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Abstract. Today’s modern high-end Network Interface Cards (NICs) are equipped
with an onboard CPU. In most cases, these CPU’s are only used by the vendor
and are operated by a proprietary OS, which makes them inaccessible to the HPC
application developer. In this paper we present a design and implementation of
a framework for building high-performance networking applications. The frame-
work consists of an embedded NIC Operating System with a specialized sched-
uler. The main challenge in developing such a scheduler is the lack of a preemp-
tion mechanism in most high-end NICs. Our scheduler provides finer-grained
schedules than the alternatives. We have implemented several network applica-
tions, and were able to increase their throughput while decreasing the host’s CPU
utilization.

1 Introduction

Today HPC clusters are built from off-the-shelf components, such as standard Intel
based servers. In an HPC application, latency is extremely important for inter-process
communication among compute nodes. Additionally, computation tasks running on the
compute nodes need all the CPU cycles that they can get.

Today’s modern high-end NICs are equipped with a CPU onboard and line speeds
reaching up to 10Gbps. Such high speeds pose a great challenge for today’s CPUs and
bus architectures. As a result, in order to better utilize the new high speed network in-
frastructure, the industry is moving towards an approach that offloads part of the hosts’
protocol processing to the NIC (e.g. TCP Offload Engines (TOEs) [1]). In most cases,
the NICs’ CPUs are not fully utilized by the vendor and are usually running a propri-
etary OS that limit the applications ability to take advantage of them.

In this paper we propose a design and implementation framework that enables a de-
veloper to build a high-performance networking application. The developer can design
tasks that will be executed at the NIC. The framework enables a developer to easily
divide the application logic between the host and the NIC. The framework inherently
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facilitates the communication between the host and the NIC portions of the applica-
tion. Another important contribution of this work is a modified NIC level scheduler.
Most high-end NICs do not support preemption, thus when trying to schedule user
tasks on the NIC, using a common real time scheduling algorithm, we found that there
was a great inefficiency in the resulting schedule and the cluster throughput. Our new
scheduling scheme (henceforth called: <Sched>++) is capable of extending any given
non-preemptive scheduling algorithm with the ability to create finer-grained schedules.

2 Related Work

Today, HPC clusters can increase their achieved throughput by TOEs. However, to the
best of our knowledge, there is no NIC oriented operating system that enables devel-
opers to design applications that can utilize the NIC’s functionality. Although some
vendors have developed a proprietary OS for their platforms, such an OS does not al-
low the application developer to integrate parts of the application code into the NIC.
The ability to immigrate user tasks to the NIC can further increase the performance of
HPC applications.

Spine – is a safe execution environment [2] that is appropriate for programmable NICs.
Spine enables the installation of user handlers, written in Modula-3, at the NIC. Al-
though Spine enables the extension of host applications to use NIC resources it has one
major limitation. Since Spine extensions are executed as a result of an event, building
stand-alone applications at the NIC is very difficult. Even for event-driven applications,
the developer is forced to dissect the application logic to a set of handlers.

Arsenic – is a Gigabit Ethernet NIC that exports an extended interface to the host
operating system [3]. Unlike conventional adaptors, it implements some of the protec-
tion and multiplexing functions traditionally performed by the operating system. This
enables applications to directly access the NIC, thus bypassing the OS. The Ethernet
Message Passing (EMP) [4] system, of the Ohio Supercomputer Center (OSC), is a
zero-copy and OS-bypass messaging layer for Gigabit Ethernet. The EMP protocol
processing is done at the NIC and a host application (usually MPI applications) can
directly manipulate the NIC. Arsenic and EMP provide very low message latency and
high throughput but lack the support for offloading.

TOE – is a technique used to move some of the TCP/IP network stack processing
out of the main host and into a network card [1]. While TOE technology has been
available for years and continues to gain popularity, it has been less than successful from
a deployment standpoint. TOE only targets the TCP protocol, thus, user extensions are
out of its scope.

