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Abstract. This paper studies the usage of broadcast communication in
distributed services. The approach taken is practical: all the algorithms
are asynchronous, and tolerate realistic faults. We study four problems in
a broadcast domain: clock synchronization, reliable and ordered broad-
cast, membership, and file replication. The clock synchronization algo-
rithm shows for the first time how to utilize broadcast communication
for synchronization. The master synchronizes any number of slaves while
incurring a constant load. The approach taken in the file replication tool
uses snoopingin order to enhance the availability of file systems, at al-
most no cost.

1 Introduction

This paper presents algorithms that use broadcast communication. The broad-
cast primitive enables the dissemination of messages to multiple destinations
via a single transmission. The motivation behind this work is practical: most
computer networks nowadays essentially provide a datagram broadcast service.
Most transport protocols do not utilize the broadcast capability, though, be-
cause the handling of faults and retransmissions is far more complicated than
point to point communication. Future networks designs also appear to possess
the broadcast capability (e.g. FDDI, MAN, wireless networks based on cellular
communication).

Thus, it 1s important to define high level services over the datagram broad-
cast layer, and examine how applications can utilize broadcast communication.
Our work incorporates the broadcast primitive into the system model. We show
various algorithms in this model that are substantially different from their point-
to-point counterparts. We focus on practical algorithms, and present their basic
properties. Therefore, all the algorithms are asynchronous, and tolerate realistic
faults.

The first algorithm we present is for a clock synchronization service. While 1t
is rather obvious that broadcast messages are capable of carrying data to multiple
destinations efficiently, we have not seen any use of it in synchronization. We
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show how multiple clients can synchronize with a single time-source (“master”)
using broadcast messages. The master incurs a constant overhead of emitting
the broadcast messages, regardless of the number of clients being synchronized.

The second service presented is a reliable broadcast service, that delivers
messages to a group of processes, while preserving their relative orders. This
paper surveys some of the protocols suggested in the literature for these services.
One of the interesting trade-offs manifested in these protocols is whether to
employ a central coordinator for achieving an agreed order of delivery of the
messages.

Another category of distributed algorithms that are examined in the broad-
cast domain are algorithms that need to achieve coordinated decisions. The
impossibility result of [14] bounds all these problems within an asynchronous
environment. The problem is the inability to distinguish between a slow machine
and one that crashed. In practical asynchronous systems it is often preferable to
give-up on a slow machine, rather than get stuck in waiting.

The membership protocol we present circumvents this problem by maintain-
ing the set of machines that appear active internally at any point. Moreover,
other protocols can use the membership service instead of explicitly handling
the dynamicity in the system. The specific membership protocol presented here
handles both failures and recoveries of machines, and network partitions and re-
merges. We provide an informal definition of the requirements of the membership
service, while allowing partitions.

We conclude with a utility that exploits an unusual facet of broadcast com-
munication, the ability to snoop and intercept broadcast messages. We show
how to use the snooping ability in order to enhance availability of file system,
at almost no cost.

None of the above protocols explicitly uses any known theoretical solution
to coordination problems, even though these problems were extensively studied.
Randomized protocols prove their usefulness in overcoming the impossibility of
consensus ([14]). However, they proved to be too complicated for usage, and
typically exchange too many messages. Specifically to this context, we note that
there are no randomized protocols that utilize available broadcast as a primitive.

Another approach that was taken in many works, is to assume that the system
is synchronized. Thus, all machines perform their operations in a synchronous
lock step. There were a few variations to this approach, but shared by all of them
is the need to guarantee a tight synchronization. In practice this is not a valid
approach, since distance, temporary load, and the independence in operation of
individual machines prevents us from guaranteeing such a synchronization. It is
true that one can assume, for instance, that 90% of the messages arrive within a
small window of time, but the rest of the messages may take a much longer time
to arrive. Tight synchronization requires a single step of the protocol to be very
large, so that all but few of the messages sent at that step will arrive correctly.

