Highly Available Cluster: A Case Study

Alain Azagury, Danny Dolev, Gera Goft,
John Marberg, Julian Satran

IBM Israel Science and Technology
Matam — Advanced Technology Center
Haifa 31905, Israel
E-mail: azagury@vnet.ibm.com

Abstract

The methodology and design of a system that provides
highly available data in a cluster is presented. A Highly
Abvailable Cluster consists of multiple machines intercon-
nected by a common bus. Data is replicated at a primary
and one or more backup machines. Data is accessed at the
primary, using a location independent mechanism that
ensures data integrity. If the primary copy of the data fails,
access is recovered by switching to a backup copy. Switch-
over is transparent to the application, hence called seam/ess
switchover. The fault model is fail-stop. The entire cluster
is resilient to at least single failures. Designating data as
highly available is selective in scope, and the overhead of
replication and recovery is incurred only by applications
that access highly available data. An experimental proto-
type was implemented using IBM{ AS/400}1 machines and
a high-speed bus with fiber-optic links.

1 Introduction

The system presented in this paper provides highly available
data through replication in a cluster of machines. The
project has three main goals: (a) to demonstrate the feasibil-
ity of highly available data on interconnected machines with
minimal hardware requirements; (b) to develop cost-effec-
tive methodologies and mechanisms for high availability of
data; and (c) to implement a prototype as a vehicle for per-
formance measurements.

A Highly Available (HA) Cluster consists of two or more
machines interconnected by a high speed bus. Each
machine has its own private disks. Workstations are con-
nected to the cluster through a local area network (LAN).
The failure of a machine causes both it and its disks to
become unavailable. Thus, to achieve high availability we
use data and process redundancy. The fault model for
both data and processes is the fail-stop model. The design
ensures that the entire cluster is resilient to (at least) single
failures.

The HA Cluster introduces a new concept: resilient groups.
A resilient group is a set of data collections (libraries) that
are replicated at a primary and at one or more backup
machines. Access to a group is at the primary, via a
location independent mechanism that uses global name
resolution and handles data replication and integrity.
When the primary copy fails, access is recovered by switch-
ing to a backup copy of the group. switchover does not
involve any action by applications that use the resilient
group, i.e. it is transparent to the application, and hence
called seamless switchover. The seamless switchover mech-
anism introduces a new way of using database journals to

1t IBM and AS/400 are trademarks of International Business
Machines Corporation.

0363-8928/94 $3.00 © 1994 IEEE

404

disseminate data, synchronized with the control state of the
primary copy.

The system defines a clear interface between the application
and the data services it uses. The location of data services
is transparent to the application, and the services are acces-
sible from any machine in the cluster. Therefore, by repli-
cating the code of the application and its working
environment on several machines, the application becomes
highly available. When the machine where the application
runs fails, the user can restart it on any other machine in
the cluster. Data replication ensures that no committed
transactions are lost and therefore only the last non-com-
mitted transaction needs to be re-entered. Applications that
are suitable for this approach are generally classified as
on-line transaction processing. We assume that such appli-
cations are invoked from a workstation connected through
a LAN to one of the machines in the cluster.

Our design provides high availability with selective scope.
The user (or administrator) explicitly designates which
libraries are highly available, by including them in a resil-
ient group. The performance overhead of replication and
recovery mechanisms is incurred only by applications that
access resilient groups. Other applications are not affected.

We assume that applications invoke system services via
existing standard interfaces. High availability mechanisms
are designed to be transparent to applications that use such
interfaces. Thus, high availability is an attribute of the envi-
ronment, not of the application. Moreover, the application
developer need not be aware of high availability when
designing or implementing the application. Existing appli-
cations work with highly available data without modifica-
tion.

The intention from the outset has been to build a small
cluster (at most tens of machines) with a specific communi-
cation architecture. Scaling up the design for a larger
number of machines or for a more general distributed envi-
ronment was not contemplated. Our communication archi-
tecture provides an environment that allows for much
simpler cluster management protocols than those in previ-
ous systems such as [1, 4, 14, 18, 19]. By tailoring the
algorithms for the particular environment we gain increased
performance efficiency.