3 Environment

Our programmable interface card is based on the Tigon chipset. The Tigon programmable
Ethernet controller is used in a family of 3Com’s Gigabit NICs. The Tigon controller
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supports a PCI host interface and a full-duplex Gigabit Ethernet interface. The Tigon
has two 88 MHz MIPS R4000-based processors which share access to external SRAM.
Each processor has a one-line (64-byte) instruction cache to capture spatial locality for
instructions from the SRAM. Hardware DMA and MAC controllers enable the firmware
to transfer data to and from the system’s main memory and the network, respectively.
The Tigon architecture doesn’t contain an interrupt controller. The motivation is to in-
crease the NIC’s runtime performance by reducing the overhead imposed by interrupt-
ing the host’s CPU each time a packet arrives or a DMA request is ready. Furthermore,
on a single processor the need for synchronization and its associated overhead is elimi-
nated.

4 NIC Operating System (NICOS)

This section presents the NICOS services. We start by describing the memory manage-
ment service of NICOS, the NICOS task related APIs, the NICOS networking and the
NICOS filtering APIs. Following that we provide a detailed description of the NICOS
scheduling framework. We then conclude with several sample applications that use
NICOS and we show the significant gain in the applications performance.

4.1 Memory Management

NICOS has to allocate memory each time a task, a queue or a packet is created. NICOS
default memory allocation algorithm is based on the “boundary tag method” described
in [5], which is suitable for most applications. Implementing a “generic” memory al-
location mechanism is problematic: It takes up valuable code space, it is not thread
safe and it is not deterministic. Since different realtime systems may have very differ-
ent memory management requirements, a single memory allocation algorithm probably
will not be appropriate. To get around this problem the memory allocation APIs pro-
vided in NICOS can be easily replaced by using the filtering APIs (see Section 4.4). A
user’s task can easily replace the default methods by installing a special kind of a filter.
The registered method (i.e., the “filter” action) will be called instead of the default allo-
cation routine. NICOS memory allocation APIs can also enable a developer to choose
the target of the allocated memory. Memory consuming applications can allocate mem-
ory at the host. The memory is transparently accessed using DMA. This scheme is also
suitable for developing OS bypass protocols, which removes the kernel from the critical
path and hence reduces the end-to-end latency.

4.2 Task Management

NICOS provides several task management APIs that enable a developer to create/destroy
tasks and to control their lifecycle state. The API enables a developer to create a periodic
or non-periodic task, to yield, sleep, suspend, resume and kill a task. Although periodic
tasks can be implemented by a developer on top of a sleep API, we added an explicit
facility for periodic tasks so the OS is aware of them. Such a design allows the OS
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to minimize the ready-to-running latency. Providing the timeliness guarantees required
by NICOS has been a major challenge due to the non-preemptive architecture of these
NICs.

4.3 Networking

The current networking API is very simple. NICOS provides only a single method that
sends raw data. The data is provided by the developer and includes all of the necessary
protocol headers. NICOS supports synchronous and asynchronous send calls. The asyn-
chronous ones are non-blocking. When using the synchronous mode, the execution is
blocked until frame transmission is completed. Upon completion, the provided callback
is called. Receiving a packet is currently done only via filter registration.

4.4 Filtering

When deciding which functionality is needed to be offloaded to the NIC, we looked
for common building blocks in today’s networking applications. We have found that
the ability to inspect packets and to classify them according to specific header fields is
such a building block. For instance, the classification capability is useful for firewall
applications, applying QoS for certain traffic classes, statistics gathering, etc. Therefore
we enhanced the NICOS services with a packet filtering (classification) capability, and
the optional invocation of a user installed callback per packet match. In NICOS, a filter
is a first class object - it can be introspected, modified and created at runtime.

The “Ping Drop” task (Program 1), which drops all ICMP packets, demonstrates the
ease of use of the NICOS filtering API.

4.5 Scheduling

Schedulers for non-preemptive environments usually use an event-driven model. For
example, the programmable NIC we are using for evaluating NICOS, provides a special
hardware register whose bits indicate specific events. This event register is polled by
a dispatcher loop that invokes the appropriate handler. Once the event handler runs to
completion, the dispatcher loop resumes.

