
Byzantine Self-Stabilizing Pulse in a
Bounded-Delay Model?

Danny Dolev?? and Ezra N. Hoch

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel,

{dolev,ezraho}@cs.huji.ac.il

Abstract. “Pulse Synchronization” intends to invoke a recurring dis-
tributed event at the different nodes, of a distributed system as simulta-
neously as possible and with a frequency that matches a predetermined
regularity. This paper shows how to achieve that goal when the system
is facing both transient and permanent (Byzantine) failures.
Byzantine nodes might incessantly try to de-synchronize the correct
nodes. Transient failures might throw the system into an arbitrary state
in which correct nodes have no common notion what-so-ever, such as
time or round numbers, and thus cannot use any aspect of their own lo-
cal states to infer anything about the states of other correct nodes. The
algorithm we present here guarantees that eventually all correct nodes
will invoke their pulses within a very short time interval of each other
and will do so regularly.
The problem of pulse synchronization was recently solved in a system in
which there exists an outside beat system that synchronously signals all
nodes at once. In this paper we present a solution for a bounded-delay
system. When the system in a steady state, a message sent by a correct
node arrives and is processed by all correct nodes within a bounded time,
say d time units, where at steady state the number of Byzantine nodes,
f, should obey the n > 3f inequality, for a network of n nodes.

1 Introduction
When constructing distributed systems, fault tolerance is a major consideration.
Will the system fail if part of the memory has been corrupted (e.g. by a buffer
overrun)? Will it withstand message losses? Will it overcome network discon-
nections? To build distributed systems that are fault tolerant to different types
of faults, two main paradigms have been used: The Byzantine model and the
self-stabilizing model

The Byzantine fault paradigm assumes that up to some fraction of the nodes
in the system (typically one-third) may behave arbitrarily. Moreover, these nodes
can collude in order to try and bring the system down (for more on Byzantine
faults, see [1]).
? This paper will appear in SSS 2007. Distribution of this paper is prohibited.

?? Part of the work was done while the author visited Cornell university. The work was
funded in part by ISF, ISOC, NSF, CCR, and AFOSR.

2 Danny Dolev and Ezra N. Hoch

The self-stabilization model assumes that the system might be thrown out of
its assumed working conditions for some period of time. Once the system is back
to its normal boundaries, all nodes should converge to the desired solution. For
example, starting from any memory state, after a finite time, all nodes should
have the same clock value (for more on self-stabilization, see [2]).

The strength of self-stabilizing systems emerges from their ability to continue
functioning after recovering from a massive disruption of their assumed working
conditions. The advantage of Byzantine tolerant systems comes from being able
to withstand any kind of faults while the system operates in its known bound-
aries. By combining these two fault models, a distributed system can continue
operating properly in the presence of faults as long as “everything is going well”;
however, if “things aren’t going well”, the system will be able to recover once
the conditions hold again, and the ratio of Byzantine nodes hold.

Clock synchronization is a fundamental building block in many distributed
systems; hence, creating a self-stabilizing Byzantine tolerant clock synchroniza-
tion is a desirable goal. Once such an algorithm exists, one can stabilize Byzantine
tolerant algorithms that were not designed for self-stabilization (see [3]). Clock
synchronization can be created upon a pulseing algorithm (see [4]), which is
the main motivation behind the current paper.

The main contribution of the current paper is to develop a pulse synchroniza-
tion algorithm that converges once the communication network resumes deliv-
ering messages within bounded, say d, time units, and the number of Byzantine
nodes, f, obeys the n > 3f inequality, for a network of n nodes. The attained
pulse synchronization tightness is 3d with a deterministic convergence time of a
constant number of pulse cycles (each containing O(f) communication rounds).

1.1 Related work

Algorithms combining self-stabilization and Byzantine faults, can be divided
into two classes. The first consists of problems in which the state of each node
is determined locally (see [5,6,7]). The other class contains problems such that a
node’s state requires global knowledge - for example, clock synchronization such
that every two nodes’ clocks have a bounded difference that is independent of
the diameter of the network (see [8,9,4]). The current paper is of the latter class.

The current paper makes use of the self-stabilizing Byzantine agreement al-
gorithm (ss-Byz-Agree) presented in [10]. The above work operates in exactly
the same model as the current paper, and its construction will be used as the ba-
sic building block in our current solution. Appendix A lists the main properties
of this building block.

When discussing clock synchronization, it is common to represent the clocks
as an integer value that progresses linearly in time (see [11]). This was previously
termed digital clock synchronization ([12,13,14,15]) or “synchronization of phase-
clocks” ([16]). In the current paper we provide a pulseing algorithm; however,
when comparing it to other results, we consider the digital clock synchronization
algorithm that can be built upon it (as in [4]).

Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model 3

The first ever algorithm to address self-stabilizing Byzantine tolerant clock
synchronization is presented in [8]. [8] discusses two models; one is synchronous,
that is, all nodes are connected to some global “tick” system that produces
“ticks” that reach all nodes at the same time, and messages sent at any given
tick reach their destination before the following tick. The second model is a
bounded-delay network, in which there is no common tick system, but messages
have a bounded delay on their delivery time. There is no reason to consider
an asynchronous model, since even a single fail-stop failure can’t be overcome
(see [17]). Note that the bounded-delay model contains the first (synchronous)
one. [8] gives two solutions, one for each model, both of which converge in ex-
pected exponential time; both algorithms support f < n

3 .
In [9] clock synchronization is reached in deterministic linear time. However,

[9] addresses only the synchronous model, and supports only up to f < n
4 . In [18],

a pulseing algorithm that operates in the synchronous model is presented, which
converges in deterministic linear time, and supports f < n

3 , matching the lower
bounds both in the maximal number of Byzantine nodes, and in the convergence
time (see [19] for lower bounds). In [20] a very complicated pulse synchronization
protocol, in the same model as the current paper, was presented.

The current paper presents a pulse-synchronization algorithm, which has de-
terministic linear convergence time, supports f < n

3 , and operates in a bounded-
delay model.

2 Model and Problem Definition

The model used in this paper consists of n nodes that can communicate via
message passing. Each message has a bounded delivery time, and a bounded
processing time at each node; in addition the message sender’s identity can be
validated. The network is not required to support broadcast.

Each node has a local clock. Local clocks might show different readings at
different nodes, but all clocks advance at approximately the real-time rate.

Nodes may be subject to transient faults, and at any time a constant fraction
of nodes may be Byzantine, where f , the number of Byzantine nodes satisfies
f < n

3 .