Our system is related to other distributed and highly avail-
able systems [2, 3, 9, 11, 15-17, 20, 21]. In [S], many
more such systems are surveyed. Previous projects either
assumed shared disks, or covered only part of the span of
our project. Focus was either on file replication or on tran-
saction processing, without offering a seamless solution.
Our solution is transparent to applications, while offering
seamless switchover.

We have implemented the mechanisms described in this
paper in an experimental prototype cluster of IBM AS/400
machines [13]. The hardware configuration consists of two
AS/400 model D60 machines connected by a high speed
bus with fiber-optic links. Performance measurements have
been conducted, using a variant of the TPC-B
benchmark[107:

The organization of the paper is as follows. Section 2 gives
an overview of cluster organization. Section 3 describes
mechanisms for resilient data access, and Section 4 mech-
anisms for failure recovery. Section 5 discusses cluster
management. Section 6 presents performance measure-
ments of the prototype. A Summary is given in Section 7.

2 Cluster Organization

This section gives an overview of the organization of the
cluster, from the physical and functional perspectives.

2.1 Physical Organization

The physical organization of a typical HA cluster is shown
in Figure 1. The cluster consists of several machines inter-
connected through a common bus.

Bus
System

gt

System System

8 4

Shared Cluster Bus]

Local Area Network

.
1 J_

|

Work- Work=
station station
I 11

Figure 1. Physical organization of the highly available cluster

The only interconnection available is among the processors.
Sharing or switching disks among machines is not sup-
ported. Therefore, multiple copies of the data are main-
tained on different machines to make the cluster resilient to
faults.

All communications among machines in the cluster are per-
formed over the cluster bus. A local area network (LAN)
is used only to connect terminals and workstations to the
cluster. The LAN could be potentially exploited to support
application resilience, using a mechanism to switch terminal
sessions transparently among machines.

The cluster bus is a dedicated AS/400 system I/O bus [13]
with fiber-optic links. Actually, a pair of buses is being
used, with a separate power domain and bus-master for
each bus. The bus attachment hardware provides link
redundancy for each bus and between the pair of buses. It

405

is therefore assumed, in the context of the single failure
model, that no faults are incurred by the cluster bus
medium itself.

The bus architecture guarantees that there will be no parti-
tions in the cluster. All functioning machines can commu-
nicate directly with each other at all times. The
communication graph is thus a complete graph. In the
context of our work and in light of the specific architecture,
it is assumed that the bus mechanisms guarantee timely
delivery of all messages.

These assumptions have implications that are critical to
synchronization and recovery, as discussed in Sections 4
and S.

2.2 Functional Organization

The cluster comprises several objects and functional com-
ponents. An example configuration with three machines is
shown in Figure 2.

System 8 Systen C

~ Cluster Management — —{—

Cluster
Monitar

[=mwmmm== = -

Cluster
Moni tor

Primary
Agent

Backup Backup
Receiver| Applier|

Resilient
Group
(backup)

Aaplicntmn

Resilient Journal
Group

(primary)

Journat

Communication Communication
Layer Layer

} !

[|

Communication
Layer

Figure 2. Functional organization of the highly available cluster

A Resilient Group is a set of data collections (libraries) that
are considered a unit for purposes of high availability, and
for which data resilience against single failures is guaran-
teed. For example, a resilient group could comprise the
libraries of some database. The group is replicated on a
number of cluster machines. One of the replicas is used for
data access, and is called the primary. The other replicas
are called backups. A resilient group can be accessed from
every machine in the cluster. The example in Figure 2
shows a resilient group with replicas on machines B and C.
In the context of a specific group, the machines where the
primary and backup replicas reside are called primary and
backup machines, respectively.