Providing timeliness guarantees for NIC based tasks can be beneficial for real-time
and HPC applications. NICOS enables a developer to easily install a custom sched-
uler, implementing whatever scheduling policy is needed. NICOS provides several non-
preemptive schedulers and an innovative scheme that can further improve their sched-
ule. We have used this scheme to implement an enhanced version of the Earliest Dead-
line First (EDF) scheduler, which is described in details in the next section.

The time from the moment a task becomes ready-to-run until it starts execution.
In the future we plan to write a minimal networking stack for the NIC.
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Program 1 Installing “Ping Drop” Filters
void registerPingDropFilters(void) {

/* we would like to match ICMP packets */
valueMask[0] = ICMP_PROTOCOL;
bitMask[0] = 0x1; // match 1 byte
/* start matching at ICMP_PROTOCOL_BYTE */
pattern_filter.startIndex =ICMP_PROTOCOL_BYTE;
pattern_filter.length = 1;
pattern_filter.bitMask = bitMask;
pattern_filter.numValues = 1;
pattern_filter.valueMask = &valueMask;
/* create the filter, add to Rx/Tx flows */
pingDropFilter.filter_type = STATIC_PATTERN_FILTER;
pingDropFilter.pattern_filter = &pattern_filter;
nicosFilter_Add(&nicosTxFilters,&pingDropFilter,DROP,NULL,

GENERAL_PURPOSE_FILTERS_GROUP,&pingFilterTxId);
nicosFilter_Add(&nicosRxFilters,&pingDropFilter,DROP,NULL,

GENERAL_PURPOSE_FILTERS_GROUP,&pingFilterRxId);
}

4.6 <Sched>++ Algorithm

Common Schedulers. The first scheduling algorithm we have implemented is the sim-
ple Cyclic-Executive scheduler [6]. The primary advantages of the Cyclic-Executive
approach are: being simple to understand, easy to implement, efficient and predictable.
Unfortunately, the deterministic nature of a Cyclic-Executive requires a lot of ad-hoc
tweaking to produce deterministic timelines, which then must be tested thoroughly. The
second scheduling algorithm we have implemented is the non-preemptive version of the
EDF algorithm [7]. In EDF, the task with the earliest deadline is chosen for execution.
In the non-preemptive version of EDF, the task runs to completion.

Both EDF and Cyclic-Executive are not optimal for a non-preemptive environment
such as in our NIC architecture. For a set of scheduable tasks, the resulting task sched-
ule meets the tasks’ realtime requirements, however with a rather low CPU utilization.
Therefore, we have devised a new task scheduling scheme (denoted as <Sched>++)
which can be used to enhance any given non-preemptive scheduler. This scheme uti-
lizes the compiler capabilities in order to create an optimized tasks schedule.

Related Definitions. A task is a sequence of operations to be scheduled by a scheduler.
A task system T = {T1, · · · , Tn}, where each task Ti is released periodically, is called
a periodic task system. Each task Ti is defined by a tuple (ei, di, pi, si), where ei is
the task’s Worst Case Execution Time (WCET), si is the first time at which the task
is ready to run (also known as the start time), di is the deadline to complete the tasks
once it is ready to run, and pi is the interval between two successive releases of the
task. Thus, a task Ti is first released at si and periodically it is released every pi. After
each periodic release, at some time t, the task should be allocated ei time units before
deadline t + di. A non-periodic task is a task that is released occasionally, and at each
invocation that task may require a different execution time. A hybrid task system is a
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system that contains both periodic and non-periodic tasks. To differentiate between the
periodic and non-periodic tasks, a periodic task will be denoted as T̃ .

<Sched>++ assumes a hybrid task system, where for each periodic task, di = pi.
To represent the runtime instance of a task, the notion of a ticket of a task is introduced.
A ticket of a periodic task, T̃i is defined as the tuple (ei, pi, P ri), where ei and pi are
the execution and the period of the task, and Pri is the task’s priority. The ticket of a
non-periodic task, Tj , is (ej , P rj). This assumes that any type of task scheduler used
by the OS can be extended using this ticket.