The algorithms presented in this paper operate within a realistic model, and
were all implemented. We encourage other researchers to continue investigating
the possibilities and tradeoffs within this framework, and explore the possibility



of using randomized techniques in practice.

2 System Model

This section presents the assumed underlying model of the rest of the paper.
We believe that the model below reflects the basic concepts shared by most dis-
tributed systems today. A distributed system comprises of a set of machines.
that communicate using messages. The underlying network is completely con-
nected and can transfer messages between any pair of machines. In addition, the
network provides a broadcast service. A machine emits a broadcast message at
once to all its destinations. A single copy of the message reaches all the machines,
but might arrive at different times to them.

An essential property of the model is that broadcast messages incur the same
processing overhead as unicast messages at the sending and at the receiving
machines. Similarly, broadcast messages consume identical network capacity as
unicast messages.

A broadcast message is sent “anonymously” and does not require specific
addressees. In this paper we will not distinguish between broadcast, which sends
a message to all the machines in the network, and a multicast, which sends a
message to a selected subset via a group-designation. The broadcast capability
also enables in some cases a non-targeted machine to snoop and intercept mes-
sages. This might be a security concern for some environments; in this paper we
present an advantageous facet of this property.

A typical LAN architecture is composed of one or more broadcast segments,
interconnected via bridging and gateway elements. The LAN might partition to
two sets of machines, in case a bridging/gateway element fails. In case that some
other machine fails or disconnects from the network, the remaining machines
continue to be connected and to pass messages undisturbed. Machine failure is
either fail stop or omission, thus a machine may fail to send messages, but will
not produce messages that are not part of the basic protocol. Thus, no byzantine
faults are assumed. Moreover, in the context of this paper it is assumed that if
a message arrives to its destination, its data is assumed to be uncorrupted.

The broadcast service provided by the hardware media is an unreliable data-
gram service. A single transmission can potentially reach all the machines, but
it may fail to go out, or a single machine might miss it. Although message loss
rate 1s not specified explicitly, the protocols were designed under the assumption
that it is low.

The Basic Impossibility Result

At the basis of any coordination problem in a distributed system lies some al-
gorithm like atomic-broadcast and membership-maintenance which requires a
consensus at one level or another. Fischer Lynch and Paterson ([14]) were the
first to point out that there is no way to reach consensus in an asynchronous dis-
tributed system, when faults may occur. Moreover the asynchrony that produces
the difficulty can be very limited, as can be seen in [11].



The basic idea behind all these impossibility results is that there 1s no way to
distinguish between a very slow machine and a failed one. Since any nontrivial
coordination problems should be determined on the fly according to the initial
inputs to the individual machines, there should always be a case in which a
single machine may determine the general outcome. Thus, as long as the input
from this machine does not arrive, we cannot guarantee that all the correctly
operating machines will perform the same operation (or reach the same decision).

The Practical Approach

In practice, coordination problems cannot be solved in “full”, 7.e. their solution
may not comply with an outsider’s view of the system and its view of “correct”
processors. In order to be able to overcome the impossibility result, machines
will use inaccurate fault detectors, based on timeout. The coordination decisions
are reached only among the machines that are viewed wnternally as operational,
and not necessarily “really” all the operational machines. Thus, in the cases that
the fault detector errs, a correctly operating machine may be considered faulty,
and will need to reconcile with the rest of the machines at some later time.

The basic differences can be summarized as follows: in our approach individ-
ual machines operate asynchronously, each one at its own pace. Prior to some
decision points some machine may need to wait for others, but instead of a
deadlock, a timeout will detect failures, and will enable the machines to resume
operation.

3 Clock Synchronization

In this section we will describe a new approach to clock synchronization. The
approach utilizes the broadcast domain environment and enables synchronizing
many machines without explicitly exchanging messages with each one of them.