A Journal is a log of database operations on objects of a
resilient group. All the objects of a given group are jour-
naled in the same journal, and a separate journal is main-
tained for each group. A copy of the journal exists on each
machine containing a replica of the group. Operations are
journaled at the primary, and the journal entries are
shipped to the backups. Serialization of the journal pre-
serves the order of operations at the backups.

A Bucket is an object that constitutes the definition of a
resilient group. The bucket is used by data access mech-
anisms and by cluster management. It contains the names
of the primary and backup machines, the names of the
libraries and journal, and a log of the activities in the group
(e.g., which applications work with which objects). The
bucket exists on every machine of the cluster, even if there
is no replica of the group on the machine.

An Application Stub is a system module providing cluster
interface for database operations. An operation issued
against a resilient database is intercepted by the stub, who
ships the request to the primary site of the database. The
function of the stub is transparent to the application.

A Primary Agent is a process on the machine containing
the primary replica of a database, whose role is to execute
database operations shipped from application stubs. The
agent also forwards the operations’ journal entries to the
backups of the database. There is a separate agent for
every application process.

The Backup Receiver is a process on a backup machine,
that receives journal entries from the primary and deposits
them in a local copy of the journal. There is a separate
backup receiver for every backup journal.

A Backup Applier is a process on a backup machine, that
applies the journal entries onto the local replica of the data-
base. There is a separate backup applier for every backup
journal.

A set of Cluster Monitor processes, one on each machine in
the cluster, jointly perform distributed cluster management.
The monitors maintain consistency and availability in the
cluster, keep track of all cluster entities, and react to events,
such as machine failure or configuration change request.

The Communication Layer provides a set of services enabl-
ing cluster entities on different machines to exchange mes-
sages, ship operations, and broadcast over the shared
cluster bus. All communications among machines in the
cluster are carried out over the shared cluster bus.

The buckets, application stubs and agents provide a
location transparent name service, similar to previous
systems such as [8, 11].

3 Replication and Remote Data Access

This section discusses the characteristics of the resilient
database system, and the mechanisms for data replication
and remote access.

3.1 Database Characteristics

The database has the following characteristics.

* Access to the database is through a well-defined set of
interfaces.

* The database management system allows a hybrid
transactional/non-transactional mode of operation.
Some applications may access the database in a mode
that guarantees atomicity, consistency, isolation and
durability (the ACID property), while other applica-
tions may read dirty data (non-committed modifica-
tions) and perform single updates.

* The transactional mode of operation uses locking.
While executing a transaction, an application will lock
any items it attempts to read or write (there are several
levels of locking). Thus, an attempt to commit a trans-
action will not fail -because of conflict with another
application. It is assumed, generally, that applications
will not provide a recovery action from a commit
failure, since this is considered an extremely rare case.

* Most database opér,ations return some non-trivial feed-
back information, e.g., for record update, the record’s
length, ordinal number, format name, key information,
etc.

* Modifications to the database are logged in a journal.
The journal has a major role in providing the transac-
‘tional behavior of the database. Access to the journal
is serialized by means of an exclusive lock, and journal
entries are guaranteed to reach stable storage before
the corresponding database modifications do. The
journal may also be used for recovery purposes. An
old copy of a database may be brought up to date by
applying the modifications logged in the journal.
Journal entries are idempotent, i.e., re-application of
the same entry does not further modify the database.

* Journal entries are assigned a monotonic ascending
sequence number.

3.2 Accessing Resilient Data

The flow of control for a typical operation that modifies a
resilient database (e.g., an update of an existing record, or a
write of a new record) is illustratéd in Figure 3.

User Primary Backup

m m
|

IAnnl ication|App!. Primary 1 Backup Backup
[

Stub Agent. Receiver| - »{Applier

-

Figure 3. Flow of control for a database modification operation

The following protocol is performed.

1. The stub intercepts the execution of the operation at
the application machine.

2. The stub ships the operation request to an agent at the
(current) primary machine of the database.

3. The primary agent executes the operation. Any
journal entries inserted into the journal are broad-
casted to all the backup receivers.

