importance in the �eld of dis-tributed algorithms by producing solutions to the consensus problem and oth-ers. Rarely, is any of the theoretical randomized protocols used in practicaldistributed environments. Typically, this is because they are too complicated,or involve too many message-exchanges. We propose to investigate the usage ofrandomization in more realistic models, and in particular, within a broadcastdomain.8 AcknowledgmentsThe work presented in this paper bene�tted frommany other works. The Transisreliable broadcast and the membership protocol are the results of joint work withthe colleague Transis developers, Yair Amir and Shlomo Kramer. The WarmBackup service was enhanced and implemented by Yuval Harari. Yuval Yaromhelped editing the section about the Warm Backup. Ray Strong and RudigueReischuk co-developed with one of the authors the clock synchronization scheme.Idit Keidar wrote the tool that automatically plotted Figure 2.References1. Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership Algorithms for Mul-ticast Communication Groups. In Intl. Workshop on Distributed Algorithms pro-ceedings (WDAG-6), (LCNS, 647), number 6th, pages 292{312, November 1992.2. Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A Communication Sub-System for High Availability. In Annual International Symposium on Fault-Tolerant Computing, number 22, pages 76{84, July 1992.3. Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. FastMessage Ordering and Membership Using a Logical Token-Passing Ring. In Intl.conf. on Distributed Computing Systems, 1993. to appear.4. J. Auerbach, M. Gopal, M. Kaplan, and S. Kutten. Multicast group membershipmanagement in high speed wide area networks. In proc. intl. conference on Dis-tributed Computing Systems, number 11, pages 231{238, May 1991.

5. K. Birman, R. Cooper, and B. Gleeson. Programming with Process Groups: Groupand Multicast Semantics. TR 91-1185, dept. of Computer Science, Cornell Uni-versity, Jan 1991.6. K. Birman, R. Cooper, T. A. Joseph, K. Marzullo, M. Makpangou, K. Kane,F. Schmuck, and M. Wood. The ISIS System Manual. Dept of Computer Sci-ence, Cornell University, Sep 90.7. K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic GroupMulticast. ACM Trans. Comput. Syst., 9(3):272{314, 1991.8. D. R. Cheriton and W. Zwaenepoel. Distributed Process Groups in the V Kernel.ACM Trans. Comput. Syst., 2(3):77{107, May 1985.9. F. Cristian. Reaching Agreement on Processor Group Membership in SynchronousDistributed Systems. Distributed Computing, 4(4), April 1991.10. S. E. Deering. Host extensions for IP multicasting. RFC 1112, SRI NetworkInformation Center, August 1989.11. D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony needed fordistributed consensus. J. ACM, 34(1):77{97, Jan. 1987.12. D. Dolev, S. Kramer, and D. Malki. Early Delivery Totally Ordered Broadcastin Asynchronous Environments. In Annual International Symposium on Fault-Tolerant Computing, number 23, June 1993.13. D. Dolev, R.Reischuk, and H.R.Strong. Clock Synchronization Algorithms on aLAN. in preparation, 1993.14. M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensuswith One Faulty Process. J. ACM, 32:374{382, April 1985.15. Y. Harari. Warm Backup Tool for Unix Network File System. internal manuscript,1992.16. F. Jahanian and W. Moran. Strong, Weak and Hybrid Group Membership. un-published, IBM internal draft, 1992.17. M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal. An E�cientReliable Broadcast Protocol. Operating Systems Review, 23(4):5{19, October 1989.18. P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast Protocols for Dis-tributed Systems. IEEE Trans. Parallel & Distributed Syst., (1), Jan 1990.19. P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Membership Algorithms forAsynchronous Distributed Systems. In Intl. Conf. Distributed Computing Systems,May 91.20. S. Mishra, L. L. Peterson, and R. D. Schlichting. A Membership Protocol basedon Partial Order. In proc. of the intl. working conf. on Dependable Computing forCritical Applications, Feb 1991.21. L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and Using Con-text Information in Interprocess Communication. ACM Trans. Comput. Syst.,7(3):217{246, August 89.22. J. B. Postel. User Datagram Protocol. RFC 768, SRI Network Information Center,August 1980.23. A. M. Ricciardi and K. P. Birman. Using Process Groups to Implement FailureDetection in Asynchronous Environments. In proc. annual ACM Symposium onPrinciples of Distributed Computing, pages 341{352, August 1991.24. A. M. Ricciardi, K. P. Birman, and P. Stephenson. The Cost of Order in Asyn-chronous Systems. In Intl. Workshop on Distributed Algorithms proceedings(WDAG-6), (LCNS, 647), number 6th, pages 329{345, November 1992.This article was processed using the LaTEX macro package with LLNCS style