Common to all clock synchronization algorithms is the need to exchange mes-
sages between the synchronizer and the synchronized machine. This is true in
master-slave protocols, as well as in all versions of distributed clock synchroniza-
tion protocols. The need arises from the requirement to produce three events,
two on one clock and a middle one on a different clock. Once such events are iden-
tified, one can obtain an estimate on the difference between the clock readings.
This estimate 1s used to adjust one of the two clocks.

An access to an outside time source is a common way to obtain a precise
time service. And several researchers have offered to use the machine having
that input as the master clock that will occasionally synchronize the rest.

This approach seems to mean that in such a time service, if many machines
are connected via a LAN, and one of them is the master, it will need to explicitly
exchange messages with each one of them in order to synchronize all the clocks.
When the LAN contains dozens of machines this becomes a real load on the
master machine. The problem is to find a way to broadcast the time information
to synchronize individual clocks without the need to explicitly exchange messages
between the master and the slaves.



A Simplified Solution

First concentrate on a simplified model. Assume that the master machine has
a direct access to the LAN in the sense that it does not use any buffer to
store messages it sends out. Moreover, assume that there are no other messages
produced at the master machine. Thus all it produces are clock synchronization
messages.

Thus, when 1t decides to send a message it knows when this message is being
sent out. Thus it can produce a sequence of messages, each one being produced
after the previous one was actually sent out. The master will timestamp each
message in such a sequence, and will broadcast it over the LAN.

Ignoring message loss, for a moment, we can study the flow of messages at
each receiving machine. These machines naturally are busy with other functions,
and when a machine reads its input, it may find several messages of the sequence
at its input buffer at once. A machine needs to identify two events of the master
that took place between one of its own events.

The receiving machine marks the time it first notices a partial sequence sent
by the master at its buffer. Let this time be Ry and let z1, ...z be the prefix of
the sequence it noticed at its input buffer. At a later time, say Rs it reads its
input again and sees some more messages of the sequence sent by the master.
Let this new subsequence be denoted #p41, @42, - The simple model assures
that each one of these messages was produced after the previous one was sent.
On the other hand, we do not know that x;11 was produced after time Ry, since
it 1s possible that this message was in transit when the receiver was reading its
input buffer. But in this case we know that xz;42 was not produced yet, thus its
timestamp is an event that took place after time R; and before time Rs. This
implies that the timestamp on this message, say T} 42, can be used to synchronize
the receiver clock. Figure 1 exemplifies these events.

X1 X3 Xk Xk+1 X k+2
master
R]_ R2

Fig.1. Event Xz42 occurs between R; and R,

Adapting ideas from previous clock synchronization protocols, the receiver



can adjust 1ts clock by,

Ry — Ry
Ry =Ty + %
Notice that all receivers on the LAN can synchronize using the same method.
Thus, the load on the master does not depend on the number of machines that
are currently connected.

The general case

In the general case there may be specific architectures in which more than one
message might be in transit at once. In such architectures, the number of such
messages 1s still bounded by a small constant number. The basic idea above can
easily be adopted to count for that.

There might be cases where the master doesn’t necessarily know when its
messages are being sent out. In this case we can borrow another idea from
existing clock synchronization protocols. We can assign a specific machine to
echo back to the master whenever it receives each message. The master waits for
an echo on its previous message before time-stamping and sending the next one.
In a sense, the master and this machine follow the basic idea of a master-slave
protocol. The rest of the receivers synchronize their clocks just by listening in.

In the [13] the reader can find the complete study of this approach and various
optimizations to the problem.

4 Reliable Broadcast

The topic of consistent dissemination of information in distributed systems has
been the focus of many studies, both theoretical and practical. The pioneering
work of the V system ([8]), deals with communication among groups of pro-
cesses, via broadcast messages. In V, broadcast messages are not reliable, but
provide “best effort” delivery semantics. In addition, if messages are sent concur-
rently from several sources, the order of their delivery at overlapping destinations
is undefined. Later work in the ISIS system ([6]), deals with providing higher
level services, and supports reliable delivery, as well as various orderings. Many
distributed applications require such high degree of coordination among their
processes. The main difficulty facing the designer of a distributed application is
the consistency of information disseminated, and the control over the dissemina-
tion of that information. Thus, the designer of a distributed system would wish
for a service that provides a guaranteed delivery-and-consistency of broadcast
messages. Having such a service, most distributed applications become much
easier to implement and to maintain.