4. The backup receivers acknowledge receipt of the
journal entries. Notice that journal entries arrive at the
backups in the correct order, as the communication
layer guarantees that messages are delivered in the
order they were sent.

5. The primary agent returns the operation feedback to
the application stub.

6. The stub returns control to the application.

The backup applier asynchronously applies the journal
entries of the backup journal onto the backup replica.

When muitiple backups exist, the agent may return to the
application stub (step 5) as soon as the first acknowledge-
ment is received, without affecting the resilience to single
failures.

Operations that do not modify the data are not journaled
and do not affect the backups. However, modifications to
the cursor and locks (if any) are returned to the application
as feedback, to be used during recovery from data failure.

3.3 Exploiting Backup Replicas

The backup replicas of a database can be exploited for
various administrative tasks, in order to reduce the load on
the primary system. For example, taking a snapshot of the
database (e.g., for backup to a tape). This can be done
without compromising the ability of the backup system to
become primary in case the current primary fails. Since the
backup replica is not on the data access path, taking a
snapshot does not add overhead to data access. If the
backup replica is not modified while the snapshot is being
taken, a simple snapshot protocol can be used, as follows.

1. The administrator issues a request for a snapshot.
2. The snapshot request is routed to the primary system.

3. When the data reaches a consistent state, the primary
ships the snapshot request to one of the backups.

4. The backup receiver marks the snapshot point in the
journal.

5. The backup applier applies all the journal entries pre-
ceding the snapshot point. It then freezes application
of further changes.

6. When all changes to the data are applied, the snapshot
is taken.

7. When the snapshot is complete, the backup applier
resumes normal operations.

Notice that receiving changes at the backup and applying
these changes are two separate activities, performed by
independent threads of execution. Hence, taking a snapshot
has no impact on the flow of changes towards the backup.
If the primary replica fails while the backup is being used
for a snapshot, the backup can still become primary, since
all the changes made at the (old) primary are journaled at
the backup. Recovery may take longer, but data resilience
is guaranteed.

4 Data Failure and Recovery

This section discusses the problems encountered during
data failure, and the mechanisms used for recovery.

4.1 Failure Scenario Example

Consider the scenario illustrated in Figure 4. We use this
example to emphasize the integrity problems caused by
data failure. Four applications are concurrently accessing a
database whose primary copy resides on machine A; the
backup is on machine B. Notice that the applications may

run on any machine in the clustér, including the primary or
backup machine of the database.

Machine A Machine 3
(Update R1) "
Appl P1]
I
(Read R1) P]
-: R A
. L} 3
(Delete R1) A v
Appl P3 —>—| R P
Al
(Lock R2)
- j

Figure 4. Cluster state during failure

1. Application P/ issues an update request for record RI.
The primary A updates the record. and successfully
sends a journal entry reflecting the change to the
backup machine B. A failure occurs on the primary
before it returns the feedback of the operation to the
application.

2. Application P2 issues a read request for record RI.
The primary returns to the application a record that
reflects the last update made by application PI/. The .
record is received by P! before machine A fails.

3. Application P3 issues a delete request for record RI.
The primary A fails before receiving the request.

4. Application P4 issues a lock-for-update request for
record R2. The operation is successful and the feed-
back arrives at the application before the primary A
fails.

It is assumed that all applications survive the failure, i.e.,
either none of the applications run on machine A, or A
continues running despite damage to some part of the
primary copy of the database. The backup B becomes the
new primary. The following occurs immediately after the
switchover.

1. Application P! re-issues the update Rl request to the
new primary B. The recovery protocol must detect
that the original request was successful, as its effects
are already known elsewhere (application P2 has
already read the modified record). The operation feed-
back that would have been sent by the old primary
needs to be recreated and returned to the application.
This can be done using the journal entries that were
sent to the backup B prior to the failure.

2. Application P2 continues, and now issues a new lock-
for-update request for record R2. The record was
locked by application P4 when A4 was still primary.
The protocol needs to prevent granting the lock to P2,
otherwise application P4 will fail while trying to update
the record, i.e., the switchover will not be seamless.