Definition 1. A node is non-faulty if it follows its algorithm, processes mes-
sages in no more than π time units and has a bounded drift on its internal clock.
A node that is not non-faulty is considered faulty (or Byzantine). A node is
correct if it has been non-faulty for ∆node time units.1

Definition 2. A communication network is non-faulty if messages arrive at
their destinations within δ time units, and the content of the message, as well as
the identity of the sender, arrive intact. A communication network is correct
if it has been non-faulty for ∆net time units.2

1 The value of ∆node will be stated later.
2 The value of ∆net is stated below.

4 Danny Dolev and Ezra N. Hoch

The value of ∆net is chosen so if at time t1 the communication network is
non-faulty and stays so until t1 + ∆net, then only messages sent after t1 are
received by non-faulty nodes.

Definition 3. A system is coherent if the network is correct and there are at
least n− f correct nodes.

Once the system is coherent, a message between two correct nodes is sent,
received and processed within d time units, where d is the sum of δ, π and the
upper bound on the potential drift of correct local timers during such a period.
∆net should be chosen in such a way as to satisfy ∆net ≥ d.. Since d includes the
drift factor, and since all the intervals of time will be represented as a function
of d, we will not explicitly refer to the drift factors in the rest of the paper.

2.1 Self-stabilizing Byzantine Pulse-Synchronization

Intuitively, the pulse synchronization problem consists of synchronizing the cor-
rect nodes so they invoke their pulses together Cycle time apart. That is, all
correct nodes should invoke pulses within a short interval, then not invoke a
pulse for approximately Cycle time, then invoke pulses again within a short
interval, and so on. Adding “Self-stabilizing Byzantine” to the pulse synchro-
nization problem, means that starting from any memory state and in spite of
ongoing Byzantine faults, the correct nodes should eventually invoke pulses to-
gether Cycle time apart.

Since message transmission time varies and also due to the Byzantine pres-
ence, one cannot require the correct nodes to invoke pulses exactly Cycle time
apart. Instead, cyclemin and cyclemax are values that define the bounds on the
actual cycle length in a correct behavior. The protocol presented in this paper
achieves cyclemin = Cycle ≤ cycle ≤ Cycle + 12d = cyclemax.

To formally define the pulse synchronization problem, a notion of “pulseing
together” needs to be addressed.

Definition 4. A correct node p invokes a pulse near time unit t if it invokes a
pulse in the time interval [t− 3

2 · d, t+ 3
2 · d]. Time unit t is a pulsing point if

every correct node invokes a pulse near t.

Definition 5. A system is in a synchronized pulsing state in the time in-
terval [r1, r2] if

1. there is some pulsing point t0 ∈ [r1, r1 + cyclemax] ;
2. for every pulsing point ti ≤ r2− cyclemax there is another pulsing point ti+1,

ti+1 ∈ [ti + cyclemin, ti + cyclemax];
3. for any other pulsing point t̄ ∈ [r1, r2], there exists i, such that |ti− t̄| ≤ 3

2 ·d.

Intuitively, the above definition says that in the interval [r1, r2] there are
pulsing points that are spaced at least cyclemin apart and no more than cyclemax

apart.

Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model 5

Definition 6. Given a coherent system, The Self-Stabilizing Pulse Synchroniza-
tion Problem requires that:

Convergence: Starting from an arbitrary system state, the system reaches
a synchronized pulsing state within a finite amount of time.

Closure: If the system is in a synchronized pulsing state in some interval
[t1, t2] (s.t. t2 > t1 + cyclemax), then it is also in a synchronized pulsing state in
the interval [t1, t] for any t > t2.

3 Solution Overview

The main algorithm, Erratic-Pulser, assumes a self-stabilizing, Byzantine
tolerant, distributed agreement primitive, Q, which is defined in the following
section. A protocol providing the requirements of Q is presented in Section 5.

Using Q, the Erratic-Pulser algorithm produces agreement among the
correct nodes on different points in time at which they invoke pulses; and
these points become sparse enough. Using this basic point-in-time agreement,
a full pulse algorithm is built, named Balanced-Pulser. By using the basic
pulseing pattern produced by Erratic-Pulser, Balanced-Pulser manages
to solve the pulse-synchronization problem.

During the rest of this paper, the constants Cycle, cyclemin and cyclemax are
used freely. However, it is important to note that Cycle must be chosen such
that it is large enough. The exact limitations on the possible values of Cycle will
be stated later. An explanation on how to create a pulseing algorithm with an
arbitrary Cycle value is presented in Section 9.

4 The Q Primitive

Q is a primitive executed by all the nodes in the system. However, each invocation
of a specific Q is associated with some node, p, hence a specific invocation will
sometimes be referred to as Q(p). That is, Q(p) is a distributed algorithm,
executed by all nodes, and triggered by p (p’s special role in the execution of
Q(p) will be elaborated upon later). In the following discussion several instances
of Q(p) may coexist, but it will be clear from the context to which instance Q(p)
refers. Each instance is a separate copy of the protocol and each node executes
each instance separately.
Q(p) is a “consensus primitive”, that is, each node q has an input value vq,

and upon completing the execution of Q(p) it produces some output value Vq.
The input values and output values are boolean, i.e., vq, Vq ∈ {0, 1}. Denote by
τq the local-time at node q at which Vq is defined; that is τq is the local time at
node q at which q determines the value of Vq (and terminates Q(p)).

The un-synchronized and distributed nature of Q(p) requires distinguishing
between two stages. The first stage is when p attempts to invoke Q(p); this at-
tempted invocation involves exchanging messages among the nodes. The second
stage is when enough correct nodes agree to join p’s invocation of Q(p), and

6 Danny Dolev and Ezra N. Hoch

hence start executing Q(p). When p is correct, the first stage and the second
stage are close to each other; however, when p is faulty, no a priori bound can
be set on the time difference between the first and the second stages. Note that
p itself joins the instance of Q(p) only after the preliminary invocation stage.

Informally, joinq is the time at which q agrees to join the instance of Q(p)
(which is also the time at which q determines its input value vq.) Following
this stage it actively participates in determining the output value of Q(p). The
implementation of Q(p) needs to explicitly instruct a node when to determine
its input value.

In the following discussion, rtinvoke will denote the time at which p invoked
Q(p) and joinfirst will denote the time value at which the first correct node
joins the execution of Q(p); joinlast will denote the time value at which the last
correct node joins p in executing Q(p). That is, joinfirst = mincorrect q{joinq}
and joinlast = maxcorrect q{joinq}.
Q(p) is self-stabilizing, and its properties hold once the system executing it is

coherent for at least ∆Q time. In other words, no matter what the initial values
in the nodes’ memory may be, after the system has been coherent for ∆Q time,
the properties of Q(p) will hold.3

Q(p)’s properties follow. Observe that there are different requirements, de-
pending on whether p is a correct node or not.

1. For any node p invoking Q(p), the following holds:
(a) Agreement: all correct nodes that have terminated have the same out-

put value. That is, for any pair of correct nodes, q and q′, which have
completed Q(p), Vq = Vq′ . V denotes this common output value.