In many systems, when a group of processes need to perform a coordinated
work they interact via (reliable) point-to-point communication. This approach
is costly when there are several participants. It would be preferable to use the



available broadcast hardware where possible, for efficient dissemination of mes-
sages to multiple destinations via a single transmission. The problem is that
current transport protocols provide only datagram broadcast services (e.g. UDP
[22], TP-multicast [10]).

Today, there are several projects that develop protocols for reliable broadcast
services while utilizing the broadcast hardware where possible; e.g. [18, 17, 3, 2]
and the recent version of the ISIS system [7]. We discuss some of them in this
section. In this section it is assumed that the system consists of a static set
of machines (the Membership Section shows how to maintain the set of active
machines up to date, and the protocols we present below can be extended to
dynamic environments once the membership layer is present).

Causal Broadcast

This section presents the mechanism employed in the Transis communication
sub-system ([2]) for guaranteeing delivery of messages to all their destinations.
The principle idea of reliable message delivery in Transis is motivated by the
Trans algorithm ([18]) and the Psync algorithm ([21]).

T1

T2

T3

T4

TS5

T6

Fig.2. A Transis Scenario

Messages are transmitted via a single transmission, using the available net-
work broadcast. The “blobs” in Figure 2 represent broadcast messages. Each
machine tags its messages with increasing serial numbers, serving as message-
ids. For example, in the figure, machine A emits at the time-mark T1 the first



message, machine B emits at T2 its first message, and so on. Acknowledgments
to messages are piggybacked onto the next broadcast messages. The full arrows
represent acknowledgments: from message Bs to A; and to By, from C to Bs,
etc. An ACK consists of the sending machine-id and the serial number of the ac-
knowledged message. A fundamental principle of the protocol is that each ACK
need only be sent once. Further messages, that follow from other machines, form
a “chain” of ACKs, which implicitly acknowledge former messages in the chain.
For example, Figure 2 could depict the following scenario on the network:

A1 By By Cq
AlaBla(_><_>Bza<_>Cla <_>D1a

Machines on the LAN might experience message losses. They can recognize

it by analyzing the received message chains. For example, machine A recognized
. . A B c
that it lost C after receiving the sequence: Ay, By, —— By, < Dy . Therefore,

A emits a negative-ACK on message (1, requesting for its retransmission. In this
case A acknowledges By and not i, since messages that follow “causal holes”
are not incorporated for delivery until the lost messages are recovered. In this
way, the acknowledgments form the causal relation among messages directly.

The delivered messages are held for backup by all the receiving machines.
In this way, retransmission requests can be honored by any one of the partici-
pants. Of course, messages cannot be kept for retransmission forever. When all
the machines have acknowledged the reception of a message, it can be safely
discarded.

If the LAN runs without losses then it determines a single total order of the
messages. Since there are message losses, and machines receive retransmitted
messages, the original total order is lost. The piggybacked acknowledgments are
used for reconstructing the original partial order of the messages.

Agreed Broadcast

One of the characteristics of the Trans and the Transis protocols, 1s that they
allow completely spontaneous transmission of messages by any machine. Con-
sequently, two machines may send messages within a small interval apart, none
receiving each other’s message first. In this case, there will be no acknowledg-
ment between these messages. This means that additional processing is required
if there is a requirement to deliver the messages in the same total order at all
their common destinations.