3. Application P3 re-issues the delete request. The proto-
col must detect that the original request was not com-
pleted, and the operation must be re-executed.

4. Application P4 still assumes that it holds the lock on
R2. The protocol must ensure that this lock is acquired
on behalf of P4 on the new primary B.

Locks are guaranteed to survive a failure by logging them
in the feedback returned to the application stub from each

operation. During switchover, application stubs send the
feedback information to the new primary, who reacquires
the locks before activity on the database is allowed to
resume.

To distinguish between the cases of applications PI and P3,
the sequence numbers of the journal entries of the opera-
tion are returned to the application stub as part of the feed-
back. Upon switchover, the application stub re-issues the
operation to the new primary together with the last
sequence number it has available. At the new primary
(previously the backup), the sequence number is compared
with that of the most recent entry of the same application in
the local journal. A mismatch indicates that the operation
was completed successfully on the old primary, but the
feedback was lost.

4.2 Recovery Coordination

Upon detecting a failure of the primary copy of a group,
the cluster monitors coordinate recovery with the processes
involved, thereby effecting a seamless switchover. The
primary copy of the group is invalidated, and the first
backup is made primary. The recovery protocol consists of
the following steps.

1. The monitor on each machine locks the group in the
local bucket, to suspend any access to the group from
applications.

. The monitor of the failed primary locks the journal, to
suspend sending new journal entries to the backups. It
then notifies the monitor of the first backup that the
journal is locked. (If the primary machine has
crashed, this step is skipped).

. Each monitor updates the local bucket with informa-
tion of the new primary.

When the monitor of the first backup learns that the
journal is locked, it instructs the backup receiver to
apply all journal entries and force the journal to stable
storage.

Each monitor instructs the local stubs to send to the
new primary the feedback of previous operations. This
will be used in recreating the database state at the new
primary.

An agent is created at the new primary for every active
application. The new agents work with the local
backup receiver to recreate a state equal to that which
existed at the failed primary. The backup receiver then
terminates.

The monitor of the new primary notifies all other mon-
itors to release the group lock. It also notifies the
monitor on the failed primary to release the journal
lock. Applications may now resume operations on the
group. The stubs now route the operations to the new
primary.

Notice that application stubs or agents that were asleep
during the switchover may attempt to use the old primary
and backups. This can be detected by consistency checks.
The operation is aborted and retried using the new setup.

4.3 Reinstating State Information

For each application using the database, the cluster main-
tains state information at the primary machine (position,

408

locks held, commit information, record modifications, etc.).
Some attributes of the state information are kept by the
database management system (record locks, record con-
tents, etc.), and others are kept by the primary agent (e.g.
position).

Upon failure of the primary, one of the backup replicas is
designated by cluster management as the new primary for
the database. The state of the database needs to be recre-
ated at the new primary, so that surviving applications can
resume activity. The goal is to make the switchover com-
pletely transparent to the applications, except, perhaps, for
a short delay.

For every database operation that was in progress at the
time a failure occurred, it must be determined whether the
operation needs to be re-executed, or whether it has actu-
ally completed executing on the old primary. In the latter
case, the feedback from the operation needs to be recreated
at the new primary and returned to the application stub.

We provide mechanisms to efficiently replicate state infor-
mation with minimal impact on normal transaction
throughput, and to determine the status of operations that
were in progress at the time of failure. Also devised is a
mechanism to regenerate in a simple manner the operation
feedback that was about to be returned to application stubs
when the failure occurred. The latter is particularly impor-
tant for operations whose feedback cannot be determined
from the journal entry alone. We call such operations crit-
ical operations.

The state information comprises two parts: {(a) application
related and (b) database related. Application related state
information is relevant only for recovery of the specific
application (e.g. cursor position), whereas database related
state information is relevant also for recovery of other
applications (e.g. updated values of records).

Application related state information is returned to the
application with the operation feedback. Database related
state information is broadcasted to the backup machines
while the operation is being journaled.