(b) Validity: if all correct nodes have the same input value ν then V = ν.
(c) Termination: if some correct node joins Q(p) then all correct nodes ter-

minate within ∆max time units from joinfirst but no quicker than ∆min.
That is, for a correct q, rt(τq) ∈ [joinfirst +∆min, joinfirst +∆max], where
τq is the local time at which q determines the value of Vq, and rt(τq) is
the time at which this takes place.

(d) Tightness: if a correct node terminates, then for any correct nodes q, q′:
|rt(τq)− rt(τq′)| ≤ 3 · d.

(e) Collaboration: if one correct node joins the execution of Q(p), then all
correct nodes join the execution of Q(p) within 3 · d of each other; that
is, |joinlast − joinfirst| ≤ 3 · d.

2. For a correct node p, starting the execution of Q(p) at time rtinvoke, the
following holds:
(a) Strong Termination: joinfirst ≤ rtinvoke + 3 · d. That is, the first correct

node to join p in executing Q(p) does so within 3 · d time from p’s
invocation of Q(p). Combined with termination, this property means
that all correct nodes terminate by rtinvoke + 3 · d+∆max.

(b) Separation: p does not start Q(p) more than once every 3 · ∆max time
units.

3 ∆Q is defined below.

Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model 7

3. The following holds for a faulty p, invoking Q(p):
(a) Separation: if a correct node q assigns an output value for Q(p) at some

time t1, then it does not assign an output value for Q(p) again before
t1 + 2 ·∆min.

Remark 1. According to “termination” if joinfirst is not defined, all correct nodes
do not terminate. This implies that all correct nodes terminate if and only if some
correct node joins p in executing Q(p).

Note that p may require the invocation of severalQ(p) instances concurrently.
To differentiate between these instances, they are marked with an additional
index, e.g Q1(p),Q2(p), etc. Each such instance has its own memory space, and
hence is independent of other instances. According to the separation property,
a correct node does not execute the same instance of Q(p) too often. That is,
Q1(p) is not executed until the previous Q1(p) has terminated. A faulty node p
may try to invoke Q1(p) as often as it likes, however correct nodes will ignore
the multiple executions.

5 Implementing Q(p), the ss-Byz-Q Algorithm

The implementation of Q(p) makes use of ss-Byz-Agree ([10]). The properties
of ss-Byz-Agree and its guarantees are listed in Appendix A. In ss-Byz-Agree,
when a node p wants to start an agreement on some value, it sends (Initiator,
p, vp) to all other nodes. Nodes receiving this message, initiate the ss-Byz-
Agree algorithm, and start participating in the agreement. Other nodes, that
have not received the (Initiator, p, vp) message (in case p is Byzantine), join the
ss-Byz-Agree algorithm once they are “convinced” that enough correct nodes
are already executing ss-Byz-Agree on p’s value.

This leads to the following insight. If a correct node q ignores an (Initiator,
p, vp) message sent by a Byzantine node (for any reason), it does not change the
properties of ss-Byz-Agree. Since due to p’s Byzantine nature, if p would have
not sent this specific message to q, ss-Byz-Agree’s properties would still hold.
Hence, whether p sends the message and a correct node ignores it, or p doesn’t
send the message at all, the properties of ss-Byz-Agree remain the same. Note
that this is true only if p is Byzantine. In what follows, when a node rejects a
message it ignores it, and when it accepts a message it continues to execute the
protocol as instructed.

Figure 1 presents an algorithm that implements the Q primitive. If node p
wants to invoke Q(p), it does so by executing ss-Byz-Agree (p, start Q) (this
is the Init stage), which means it sends (Initiator, p, start Q) messages to other
nodes. This action triggers the prolog stage of the protocol. If this stage completes
successfully, each correct node peforms a timing test to determine whether to
join the computation of the primitive Q(p). The algorithm is executed in the
background continuously, and it responds to messages / events that are triggered
by p’s execution of ss-Byz-Agree (p, start Q).

8 Danny Dolev and Ezra N. Hoch

Algorithm ss-Byz-Q
(implementing Q(p)) /* executed at node q */

Init: If p = q invoke ss-Byz-Agree (p, start Q));
/* by sending (Initiator, p, start Q)) message to all */

Prolog: On receiving (Initiator, p, start Q) message from p

if localq > lastq[p] + 2 ·∆max then accept the message;
else ignore the message;

The Primitive Q(p):

1. On returning from ss-Byz-Agree for p with value “start Q” do
if localq > lastq[p] +∆max + 3 · d then

begin
determine the input value vq; /* this is when q joins Q(p) */

startq[p] := localq;
reset valq[p,];
wait for 3 · d and then invoke ss-Byz-Agree (q, (p, vq));

/* by sending (Initiator, q, (p, vq)) message to all */
end

lastq[p] := localq;
2. On receiving (Initiator, p′, (p, vp′))

if localq ≤ startq[p] + 7 · d then accept the message;
else ignore the message;

3. On returning from ss-Byz-Agree for p′ with value (p, vp′) do
valq[p, p′] = vp′ ;

4. At time localq = startq[p] +∆+ 17 · d
for all p′, check the agreement values valq[p, p′]

if there are n− f 1’s, then set Vq[p] := 1, otherwise set Vq[p] := 0;
return Vq[p] as Q(p)’s output value;

Cleanup:

for any p: if lastq[p] > localq then lastq[p] := localq
for any p: if startq[p] > localq then startq[p] := localq

Fig. 1. An algorithm that implements Q(p)

The values of the constants for the ss-Byz-Q algorithm are:∆max := ∆+20·d
and ∆min := ∆max − 3 · d, where ∆ represents the maximal time required to
complete ss-Byz-Agree (∆ := 7(2f + 3)d, see Appendix A).

In the Q(p) protocol in Figure 1, localq represents the local time at each
node q; in addition there are two arrays of values: startq, lastq. These arrays
hold local-time values (per node p) of events regarding Q(p)’s execution at q.
lastq[p] is used to ensure that q doesn’t participate in Q(p) too often. startq[p]
is used so that all correct nodes know when to stop collecting values of other
nodes (regarding Q(p)’s instance); these values are stored in valq[p, p′].

Remark 2. In the protocols, all the comparisons of the value of localq to some
other value, always compare values that are at most some bounded range apart,
say D. To deal with the possible wraparound of the counter localq, it is enough

Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model 9

that the range of values of localq will be D′ > 2D. The “cleanup” stage of the
protocol (See Figure 1) ensures that comparisons over a circle of size D′ are
uniquely determined.

Note that the protocol parameters n, f and Cycle (as well as the system
characteristic d) are fixed constants and thus considered part of the incorruptible
correct code.4 Thus we assume that non-faulty nodes do not hold arbitrary values
of these constants.