An agreed broadcast service guarantees that messages arrive reliably and in
the same total-order to all their destinations. There are several completely dis-
tributed algorithms that build a total order from the local information and reach
agreement ([18, 12, 21]). It is perhaps easiest to understand a naive all-ack al-
gorithm that is also completely distributed. The above referred algorithms are
essentially optimizations on this principle. The all-ack idea is:

— Wait until at least one message is received from each machine.



— Then go through the machines in ascending order, and deliver the first mes-
sage from each machine unless it directly acknowledges another message.

The common characteristic of these algorithms, is that they do not incur any
extra message exchange for achieving agreement on the total order. They have
post-transmission delay, from the time a message is transmitted and received
until 1t is ordered in the right place. Interestingly, this cost is most apparent
when the system is relatively idle, and waiting for responses from all (or some) of
the machines incurs the worst-case delay. On the other hand, these methods can
sustain steady transmission loads that are close to the network limits, when all
the machines are fairly uniformly active (e.g. the ToTo protocol was measured
delivering around 500 1K messages per second over an Ethernet of 10 Indigo
stations, see [12]).

A different family of protocols orders the messages in a total order by em-
ploying a centrally controlled ordering scheme ([7, 3, 17]). The Isis ABCAST
protocol ([7]) employs a token-holder within each group of communicating pro-
cesses. ABCAST messages are broadcast at will, and their delivery is delayed by
all the receiving processes except for the token holder. Periodically, the token
holder sends a message indicating its order of delivery for all received ABCAST
messages, and all the other processes comply with it.

The Amoeba system contains a different variation of this scheme, 1imple-
mented within the operating system kernel ([17]). A sequencer kernel is desig-
nated as the central controller. Every message is sent to it via point to point
communication, and the sequencer broadcasts it to all the machines. The FIFO
order of sequencer-transmissions determines a total order for all the messages.

The Totem protocol ([3]) uses a revolving token that holds a sequence-number
for messages. The holder of the token can emit one or more broadcast messages,
and update the token sequence accordingly. In order to transmit a broadcast
message, a processor must obtain the token. The token itself regularly revolves
among all the processors.

The cost in these protocols is in obtaining access to the central controller, be
it a processor or a token. This cost is apparent both in the delay occurring until
the control is obtained, and in extra messages exchanged. Once it is obtained,
transmission and ordering is done immediately. Therefore, we say that they have
a pre-transmission delay. The advantage of central control i1s that it regulates
the flow of messages efficiently. It is not entirely clear what are the trade-offs
between distributed and centralized control in these protocols. In particular, the
behavior of these protocols when the communication pattern is “chaotic” need
to be further investigated.

5 Membership in Broadcast Environments

A point to point communication protocol needs to maintain information about
one machine, “the other party.” A reliable broadcast communication system
needs to maintain information about a set of machines of a variable size. The



machines may fail and recover. The underlying communication network may
partition and reconnect, thereby partitioning the set of participating machines.
This dynamicity is one of the main reasons that reliable broadcast protocols are
more complex than their point-to-point counterparts.

The membership problem is to maintain the set of participating machines in
agreement among all the machines. This basic problem of distributed computing
has received considerable attention in the past (see [9, 1, 19, 20, 23, 24, 16, 3, 4]).
We are mainly interested in membership protocols for broadcast communication
environments. In these environments, the membership changes are reported via
special messages, that are delivered to the upper level application among the
stream of regular messages.

In distributed applications, the machines typically act upon regular messages
according to their installed membership. Thus, in addition to the agreement on
membership changes, it is desired that the machines see the membership changes
in the same order. Furthermore, in order for all the machines to respond in the
same manner to broadcast messages, they should see the same messages between
every pair of membership changes. This valuable principle is defined in [5], and
is called virtual synchrony.

Informally, we require that membership changes maintain:

— Membership changes occur in the same order at all the machines that view
them.

— Every failed or disconnected machine is removed from its membership within
a finite time.

— Every two operational machines that are connected for sufficiently long time
join in a common membership.

— Membership changes preserve virtual synchrony with respect to regular mes-
sages.