For a journaled operation, the journal sequence number of
the entries generated by the operation is returned to the
application. The last sequence number received by an
application will help determine whether or not the opera-
tion that was in progress at the time of failure has com-
pleted successfully.

Incorporating these techniques, a typical modification oper-
ation on the database proceeds as follows:

1. The database request issued by an application is inter-
cepted by the application stub.

2. The stub ships the operation to the (current) primary

machine for the database.

. The primary agent executes the operation. Any
journal entries generated by the operation are broad-
casted to the backup receivers. The sequence number
of the journal entries are recorded. The journal is
locked exclusively while the new entries are inserted
and broadcasted to the backup receivers. The lock is
released while waiting for acknowledgements, to allow
overlapping of broadcast operations.

. The backup receivers acknowledge receipt of the
journal entries.

5. The agent returns the operation feedback to the appli-
cation stub, together with state information: cursor
position; record locks; and journal sequence numbers.

6. The application stub saves the state information and
returns control to the application.

The backup applier asynchronously applies the journal
entries onto the backup replica. When encountering a
journal entry of a critical operation, the backup applier
blocks until a new journal entry is received from the same
application. Blocking on the journal entry enables re-exe-
cuting the critical operation on another machine if the
primary fails, thereby effectively and easily regenerating the
operation feedback. The arrival of a new journal entry
indicates that the application safely completed the critical
operation.

When the primary fails, the following is performea.

1. Cluster management designates one of the backup
machines as new primary for the group.

2. Application stubs are instructed to send state informa-
tion to their (new) agent at the new primary. This
information is used, in conjunction with the journal
entries, to restore the database state and the agent
state.

3. For each database operation that was in progress at
the time of failure, the journal entry sequence number
received from the application stub is compared with the
last sequence number received from the old primary
agent. This determines whether or not the pending
operation was completed at the old primary.

For each completed operation, the operation feedback
is returned to the application stub. For a non-critical
operation, the feedback is recreated by the backup
receiver from the journal entry. For a critical opera-
tion, the operation is re-executed by the new agent,
thereby effectively generating the feedback as well as
applying the changes onto the local replica.

The recovery mechanism does not abort uncommitted tran-
sactions. Each transaction is resumed at the point where it
was interrupted by the failure. Applications resume activity
as soon as the new primary agents are created and the
backup applier (or the new primary agent, in case of critical
operations) has applied all the journal entries that were
received from the primary.

If there are several backups, the primary agent sends the
journal entries to all backup receivers, but need wait only
for the first acknowledgement before proceeding with
further operations. In this case, the journals of the different
backups must be reconciled before recovery is completed.

To provide acceptable response time and prevent a single
sluggish application from blocking all other applications,
one needs to compromise transparency in favor of effi-
ciency. Blocking operations must be timed-out, and recov-
ery needs to be provided for time-out situations.

For critical operations, if the application that issued the
operation does not execute a new operation within a prede-
fined time frame, the backup applier should resume exe-
cution. Otherwise, the backup applier could fall behind the
primary, rendering potential recovery from failure too slow.
An obvious risk, in case of a primary failure, is that the

409

application which issued the critical operation may have to
be aborted if it did not receive the feedback.

During the recovery phase, the new primary agents need to
coordinate with the backup applier in order to bring the
database up to date. This must be done before activity on
the database is allowed to continue. Again, an agent failing
to respond to the backup applier within a reasonable time
frame will be ignored by the backup applier. This could
potentially result in loss of feedback information for a
pending operation, forcing the agent to return an error to
the application.

4.4 Journal Recovery

A machine that rejoins the cluster after it has failed must
recover its local database replicas. If the failure occurred
while the machine was the primary site of a database,
recovery entails deleting an undetermined number of
journal entries which, due to the failure, were not replicated
at any backup site. Normally, such entries are identified by
simple comparison with the journal of the current primary
replica.