The value of ∆node is crucial for the following claims. ∆node is used to ensure
that non-faulty nodes “run” for some time before they become correct. In the
context of this paper, a non-faulty node should not be considered correct when it
executes ss-Byz-Q that it might have joined before it was non-faulty. Moreover,
since ss-Byz-Q uses ss − Byz-Agree which has its own requirements for a
node’s correctness, we set ∆node := ∆node-ss-byz-agree +∆max + 3 · d .5

Lemma 1. Once the system is coherent, if all correct nodes pass the condition
in Line 1 during a time interval [t1, t2] s.t.
1. t2 − t1 ≤ 3 · d, and
2. at t1 for any correct node q it holds that localq > startq[p] +∆max,

then Agreement, Validity, Termination, Tightness and Collaboration hold.

Proof. First we show that no ss − Byz-Agree(p′, (p, vp′)) that was initiated
before t1, terminates after t1. By assumption, at time t1, each correct node q
has localq > startq[p] + ∆max, which means that no correct node has accepted
(Initiator, p′, (p, vp′)) in the time interval [t1−∆max + 7 · d, t1]. In the protocol,
any correct node that accepts (Initiator, p′, (p, vp′)) before t1−∆max +7·d, must
have terminated the ss-Byz-Agree no later than t1 −∆max + 7 · d+∆+ 7 · d,
and hence all correct nodes must have terminated the ss-Byz-Agree no later
than t1 − ∆max + 17 · d + ∆. Since ∆max := ∆ + 20 · d, we conclude that any
ss-Byz-Agree that was invoked before t1 terminated before t1.

In addition, due to setting of lastq[p] in Line 1, no correct node will pass the
condition in Line 1 again, before t1 + ∆max + 3 · d. Hence, during the interval
[t2, t2 + ∆max] no correct node passes the condition in Line 1. Note that each
correct node passes the condition in Line 1 exactly once in the interval [t1, t2].
Hence, all correct nodes reset valq[p,] in the interval [t1, t2] and never do so
again before t2 +∆max. In a sense, the above means that all correct nodes join
p in the interval [t1, t2] and do not join p again, until after time t2 +∆max.

From the lemma’s condition; for any two correct nodes q, q′, it holds that
|rt(startq[p]) − rt(startq′ [p])| ≤ 3 · d. At this stage, each correct node joins p’s
execution of Q(p) and hence Collaboration holds.

For any pair of correct nodes, q, q′, |rt(startq[p]) − rt(startq′ [p])| ≤ 3 · d.
Moreover, q sends its (Initiator, q, (p, vq)) message 3 · d after its startq[p]. Since
|rt(startq[p])− rt(startq′ [p])| ≤ 3 · d, q′ has already set its startq′ [p] value when
it receives q’s (Initiator, q, (p, vq)) message. Similarly, q′ receives q’s (Initiator,
q, (p, vq)) message within 7·d of startq′ [p] (3d is the waiting of 3d in Line 1 of the

4 A system cannot self-stabilize if the entire code space can be perturbed, see [21].
5 ∆node-ss-byz-agree := 14(2 · f + 3) · d+ 10 · d (see [10]).

10 Danny Dolev and Ezra N. Hoch

protocol, additional 3d is the time difference in startq, and d is the uncertainty
in message delivery), and thus does not ignore it.

This last argument implies that for every correct node q, any other correct
node q′ accepts its (Initiator, q, (p, vq)) message, and hence finishes ss-Byz-
Agree (q, vq) before time startq′ + ∆ + 7 · d. Therefore, every correct node
“hears” every other correct node’s value. That is, for any triplet of correct nodes,
q, q′, q′′ it holds that valq[p, q′′] = valq′ [p, q′′].

Consider a Byzantine node q. If some correct node q′ has accepted its (Initia-
tor, q, (p, vq)) message, then according to point 3 of the “Timeliness-Agreement”
property (see Appendix A), ss-Byz-Agree will terminate within ∆ + 7 · d
time units. Hence, any other correct node q′′ will terminate within 3 · d. Since
|startq′−startq′′ | ≤ 3·d, node q′′ will have accepted the same value no later than
startq′′ +∆+ 16 · d (7d come from above, 3d come from the difference in startq,
3d come from the difference in the termination of ss-Byz-Agree and another
3d from the waiting after setting startq[p]; all together 7d+ 3d+ 3d+ 3d = 16d).
Note that this proof holds even though correct nodes may ignore an (Initiator,
q, (p, vq)) message sent by a Byzantine node q. Since no ss-Byz-Agree that was
invoked before t1 is accepted after t1, it holds that valq′ [p, q] = valq′′ [p, q]. As
a result all correct nodes have the same set of values when they consider the
output value vq[p], hence they all agree on the same output value. In addition,
if all correct nodes started with “0”, they will see at most f “1”s, and hence
decide V = 0. Moreover, if all correct nodes started with “1”, then all correct
nodes will decide 1. Thus Agreement and Validity hold.

Each correct node terminates within ∆+17·d of returning from p’s invocation
of ss-Byz-Agree (which is the joining point of each correct node to Q(p)),
and they all terminate within 3 · d time units of each other (since |rt(startq)−
rt(startq′)| ≤ 3 · d). Hence Termination and Tightness hold. ut

The following shows that ss-Byz-Q converges in∆Q := 4·∆max+∆ss−Byz-Agree.
For ss-Byz-Q to operate correctly, ss-Byz-Agree must converge as well. Hence,
in the following, we will assume that ∆ss−Byz-Agree time has already passed. 6

Lemma 2. Once the system has been coherent for 4 ·∆max time units, then for
a faulty p, the properties of Q(p) hold for ss-Byz-Q.

Proof. Note that once the system is coherent, startq[p], lastq[p] ≤ localq. Notice
that startq[p] can only be updated at Line 1.

Consider the first 2 ·∆max time units following the time at which the system
became coherent. If some correct node terminates ss-Byz-Agree (p, start Q)
during this period, then all correct nodes do so within 3 ·d of each other. Hence,
they all set their lastq[p] variable within 3 · d time units of each other. That is,
the values rt(lastq[p]) are at most 3 ·d units apart from each other. If no correct
node terminates ss-Byz-Agree (p, start Q) for 2·∆max, then all lastq[p] haven’t
been updated for 2 ·∆max and hence all lastq[p] + 2 ·∆max < localq for every
correct node q.
6 ∆ss−Byz-Agree := 2∆+ 10d (see [10]).

Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model 11

Thus, we conclude that after 2 ·∆max time units either all correct nodes have
rt(lastq[p]) within 3·d of each other or all correct nodes have lastq[p]+2·∆max <
localq. Note that this state continues to hold as long as no correct node enters
Line 1 since lastq[p] is not updated at any correct node. If some correct node
does update lastq[p] at Line 1, then all correct nodes do so 3 ·d time units apart.