We briefly present a protocol that satisfies all these requirements here. The
protocol relies on broadcast communication that preserves causality.® This pro-
tocol is completely symmetrical. Joining with other machine(s) is triggered when
a message from a machine that does not belong to the current membership view
is intercepted in the broadcast domain. Fault handling is triggered by timeout.
(A closely related membership protocol that satisfies the above requisites is pre-
sented in [1]).

Whenever the membership protocol starts, each machine sends a message
with the best suggestion it has for the current membership. Each membership
suggestion contains two sets: all the known machines, called M, and all the
suspected faulty/detached machines, called F'. In order to accept the membership
suggested in < M, F > | all the machines in M \ F need to broadcast identical
suggestions. If a membership suggestion < M’ I’ > from M \ F differs from <
M, F' > | then there are a few cases:

* We say that two messages m,m’ are related in the causal order =" | if they are
in the tranmsitive closure of: (1) m =" m’ if delivery(m,*) — broadcasty(m’), (2)

m — m' if broadcastqe(m) — broadcastq(m’)



— If M' C M and F C F’, then this message is ignored.

— If M' or F’ contains machines that are not contained in M, F, and the
sender of this suggestion did not agree already to < M, F' > | then M’ F’,
are merged into M, F' and a new membership suggestion is broadcast.

— If M' or F’ contains machines that are not contained in M, F, and the

sender of this message is already marked as agreeing to < M, F' > | then the
message is queued for future membership instances. This handling is crucial
for the consistency of the membership decision.
If there are machines in F’ that are not included in F', they will not be
required to agree to the < M, ' > suggestion (this could lead to a deadlock).
In this case, all the machines in M \ (F U F’) must send their agreement
both to the < M, F' > suggestion, and to the suspected machines in F’.

As shown in these cases; the suggestion of each participating machine may
change during the execution of the membership protocol, one or more times.
Therefore, this protocol cannot be classified as a k-phase protocol for any spe-
cific k£, and the number of rounds of message exchanges depends on the specific
scenario.

During an instance of the membership protocol, the suspected machines are
not removed from M, but are only added to F'. A machine that is suspected
in F', cannot be removed from F' either. This guarantees that the protocol will
terminate within a finite time. For example, during a period of instability in the
network, a certain machine might detach and re-connect frequently. The removal
of this machine from A might lead to an endless process of removing and adding
it to M. In our scheme, it can be added and removed at most once during the
execution of the protocol. Consequently, our scheme might mistakenly remove
from the membership an operational machine. This machine can later re-join
the membership. Note that in an asynchronous environment, there is no way to
prevent the removal of a slow machine from the membership. Thus, in our view,
the means for reducing the potential of such mistakes are practical means: fine-
tuning of the system timeouts, and a robust fault-detection mechanism, involving
consulting with a few machines. These practical details are not relevant for the
correctness of the membership protocol.

This protocol also preserves virtual synchrony with respect to other regular
messages 1n the system. In order to understand the main difficulty in preserving
virtual synchrony, envision a system of four machines; A, B, C, D. Machine D has
crashed, and its last message my 1s received only by C. If C sends its member-
ship suggestion < {A, B,C, D}, {D} > (for excluding D) before it receives myq,
how will A and B know they must deliver this message before the membership-
change? There may be more complicated scenarios, for example if first D crashes,
and C is the only receiver of mg, and then C crashes, but has sent a message m,
referring to mg. The rule for message delivery in our protocol is the following:
Between every two membership changes, all the messages that follow any one
of the tdentical membership suggestion-messages of the first membership-change
and do not follow any one of the tdentical membership suggestion-messages of
the second membership-change are delivered. This set of messages can be proved



to be identical among all the machines that install the same two membership-
changes.

6 Warm Replication by Snooping

This section deals with a less obvious facet of broadcast communication, the
ability to intercept messages by non-target machines (snooping). We propose a
way to exploit this ability in order to enhance availability of system services.
The snooping ability offers a novel way for cheaply replicating services in the
network.