Algorithm Overview <Sched>++ uses several compile-time techniques, which pro-
vide valuable information that can be used at runtime. The developer uses <Sched>++
specific compiler directives in order to define the system’s tasks and tickets. The com-
piler uses these tickets as simple data structures in which it can store the calculated
WCETs.

The compiler uses the generated control flow graph in order to calculate the WCET
of the periodic and non-periodic tasks. Typical periodic tasks are comprised of a single
calculated WCET, while non-periodic tasks may be comprised of a set of WCETs. In our
context, a WCET is defined as the worst case execution time between two successive
yields.

The ability of a compiler to modify the developer’s code, at predefined places, is
also utilized. By modifying the code, the ticket primitive is maintained automatically.
The enhanced compiler updates the ticket with the task’s next WCET prior to each yield
invocation. This technique also eliminates the need to introduce a complicated runtime
structure that contains all the WCETs of a given non-periodic task. A single ticket is
recycled to represent the next task segment WCET at runtime.

<EDF>++ Algorithm In order to implement the enhanced version of the EDF al-
gorithm, the ticket of a periodic task T̃ is extended to be (e, p, Nr, Nd, Pr), where
the additional fields Nr and Nd are the next release time and deadline of the task, re-
spectively. Figure 1 presents the main logic behind the <EDF>++ algorithm, which
is invoked by the Yield() function call. Part I of the algorithm starts with the classical
EDF algorithm. The algorithm selects the next periodic task Tnext that has the earliest
deadline among all periodic tasks that are ready to run.

Part II of the algorithm is invoked when no periodic task is ready to run. The algo-
rithm uses the tickets of the non-periodic tasks in order to select the next task to run.
The chosen task should be able to run without jeopardizing the deadline of the next (ear-
liest) periodic task. The scheduler considers the subset of non-periodical tasks that are
ready to run, such that their next execution time is smaller than the slack time (the time
until the next periodic task is ready). Among such tasks, the algorithm can use various
criteria to pick the next task to be scheduled. For instance, one can use the algorithm
in [8], which chooses a set of tasks that minimizes the remaining slack time. Any such
algorithm would use the next execution time (WCET) of the tasks listed in their tickets.
When there is no suitable task for execution, the IDLE task is invoked until the next
periodic task is ready to run (part III).
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Yield() called from task Tk:

I: Tnext = {T̃i|T̃i.Nd = min(T̃j .Nd|T̃j .Nr ≥ t)};

/* If no periodic task is ready, then
choose from the non-periodic tasks */

II: if (Tnext = NULL)
SlackT ime = duration until next

periodic task is ready;
/* Pick the next non-periodic task
that will run at most ’SlackTime’
time units */
Tnext = PickNonPeriodicTask(SlackT ime);

/* if no task is ready, the Idle task
will run for the time duration until
the next periodic task is ready */

III: if (Tnext = NULL)
Tnext = Idle Task(Timeout)

SwitchTo(Tnext);

Fig. 1. <EDF>++ Scheduler

Notice that the scheduling algorithm strives to schedule non-periodic tasks when-
ever there is an available time slot in the schedule. Available time slots may exist be-
tween periodic slots or whenever a task completes its execution ahead of time, which
can only be determined at runtime.

<EDF>++ Evaluation. We have implemented an experimental system with both EDF
and <EDF>++. Our task set includes twenty tasks where about half of them are peri-
odic. We have executed the system with various periods and constraints. On average,
for plain EDF, the IDLE task has been executed 28.6% of the time, yielding a CPU uti-
lization of 71.4%. For the <EDF>++ algorithm, the IDLE task ran 14.7% of the time
corresponding to 85.2% CPU utilization, an increase of 20% in the system’s throughput.
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Fig. 3. Response Times

We have also compared the response times of the tasks. Figure 2 shows a sequence
of invocation times for a sample task measured from the system’s start time. The x-axis
shows the number of invocations, where the y-axis presents the time when the specific
invocation occurred. The response times, in-between invocations, for the non-periodic
tasks are presented in Figure 3. For example, the average response time for task A,
using <EDF>++, is 10.83ms with standard deviation of 8.51ms versus 22.86ms and
18.87ms using EDF (a 53% decrease in the average waiting time). For task B the values
are: 11.23ms and 5.78ms against 26.03ms and 2.54ms (57% decrease in the average
waiting time). The graphs clearly show that the response times for the non-periodic
tasks using the <EDF>++ scheduler are improved.