Now consider the period between 2·∆max and 4·∆max time units following the
time the system became coherent. If no correct node terminated ss-Byz-Agree
(p, start Q), then each correct node, q, has localq > startq[p] + ∆max (since
startq[p] had not been updated for at least 2 · ∆max time units). Otherwise,
if some correct node q′ has terminated ss-Byz-Agree (p, start Q), it means
that there exists some correct node q̄ that accepted (Initiator, p, start Q) at the
Prolog stage. Thus, localq̄ > lastq̄[p] + 2 ·∆max, which means that until lastq̄[p]
is reset, localq̄ > lastq̄[p] +∆max + 3 · d. Remember that either the rt(lastq[p])
of each correct node q̄ is within 3 · d time units of all other correct nodes, or
each correct node has lastq[p]+2 ·∆max < localq. Therefore, we have that for all
correct nodes, until lastq[p] is reset, localq > lastq[p]+∆max +3 ·d; which means
that when q terminates ss-Byz-Agree (p, start Q) it passes the condition of
Line 1, along with all other correct nodes (within a 3 ·d interval). Therefore, the
rt(startq[p]) of all correct nodes are within 3 · d time units.

Thus, after 4 · ∆max, the rt(startq[p]) of all correct nodes are within 3 · d
time units and rt(lastq[p]) within 3 · d time units of each other or all correct
nodes have lastq[p] + 2 · ∆max < localq. Note that the next time p invokes
ss-Byz-Agree, all correct nodes values of startq[p] will be greater than their
localq by at least 2 ·∆max. Hence, if p invokes ss-Byz-Agree and some correct
node terminates that instance of ss-Byz-Agree, then all correct nodes pass the
condition of Line 1 within 3 ·d of each other, and each correct node has localq >
startq[p] +∆max. Hence, by Lemma 1 all properties except for Separation hold.

To show that Separation holds, notice that once a correct node has passed
Line 1, it won’t do so again for at least 2 ·∆max− 3 ·d time units. In addition, it
will terminate the current instance of Q within ∆max. Hence, the next invocation
of Q cannot terminate before 2 ·∆min. And Separation holds. ut

Lemma 3. Once the system has been coherent for 4 · ∆max time units, then
for a correct p, the properties of Q(p) hold for ss-Byz-Q, given that p does not
initiate ss-Byz-Agree (p, start Q) earlier than 3 · ∆max time units following
its previous invocation.

Proof. Since Agreement, Validity, Termination, Tightness and Collaboration were
proven to hold even if p is faulty (under the lemma’s conditions), they clearly
hold if p is correct. Hence, we still need to prove Strong Termination and Sep-
aration. To prove Strong Termination, note that if p is correct, and it has not
invoked Q(p) for 3 ·∆max time units, then when it does invoke Q(p), all correct
nodes will accept the message (Initiator, p, start Q) and hence, according to item
2 of the “Timeliness-Agreement” property of ss-Byz-Agree (see Appendix A),
all correct nodes will terminate within 3 ·d time units following p’s invocation of
ss-Byz-Agree (p, start Q) and join the execution of Q(p). Separation follows
from the conditions of the lemma. ut

12 Danny Dolev and Ezra N. Hoch

From the above lemmas, we conclude that after 4 · ∆max + ∆ss−Byz-Agree

time units, ss-Byz-Q behaves according to Q’s properties. Setting ∆Q := 4 ·
∆max + ∆ss−Byz-Agree satisfies the claim that if the system has been coherent
for ∆Q time units, then the properties of Q hold.

Since ss-Byz-Q implements Q’s properties correctly, in the rest of the paper
we will use ss-Byz-Q and Q interchangeably.

6 Constructing the Erratic-Pulser Algorithm

The Erratic-Pulser algorithm (Figure 2) is written in an event-driven fash-
ion; that is, it is continuously executed in the background and no explicit ini-
tialization is needed. The algorithm requires invoking two Q instances per node
(Qstart and Qend). In addition, each node has three timers timerstart,timerend

and timermain with elapsed time of cyclestart,cycleend and cyclemain, respec-
tively. When timerstart or timerend elapse, an instance of ss-Byz-Q is invoked
(Qstart for timerstart and Qend for timerend). timermain is used to determine the
value of WantToPulse, which is used as the input value for Qstart and Qend.
If timermain is elapsed, then WantToPulse := 1, and once timermain is reset,
WantToPulse := 0 until it elapses again.

Algorithm Erratic-Pulser /* executed at node p */
/* the Qs are executed in the background */

/* the input value vq for each Q instance, is the
value of WantToPulse at the time q joins Q */

1. when timerstart elapses
reset timerstart with cyclelarge;
reset timerend;
invoke Qstart(p);

2. when timerend elapses
reset timerend with cyclelarge;
invoke Qend(p);

3. WantToPulse := 1 if timermain has elapsed, and WantToPulse := 0, otherwise;
4. on returning from either Qstart(q) or Qend(q) for some q with value V = 1

(a) invoke a pulse;
(b) reset timermain;
(c) reset timerstart;

cleanup:
if a timer is set with invalid value (below 0 or above its maximal value),
reset it; for timermain, 0 is a valid value;

Fig. 2. An algorithm achieving basic synchronized pulseing

The intuition behind the algorithm is that WantToPulse determines when
p is willing to invoke a pulse. Once all correct nodes have WantToPulse = 1,
the next time a ss-Byz-Q instance is invoked, all of them will invoke pulses.
Remark: Notice that there is a difference between timerstart, timerend and
timermain. timerstart, timerend are timers that when they elapse, an event

Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model 13

occurs, and the algorithm performs some action. These timers are always set,
that is, once they elapse, they are reset immediately. timermain, on the other
hand, will remain in its elapsed state until it is reset. That is, Line 3 is not
executed only when timermain elapses, but rather it is executed continuously. In
a sense, when q wants to read its WantToPulse variable value, it checks whether
timermain has elapsed; if so then it considers WantToPulse = 1, otherwise it
reads WantToPulse = 0.

The following are the values of the constants used in Erratic-Pulser.
cyclestart := cyclemain := Cycle−∆max −∆min;
cycleend = ∆min − 10 · d;
cyclelarge := 2 · (∆max + cyclestart + cycleend).

Note: cyclemain needs to be larger than ∆max +9 ·d time units, hence, Cycle
must be larger than 2 ·∆max +∆min + 9 · d time units.

7 Erratic-Pulser’s Correctness Proofs
Definition 7. A correct node p pulses-in-unison, there is a pulsing point t,
such that p invokes a pulse near t each time that p invokes a pulse. The system
pulses-in-unison, if for every correct node p , p pulses-in-unison

Remark 3. The definition of “near t” implies that if p pulses-in-unison then
each time p invokes a pulse there is a time interval [t1, t2] such that |t2−t1| ≤ 3·d
and each correct node (including p) invokes a pulse within this interval. This
also implies that if there exists a correct node p that pulses-in-unison then the
system pulses-in-unison.

Lemma 4. Once the system has been coherent for ∆Q time, the system pulses-
in-unison.