A mechanism is provided that bounds (a priori) the number
of entries that need to be deleted. This is useful when the
latest primary replica of the database is damaged (due to
subsequent failure) and cannot be consulted. In this case
the recovered journal has to be backed off to an old, con-
sistent state.

A counter, called the uncertainty counter, is added to the
journal. The counter is incremented by a primary agent
before it broadcasts a block of journal entries to the backup
receivers, and is incremented when all acknowledgements
are received. If, as a result of the increment, the counter
reaches a specified threshold value, the primary agent will
not release the journal exclusive lock until it has received
acknowledgments from the backup receivers. This will
prevent new operations that attempt to modify the database
from progressing. A typical modification operation now
proceeds as follows:

1. The operation is intercepted by the application stub.

2. The stub ships the operation request to the (current)
primary.

3. The primary agent executes the operation. Before

modifying the contents of the database:
« The journal is locked exclusively.
+ The uncertainty counter is incremented.

e The block of journal entries is inserted in the
journal and broadcasted to the backup receivers.

« If the value of the uncertainty counter is less than
the threshold, the exclusive lock is released.

(Notice that database modifications are allowed to
reach stable storage only after the journal entries do).

Backup receivers acknowledge receipt of the journal
entries.

5. The primary agent decrements the uncertainty counter.
If the journal lock is still held, it is released at this
point.

6. The primary agent returns the operation feedback to
the application stub.

7. The application stub returns control to the application.

Let n denote the threshold value of the uncertainty counter.
When an “old” primary replica is recovered without having
access to the current primary replica, at most n journal
entries need to be deleted. The threshold value should be
tuned such that it will seldom be reached, thereby maximiz-
ing the throughput in the journal.

5 Cluster Management

Cluster management is performed distributively by a set of
cluster monitors, one on each machine.

Cluster management is event driven. Events may be caused
by failures or initiated explicitly by the system administra-
tor. Events are created by arrival of messages at the moni-
tors. Such messages come from other monitors, agents,
application stubs, backup receivers, and the communication
layer.

Following are some of the events that require action by the
monitor.

¢ Machine failure.

* Group failure (including library, database or journal
failure).

* Application failure.
+ Communication failure.

* User or system administrator initiated events, such as:
joining a machine to the cluster, detaching a machine
from the cluster, and creation or deletion of group
objects.

This section discusses some of the mechanisms used in
cluster management: clock synchronization, synchronous
update, and heartbeat.

5.1 Clock Synchronization

The machines in the HA cluster have synchronized clocks.
This is necessary in order to schedule events at the same
time on every machine in the cluster. For example, chang-
ing the cluster configuration tables requires global synchro-
nization, since these tables have to be identical on all
machines at all times.

It is assumed that each machine has access to a physical
hardware clock. Each machine also maintains an adjust-
ment register. The logical clock time is the sum of the
values of the physical clock (over which there is no control)
and the adjustment register.

The clock synchronization algorithm is essentially that of
[12]. It is outlined here for the sake of completeness. The
algorithm is based on the following simple observation. If
there are no faulty machines, one machine can act as a syn-
chronizer and periodically broadcast a message with its
current time (the frequency of synchronization depends on
clock drift). Each machine then adjusts its own clock,
making a minor allowance, if necessary, for the trans-
mission time of the message.

The protocol described below guarantees that the logical
clock times of all machines will be kept sufficiently synchro-

410

nized, and remain within a linear envelope of real time,
even in the presence of any single failure.

Each machine uses a local timer which is set to a predeter-
mined time for the next clock synchronization.

1. Upon expiration of the timer for the next clock syn-
chronization, broadcast a message with the local
logical time to all machines, and set the timer to the
next synchronization time.

Upon arrival of a clock synchronization message, if the
time received in the message is not equal to the next
synchronization time ignore the message. Otherwise,
forward the message to all machines; adjust the logical
clock according to the received time; set the timer for
the next clock synchronization; also, adjust any other
timers that are based on the logical clock (e.g. the
timer for the next synchronous update — see Section
5.2).