To exemplify our ideas, we use the Sun Network File System (NFS) environ-
ment, available at Unix environments. In an NFS environment, applications ac-
cess files throughout the network in an automatic, transparent way. We can view
the entire network as providing a global file system service that i1s distributed
among different machines. While very convenient in all ways, this distribution
leads to a reliability problem: The failure of any one of the machines that provide
file-system services can block an application from running.

In these environments, local-area broadcast networks such as Ethernet and
token-rings are becoming a standard de-facto. These broadcast media carry the
point-to-point NFS messages and enable snooping by unlisted parties.

A warm-backup service (WB) provides a per-application replication service.
The main mechanism of WB is quite simple: When an application asks for WB
service, a second replica will be created for each file that the application opens.
The warm-backup service will keep the two replicas up-to-date and consistent by
snooping, and intercepting the file-modification messages. WB performs these
changes on the replica. When that file is not needed any more, the new replica
will be deleted. In order to enhance availability even more, the same scheme can
work with any number of additional replicas for each file, instead of only one.

Another option of the WB service is to provide a per-directory warm replica-
tion service. When this option is specified for the WB server, then only files in
the specified directory sub-hierarchy are automatically replicated. We anticipate
this to be a most useful option for the WB tool.

The WB server differs from other known replication systems in that it pro-
vides a per-application/per-directory replication service in order to increase the
accessibility of files throughout the application’s lifetime. The main novelty is
the use of snooping in broadcast environments for providing replication cheaply.
It does not require any special hardware such as multiple-access disks, yet it pro-
vides warm replication that is consistent at every moment. In addition, unlike
fully-replicated file systems, the WB architecture does not require modification
to the basic file-system structure or semantics.

Concurrent-Write WB

In the general case, multiple processes from different machines may access the
same file concurrently. In order to keep the primary file copy and its replica(s)
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Fig. 3. Concurrent-Reader WB

consistent, the modifications to the file should be made at the same order in all
the replicas. For this case, we propose the architecture shown in Figure 3(a-b)
(for simplicity, we only discuss the single-replica case; similar results apply in
the multi-replica case). This paradigm works as follows:

1. The NFS and the WB server are notified by the application at startup
whether it wishes to be warmly backed-up (and which directories to back
up).

2. When the NFS server receives a modify-request from a WB application, it
must wait for a sequence-message from its warm-backup.

3. The WB server snoops for all NFS messages. When it receives an NFS
modify-request from a WB application, it issues the modify-operation on
the replica, and sends a numbered sequence-message with an identification
of the request to the NFS server in the site of the accessed file.

4. The NFS server executes the modify-requests it has received according to
the order set by the sequence-messages it receives from the WB server. It
returns the results to the application.

5. If either the NFS server or the WB server loses a message from the ap-
plication, the application will time-out and re-issue the request (this is the
standard fault handling protocol of the NFS).

The modification of the NFS server can be done internally (Figure 3(a)), or
by placing a special server on the NFS server’s machine that mediates between
the application and the NFS server (Figure 3(b)).



Recovery

The modified NFS server and the WB server need to dynamically detect each
other’s failures and recoveries, and bring the system to a consistent state upon
recoveries. In case of the primary NFS server failure, the WB server holds up-to-
date copies of all the accessed file. The WB can also “take over” the primary NFS
server role for those files, and allow currently running applications to continue.
In order that a running application will turn to the WB server for backup file-
service, 1t needs to be modified as well. It is sufficient to transparently replace
the system-calls library and no change 1s required to the application itself. The
details of the takeover algorithm, for moving the application from the primary
server to the backup, are standard for such a system, and are beyond the scope of
this compact presentation. Likewise, the matter of re-integrating an NFS server
upon recovery are detailed elsewhere ([15]).