Proof. According to Lemma 2 and Lemma 3 (in Section 5), once the system
has been coherent for ∆Qtime units, all copies of ss-Byz-Q behave according to
the requirements of Q. This means that all correct nodes see the same output
values. Since a correct node invokes a pulse only in accordance with the output
of a Q, if some correct node invokes a pulse, then within 3 · d time units from
its pulse, all correct nodes will also invoke pulses. This means that every correct
node pulses-in-unison, which means that the system pulses-in-unison. ut

The following lemma proves that a correct node will eventually invoke a
pulse. The previous lemma claims that after some time, if a correct node invokes
a pulse, then all the correct nodes invoke pulses.

Lemma 5. Eventually some correct node will invoke a pulse. This happens no
later than ∆Q+∆max +cyclelarge +cyclemain + 3 ·d time units after the point
at which the system becomes coherent.

Proof. Consider the system ∆Q after it becomes coherent: If a correct node in-
vokes a pulse, the lemma holds. Otherwise, after cyclemain time units, all correct
nodes will have WantToPulse as 1. Eventually, after no more than cyclelarge,

14 Danny Dolev and Ezra N. Hoch

timerstart at some correct p will expire, which will initiate Qstart(p), that termi-
nates no more than ∆max + 3 · d time units afterwards (by strong termination),
and will have the output value V = 1 (since all correct nodes had the input value
of v = 1). By line 4, of the Erratic-Pulser, p will invoke a pulse. ut

Lemma 6. Once the system pulses-in-unison, let t1 be a time unit at which a
correct node p invokes a pulse. Let t2 be the last time at which p invokes a pulse
in the interval [t1, t1 + ∆max + 3 · d]. p does not invoke a pulse in the interval
[t2, t2 + cyclemain − 3 · d + ∆min]. p invokes a pulse at some time t3, where
t3 ≤ t2 + cyclemain + 6 · d+∆max.

Proof. According to the lemma’s assumption the system pulses-in-unison. Hence,
when p invokes a pulse at t1 all correct nodes invoke pulses before time t1 + 3 ·d.
Define [ts, te] to be the time interval in which all correct nodes have invoked
a pulse, such that t1 ∈ [ts, te] and te − ts ≤ 3 · d. All correct nodes execute
lines 4.a, 4.b and 4.c during the interval [ts, te]. Therefore, the correct nodes’
timers timermain,timerstart are reset. Hence, after te all correct nodes’ values
of WantToPulse are 0, and hence any correct node that joins any Q instance
after te has an input value vq = 0. This holds until timermain elapses at some
correct node, that is until ts + cyclemain. In other words, no correct node joins
any Q instance in the interval [te, ts + cyclemain] with input value of 1.

By definition, t2 is the last time that p invoked a pulse in the interval [t1, t1 +
∆max + 3 · d]. Hence, after t2 + 3 · d all correct nodes have invoked pulses,
and hence have WantToPulse as 0 for at least cyclemain − 3 · d time units.
Therefore, in the interval [t2 + 3 · d, t2 + cyclemain − 3 · d] no correct node joins
any instance ofQ with an input value of 1. Since cyclemain ≥ ∆max + 9 · d,
it holds that t2 + 3 · d ∈ [te, ts + cyclemain], hence during the time interval
[te, t2 + cyclemain − 3 · d] no correct node joins any Q instance with an input
value of 1. Hence, in the time interval [te +∆max, t2 + cyclemain− 3 · d+∆min]
no correct node invokes a pulse. Since t1 + 3 · d+∆max ≥ te +∆max and since
t2 is the last time p invoked a pulse before t1 + 3 · d+∆max, it holds that p did
not invoke a pulse in the time-interval [t2, t2 + cyclemain − 3 · d+∆min].

Lastly, after t2 + 3 · d time units have elapsed, all correct nodes have reset
timermain and timerstart. Since cyclemain = cyclestart, we have that when
timerstart elapses at some correct node, then WantToPulse = 1 at that correct
node. By time t2 + 3 · d + cyclemain all correct nodes have set their value of
WantToPulse to 1. Consider the last correct node to do so, it starts executing
Q, as instructed by Line 1 (the elapsing of timerstart), and since the input values
of all correct nodes are 1, it terminates with an output value of 1. This happens
no later that t2 + 6 · d+ cyclemain +∆max. That is, p invokes a pulse no later
than t3 = t2 + 6 · d+ cyclemain +∆max. ut

Note that the above lemma shows that a correct node p invokes a pulse in
some pattern. That is, after each pulse there is a period of uncertainty, and
afterwards there is a long period of no pulseing. Then p invokes a pulse again,
and so on. Note that in the above lemma, the timerend was never used; it will
be used in the following lemma, which claims the “uncertainty” period is of a

Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model 15

constant length, and at the end of it a pulse is invoked. This lemma will give
us the required properties, since with it the pulseing pattern of a correct node
p will be constant, and since the system pulses-in-pattern, the entire pulseing
pattern of the system will be determined.

Lemma 7. Consider t1, t2 to be as defined in Lemma 6. Once the system pulses-
in-unison, the value of t2 is in the interval [t1 +∆min− 13 · d, t1 +∆max + 3 · d].

Proof. According to Lemma 6, after the last pulse there is a silent period during
which timermain and timerstart tick away. Once they elapse (they both elapse
together), the following happens. First, WantToPulse is set to 1 (until the next
pulse). Second, timerend is reset; and third, a Q instance is initiated.

Since the system pulses-in-unison, after the last pulse (at time t2) all correct
nodes reset timerstart. This means that timerstart elapses at all correct nodes
within a 3 · d interval, which implies that timerend elapses at all correct nodes
within a 3 · d interval. Consider the last node q to have had timerstart elapse
(at time t′). No correct node has had timerstart elapse before time t′ − 3 · d,
hence at time t′ − 3 · d + ∆min all correct nodes still have WantToPulse = 1
(no Q instance managed to finish yet). Therefore, when q’s timerend elapses at
time t′ − 10 · d + ∆min (since cycleend = ∆min − 10 · d), all correct nodes are
guaranteed to join q’s Q(q) instance with input value of 1, and hence in time
interval [t′ +∆min − 10 · d+∆min, t

′ +∆min − 7 · d+∆max] q invokes a pulse.
t′1, t

′
2 represent the same meaning as t1, t2, just for the “pulseing cycle”

that starts after t2. Consider t′1 to be the first time value at which a correct q′

invokes a pulse after t2 (note that according to Lemma 6, t′1 ∈ [t2 +cyclemain−
3 · d+∆min, t3]). For q′ to invoke a pulse, at least one correct node should have
WantToPulse = 1 in the interval [t′1 − ∆max, t

′
1 − ∆min]. Since t′1 is the first

time some node invokes a pulse, and since t′− 3 · d is the first time some correct
node has WantToPulse = 1 in the current “pulseing cycle”, we have that
t′ ∈ [t′1−∆max, t

′
1−∆min + 3 ·d]. Therefore, q invokes a pulse due to timerend’s

elapsing is in the interval [t′1 −∆max +∆min − 10 · d+∆min, t
′
1 − 4 · d+∆max].