Regarding the response times for periodic tasks, the average response time is ap-
proximately the same (1.37ms vs. 1.33ms with standard deviation of 2.49ms vs 2.39ms).
Thus, the improved response for the non-periodic tasks didn’t affect the response time
for the periodic tasks.

4.7 Sample Applications using NICOS

A Firewall Application – An application of particular promise for offloading is a fire-
wall application. Since a firewall is an application that filters packets according to a user
defined security policy, earlier filtering (especially discarding packets) has a potential
for significant improvements in performance. A firewall application on a NIC also has
the additional advantage that it is harder for an adversary to modify than a software
application running at the host.

We have designed and implemented a firewall application, called SCIRON [9], for a
NIC. As presented in Section 4.4, NICOS provides a framework that enables a developer
to install filters. Filters can be installed both at the firmware level and/or at the kernel
level. SCIRON’s firewall is implemented as a set of such firmware filters.

In order to simulate common kernel-based firewalls for performance evaluation, we
have also installed filters at the driver layer. All comparisons shown below, compare
the same firewall code (with the same filtering policy) between the driver based firewall
and the NIC based firewall.

Currently, the firewall code is fully stateless, thus the state is not saved between successive
filter action invocations.
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Firewall Evaluation. This section compares the performance between host based and
NIC based firewalls. Many parameters have an impact on the firewall’s performance.
For example, the number of rules, current CPU utilization, packet size, ratio of incoming
to outgoing packets, total number of packets, number of packets accepted vs number
rejected, can all potentially influence the performance.

Performance can be measured using two parameters. The first is the load on the CPU
and the second is the throughput. In this section we discuss several typical scenarios.
In the first scenario we present (Figure 4(a)), the firewall discards all the packets it
receives. During this scenario the CPU is only running system processes. The CPU is
on the left of the graph and throughput is on the right.
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Fig. 4. Firewall Performance

As expected, in this scenario the CPU utilization when using the firewall imple-
mented on the NIC is approximately zero, whilst for the same firewall on the host it
is quite high. The second scenario presented is given in Figure 4(b). This scenario is
probably a more realistic behavior for a typical host machine. It is evident that the NIC
based firewall has better performance both in CPU utilization and throughput.

STORM. Occasionally, clustered HPC applications need to synchronize the cluster’s
activities or to perform cluster-wide operations. Therefore, the cluster software usually
needs to implement a basic locking and/or consensus algorithms that consumes a lot of
bandwidth and degrades the cluster’s performance.

A STORM cluster [10] consists of five nodes running Linux where each node is
hosting a programmable NIC. As a proof of concept application we have implemented
Lamport’s Timestamp ordering algorithm [11] providing an agreed order on transmitted
messages. This messaging system’s performance is much better (latency of 84 us, and
throughput of 768 Mb/s) than the host level implementation (latency of 200 us, and
throughput of 490 Mb/s).

The benchmark ran on two hosts (Intel Pentium 4 CPU 2.4Ghz, 512MB) connected via
100Mbps ethernet.
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5 Conclusions

This paper presented a novel framework for building high-performance applications
that can benefit from offload capabilities. The framework is comprised of a NIC Op-
erating System and an innovative scheduler. We have implemented several HPC appli-
cations using this framework and have demonstrated increased application throughput.
According to the International Technology Roadmap for Semiconductors (ITRS), by
2007, one million transistors will cost less than 20 cents. This current trend motivates
hardware and embedded system designers to use programmable solutions in their prod-
ucts. We believe that programmable NICs will soon become widespread. The need for
such a framework is apparent.
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