Exclusive-Write WB

One of the drawbacks of the above architecture is that it requires changes to the
NFS server, thus affecting the entire system and not only the WB applications.
In this section we offer a more restrictive solution, that does not require changes
to the NFS server. This solution work under the assumption that there are no
concurrent accesses by different applications to the same file.

application

Fig. 4. Exclusive-Reader WB

It is a known belief that the majority of modify-accesses to files in Unix are
done by processes exclusively and not concurrently. The Unix loose semantics on
concurrent-modify on files encourages this style of usage. In order to replicate
files for the exclusive writer case, we propose the architecture shown in Figure
4. Each application that wishes to obtain the WB services, links with a modified
system-call library. The files accessed by this applications must be dedicated to



the WB server, and should be not accessed by “regular” NFS clients. The modify
accesses to files is done as follows:

1. The WB server is notified by the application at startup whether it wishes to
be warmly backed-up (and which directories to back up).

2. When the application issues a modify request on a file, it sends the request
as usual to the NFS server.

3. There is no change to the NFS server: it executes each received request and
returns the results to the application.

4. The WB server “snoops” on the network for NFS requests. When it receives
a modify-request from a WB application, it performs the modify-operation
on the replica, and returns an acknowledgment (ACK) message to the ap-
plication.

5. The application waits for the returned results from the NFS server and for
the acknowledgment message from the WB server. If it times out on any one
of them, it re-issues the request. If either the NFS server or the WB server
loses a message, it will receive the retransmission.

Practical Considerations

The WB architecture is designed for incurring a minimal overhead on the mes-
sage traffic in the system. All the dashed-arrows in Figures 3, 4 are almost
cost-free, and are done by network snooping (the reason for saying that this
almost cost free is that in case the WB server loses a message, it needs to
be re-transmitted). Furthermore, note that in all the proposed paradigms, the
extra-messages employed by the WB system are very short messages that do
not carry data (e.g. the sequence-message and the ACK message). Thus, for
write-operations on files, the written data is sent only once over the network.

The common source of delay in all the proposed paradigms is the need to wait
for an extra message from the WB server. We have implemented a prototype
of the WB server over the Sun Network Interface Tap (NIT), and are currently
experimenting with the performance of the system proposed in Figure 4.

The WB server snoops for messages addressed at multiple NFS servers.
Therefore, 1t needs to put the network-interface in its machine in promiscu-
ous mode, and filter the relevant messages among the multitude of messages
transferred in the system. This requires the machine(s) that run the WB server
to be fairly lightly-loaded. This indicates that for best results, the WB server
should probably run on a designated machine by itself, the backup machine.

7 Conclusions

The hardware media of computer networks provide the capability to broadcast
messages. This offers an efficient way to disseminate messages to multiple desti-
nations. Essentially, this is a practical consideration; however, if we incorporate
the broadcast capability into the system model, we arrive at distributed algo-
rithms that are quite different from their sequential counterparts. Moreover, in



the case of the warm-replication application, the ability to snoop within a broad-
cast network has led us to devise a completely new scheme for replication. Thus,
these practical considerations can be of significance to the designer of distributed
services.

Future networks such as the high-speed FDDI ring, and wireless networks,
also possess the broadcast capability. Therefore, understanding the potential in
broadcast communication is important. OQur experience with some of the pro-
tocols presented in this paper indicates that there are interesting tradeoffs that
need to be exlored. The choice between having a distributed control and a cen-
tralized control is not fully understood yet. Similarly, we note that quantitative
measures may effect their conduct. For example, the reliable broadcast proto-
cols we presented behave quite differently under various communication-load
conditions, and when different loss-rates of underlying network messages are
exhibited.

Randomized techniques have proved their importance in the field of dis-
tributed algorithms by producing solutions to the consensus problem and oth-
ers. Rarely, i1s any of the theoretical randomized protocols used in practical
distributed environments. Typically, this is because they are too complicated,
or involve too many message-exchanges. We propose to investigate the usage of
randomization in more realistic models, and in particular, within a broadcast
domain.
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