Since ∆max = ∆min + 3 · d, we have that the above time interval is [t′1 − 13 ·
d + ∆min, t

′
1 − 4 · d + ∆max]. This implies that t′2 ≥ t′1 − 13 · d + ∆min. Which

means that starting from the first pulse, the next “pulseing cycle” will have
that t2 ≥ t1 − 13 · d+∆min. ut

The above lemmata show that if the system has been coherent for
∆Erratic-Pulser := ∆Q + 3 · Cycle, then all correct nodes invoke pulses together,
and they have a distinctive pulseing pattern: say a node invokes a pulse at some
time t1; during the interval [t1, t1 +∆min−13 ·d] there could be some additional
pulses, then during the interval [t1 +∆min− 13 · d, t1 +∆max + 3 · d] at least one
pulse is invoked, and then there is an interval of at least cyclemain +∆min−3 ·d
time units during which no pulse is invoked, and finally, within the next 12 · d
there will be new pulses and a new pulseing “cycle” will start.

Note that the length of this “cycle” is bounded from below by ∆max +
cyclemain+∆min, and bounded from above by ∆max+cyclemain+∆min+12·d.
In addition, notice that each such “cycle” starts with a “possibly noisy period”

16 Danny Dolev and Ezra N. Hoch

of length ∆max +3 ·d, and ends with a “quiet period” of cyclemain +∆min−3 ·d
time. Since cyclemain ≥ ∆max + 9 · d, we have that the quiet period is at least
∆min longer than the first period. This remark is important for the next section.

8 Creating the Balanced-Pulser

The above Erratic-Pulser synchronizes the correct nodes into some repet-
itive pulseing pattern. However, to solve the pulse-synchronization problem,
an additional algorithm is required. We now present the Balanced-Pulser
algorithm, which starting from an arbitrary state, shortly after the system is
coherent, produces pulses approximately once in a Cycle, despite the permanent
presence of Byzantine nodes.

Algorithm Balanced-Pulser /* executed at node p */

1. execute an instance A of Erratic-Pulser in the background;
2. when A produces a pulse

if A has not produced a pulse for at least cyclemain + ∆min − 3 · d time,
invoke a pulse.

Fig. 3. An algorithm solving the pulse-synchronization problem

Theorem 1. Algorithm Balanced-Pulser solves the pulse-synchronization
problem in a self-stabilizing and Byzantine tolerant manner.

Proof. Once the system is coherent for ∆Q time, by Lemma 4 the system pulses-
in-unison. Hence, each time a correct node seesA pulseing, within 3·d time units
all other correct nodes see the same. In addition, by Lemma 6 and Lemma 7, the
pulses that A produces have a distinct pattern. That is, a pulse, then a period
of length ∆max + 3 · d with possible pulses and a period of length cyclemain +
∆min − 3 · d with no pulses. Then, within 12 · d, another pulse.

If a correct node hasn’t heard A producing a pulse for cyclemain+∆min−3·d
time, it must mean that A has undergone the “quiet period”, since the “possible
noisy period” is short. Hence, the next pulse produced must be the beginning of
a new “cycle”. Therefore, all correct nodes invoke pulses together in Balanced-
Pulser. In addition, all correct nodes invoke pulses only at the beginning of a
“cycle”, and they invoke pulses 3 · d apart of each other. Since all correct nodes
invoke pulses only at the beginning of a “cycle”, we need only to argue about
the length of the “cycle”.

According to the lemmata in the previous section, the difference between
the “long-cycle” and the “short-cycle” is at most 12 · d time units. Setting
cyclemin := ∆max + cyclemain +∆min, and cyclemax := cyclemin + 12 · d,
we have that the system is in a synchronized pulsing state. That is, starting

Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model 17

from any state, the system reaches a synchronized pulsing state; this proves con-
vergence. In addition, according to the previous section, the pulseing pattern
remains as long is the system is coherent, thus closure also holds. ut

The convergence time of Balanced-Pulser is the same as the convergence
of Erratic-Pulser + Cycle; that is, ∆Q + 4 · Cycle time units.

9 Discussion
Time complexity: Once the system has become coherent, the Balanced-
Pulser algorithm converges in O(f) +O(Cycle) time.
Message complexity: The Balanced-Pulser algorithm executes 2 · (n− f)
ss-Byz-Q instances each Cycle. Since ss-Byz-Q has O(f ·n2) message complex-
ity, then the message complexity becomes O(f · n3) per cycle.
Executing fewer ss-Byz-Q: The main feature of Erratic-Pulser is that
“eventually there will be a correct node that executes ss-Byz-Q”. As pre-
sented, Erratic-Pulser has each correct node execute ss-Byz-Q once its
timers elapse. The algorithm can be adapted such that only f + 1 of the nodes
(predetermined and considered as part of the program, not memory) can invoke
Q. Since there will always be a correct node that invokes Q, the correctness of
the algorithm holds. This reduces the message complexity to O(f2 · n2).
Clock synchronization: The Digital clock synchronization problem consists
of having all correct nodes agree on an integer value that progresses linearly
with time. To build a digital clock synchronization algorithm using a pulseing
algorithm, all that is needed is to execute an agreement on the next clock’s value
each time a pulse is invoked. Setting the cycle of the pulse to be long enough for
the agreement algorithm to terminate, ensures that all correct nodes will agree
on the clock value, and advance it appropriately. Note that the convergence time
of such an algorithm is the convergence time of the underlying pulse algorithm,
plus an additional cyclemaxtime units. See [4] for a more detailed discussion.
Arbitrary Cycle values: According to the constraints of the Balanced-
Pulser algorithm, Cycle must be larger than 2 · ∆max + ∆min + 9 · d time
units. For the purpose of clock synchronization it is enough to have Cycle in the
order of ∆; for example, Cycle = 5 ·∆ would suffice for a linear convergence of
the digital clock synchronization algorithm.

However, if one wishes to use pulseing for other reasons, it is desired to be
able to pulse in any Cycle. To pulse every Cycle′ < 2 ·∆max +∆min + 9 ·d, set
Cycle to be some multiplication of Cycle′ such that it falls within the constraints.
Now, each time that Balanced-Pulser produces a pulse, reset a timer of Cycle′

long, and when it elapses, invoke a pulse and reset the timer again. The pulseing
pattern will be a pulse by Balanced-Pulser every Cycle and Cycle/Cycle′

pulses in between. This scheme is similar to what is done in [18]. The tricky part
is to notice that if a pulse is invoked less than Cycle′ time before a pulse by
Balanced-Pulser then the timer for the “small” pulses is reset, and hence
a pulse is invoked again only in Cycle′ time units. Note that the difference
between cyclemax and cyclemin is still 12 · d, hence there is no meaning to having
Cycle′ ≤ 12 · d. That is, Cycle′ should always be larger than 12 · d time units.

18 Danny Dolev and Ezra N. Hoch

References

1. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
2. S. Dolev. Self-Stabilization. The MIT Press, 2000.
3. A. Daliot and D. Dolev. Self-stabilization of byzantine protocols. In In Proc. of the

7th Symposium on Self-Stabilizing Systems (SSS’05), Barcelona, Spain, Oct 2005.
4. A. Daliot, D. Dolev, and H. Parnas. Linear time byzantine self-stabilizing clock

synchronization. In Proc. of 7th Int. Conference on Principles of Distributed Sys-
tems (OPODIS’03), La Martinique, France, Dec 2003. A corrected version appears
in http://arxiv.org/abs/cs.DC/0608096.

5. Y. Sakurai, F. Ooshita, and T. Masuzawa. A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In OPODIS, pages 283–298, 2004.

6. M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In SRDS,
pages 22–, 2002.

7. M. Nesterenko and A. Arora. Dining philosophers that tolerate malicious crashes.
In 22nd Int. Conference on Distributed Computing Systems, 2002.

8. S. Dolev and J. L. Welch. Self-stabilizing clock synchronization in the presence of
byzantine faults. Journal of the ACM, 51(5):780–799, 2004.

9. E. N. Hoch, D. Dolev, and A. Daliot. Self-stabilizing byzantine digital clock syn-
chronization. In Proc. of 8th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS’06), Dallas, Texas, Nov 2006.

10. A. Daliot and D. Dolev. Self-stabilizing byzantine agreement. In In Proc. of the
Twenty-fifth ACM Symposium on Principles of Distributed Computing (PODC’06),
Denver, Colorado, Jul 2006.

11. B. Liskov. Practical use of synchronized clocks in distributed systems. In Proceed-
ings of 10th ACM Symposium on the Principles of Distributed Computing, 1991.

12. A. Arora, S. Dolev, and M.G. Gouda. Maintaining digital clocks in step. Parallel
Processing Letters, 1:11–18, 1991.

13. S. Dolev. Possible and impossible self-stabilizing digital clock synchronization in
general graphs. Journal of Real-Time Systems, 12(1):95–107, 1997.

14. S. Dolev and J. L. Welch. Wait-free clock synchronization. Algorithmica, 18(4):486–
511, 1997.

15. M. Papatriantafilou and P. Tsigas. On self-stabilizing wait-free clock synchroniza-
tion. Parallel Processing Letters, 7(3):321–328, 1997.

16. T. Herman. Phase clocks for transient fault repair. IEEE Transactions on Parallel
and Distributed Systems, 11(10):1048–1057, 2000.

17. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

18. D. Dolev and E. N. Hoch. On self-stabilizing synchronous actions despite byzantine
attacks. In In Proc. the 21st Int. Symposium on Distributed Computing (DISC’07),
Lemesos, Cyprus, Sep. 2007.

19. M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for dis-
tributed consensus problems. Distributed Computing, 1:26–39, 1986.

20. A. Daliot and D. Dolev. Self-stabilizing byzantine pulse synchronization. Technical
report, Cornell ArXiv, Aug 2005. url: http://arxiv.org/abs/cs.DC/0608092.

21. F. C. Freiling and S. Ghosh. Code stabilization. In Proc. of the 7th Symposium on
Self-Stabilizing Systems (SSS’05), Barcelona, Spain, Oct 2005.

Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model 19

A The use of ss-Byz-Agree

The mode of operation of the ss-Byz-Agree, a self-stabilizing Byzantine agree-
ment protocol presented in [10] is as follows: A node that wishes to initiate
agreement on a value does so by disseminating an initialization message to all
nodes that will bring them to (explicitly) invoke the ss-Byz-Agree protocol.
Nodes that did not invoke the protocol may join in and execute the protocol in
case enough messages from other nodes are received during the protocol. The
protocol requires correct initiating nodes not to disseminate initialization mes-
sages too often. In the context of the current paper, an (Initiator, p, *) message
serves as the initialization message.

When the protocol terminates, the ss-Byz-Agree protocol returns (in each
correct node q) a triplet (p,m, τp

q), where m is the agreed value that p has sent.
The value τp

q is an estimate, on the receiving node q’s local clock, as to when
node p has sent its value m. We also denote it as the “recording time” of (p,m).
Thus, a node q’s decision value is 〈p,m, τp

q 〉 if the nodes agreed on (p,m). If the
sending node p is faulty then some correct nodes may agree on (p,⊥), where ⊥
denotes a non-value, and others may not invoke the protocol at all. The function
rt(τq) represents the time at which the local clock of q reads τq.

The ss-Byz-Agree protocol satisfies the following typical Byzantine agree-
ment properties:

Agreement: If the protocol returns a value (6=⊥) at a correct nodes, it returns
the same value at all correct nodes;
Validity: If all correct nodes are triggered to invoke the protocol ss-Byz-Agree
by a value sent by a correct node p, then all correct nodes return that value;
Termination: The protocol terminates within a finite time;

The proof uses the following properties of the ss-Byz-Agree protocol ([10]):

Timeliness-Agreement Properties:
1. (agreement) For every two correct nodes q and q′ that decide 〈p,m, τp

q 〉 and
〈p,m, τp

q′〉 at local times τq and τq′ respectively: |rt(τq)− rt(τq′)| ≤ 3d.
2. (validity) If all correct nodes invoked the protocol in the interval [t0, t0 + d],

as a result of some initialization message containing m sent by a correct
node p that spaced the sending by at least 6d from the completion of the
last agreement on its message, then for every correct node q, the decision
time τq, satisfies t0 − d ≤ rt(τq) ≤ t0 + 3d.

3. (termination) The protocol terminates within ∆ time units following its ex-
plicit invocation, and within ∆+ 7d time units, in case it was not explicitly
invoked 7.

4. (separation) Let q be any correct node that decided on any two agreements
regarding p at local times τq and τ̄q, then t2 + 5d < t̄1 and rt(τq) + 5d <
t̄1 < rt(τ̄q), where t2 is the latest time at which a correct node invoked
ss-Byz-Agree in the earlier agreement, and t̄1 is the earliest time that
ss-Byz-Agree was invoked by a correct node in the later agreement.

7 ∆ := 7(2f + 3)d

	Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model
	Danny Dolev and Ezra N. Hoch
	Introduction
	Related work

	Model and Problem Definition
	Self-stabilizing Byzantine Pulse-Synchronization

	Solution Overview
	The Q Primitive
	Implementing Q(p), the ss-Byz-Q Algorithm
	Constructing the Erratic-Pulser Algorithm
	Erratic-Pulser's Correctness Proofs
	Creating the Balanced-Pulser
	Discussion
	The use of ss-Byz-Agree