. Upon arrival of a forwarded clock synchronization
message perform the same as in step 2, without for-
warding the massage.

The algorithm requires O(n?) messages for each clock syn-
chronization, where n is the number of machines in the
cluster, since each machine sends a message to all other
machines. Notice that the probability that the timers of two
machines will expire at the exact same moment is very
small.

The time interval between synchronization points is a preset
constant that depends mainly on the relative drift of the
physical clocks and the message diffusion time.

Assuming single failures, forwarding the synchronization
message once (step 2) guarantees that each system will
receive at least one message in each round. Ignoring mes-
sages whose time stamp is too old protects against late
arrival of messages.

5.2 Synchronous Update

Some events require cooperation among all monitors, and
should not be handled by a single monitor. Examples are:

* Machine failure. There is no predetermined monitor in
charge of detecting or handling the failure of another
machine.

* Group Creation. The new group must be made avail-
able on all machines at the same time. Also, simul-
taneous operations on the same group definition must
be globally serialized.

Such events typically result in updating the cluster config-
uration, which needs to be done consistently and simultane-
ously on all machines. The synchronous update mechanism
[7] enables cluster-wide serialization of such updates. It
guarantees that updates are performed in the same order
and within a specified time window on every machine in the
cluster. This allows machines to maintain a consistent view
of the cluster. The mechanism relies on the accuracy of the
logical clocks maintained by clock synchronization.

For efficiency reasons, not all events are _handled by the
synchronous update mechanism. The risk in not using this
mechanism is that, at certain points, some monitors and
some machines will already be updated, whereas others

may not yet be, thus introducing inconsistency into the
system.

The design of our system carefully combines cluster-wide
cooperation with single machine (primary machine) respon-
sibility. Many of the events related to the operation of a
primary machine can be disseminated asynchronously
without any global serialization. For example: adding a
new backup replica of a group (handled by the primary);
group backup failure (handled by the primary); and group
primary failure (handled by the first backup). The incon-
sistency in not receiving the event on time will not surface if
the system design ensures coordination with the primary
before taking certain actions. Hence, a machine -or a
process that did not receive a disseminated event will com-
municate with the source of that event, and thereby get
updated.

Following is a description of the synchronous update mech-
anism. Each monitor maintains a list of pending update
events. Each event is a pair (¢, upd), where ¢ is the time at
which the update upd should be performed.

A timer associated with the event list is set to expire at the
time of the next update. Whenever the logical clock
changes as a result of clock synchronization, the timer is
adjusted accordingly. When the timer expires, the monitor
performs all the updates whose time is less or equal to the
current time, and removes them the list. The timer is then
set for the next update.

To schedule a new synchronous update, a monitor creates
an event pair (¢, upd). Let d denote the diffusion time of a
message in the cluster. The time ¢ is adjusted so that the
event is scheduled at least 24 time units after the current
logical clock time, and at least 24 time units before or after
the next clock synchronization. This gives sufficient time to
disseminate messages containing the event to all other mon-
itors, and prevents scheduling events within a clock syn-
chronization period. In such a period, clocks change their
value, so some events might be scheduled at different clock
times on different machines. A more complicated clock
synchronization mechanism can eliminate this conflict, but
it would introduce unnecessary overhead into the system.

Adding the new event to the list requires coordination
among all the monitors. Similar to clock synchronization,
the protocol is protected against any single failure by for-
warding each message once.

1. The initiating monitor broadcasts the update pair to all
other monitors and insert it into the local list. If the
current time is too close to the next clock synchroniza-
tion, the broadcast is deferred until after clock synchro-
nization.

. When receiving a message containing an update pair,
the monitor verifies that the pair is not already in the
local list, and that ¢ is a valid future time (the latter
protects against late arrival of messages). The monitor
then inserts the pair into the local list and forwards the
update message to all other monitors.

. Upon receiving a forwarded update message, the
monitor performs the same as in step 2, without for-
warding the message.

The synchronous update mechanism requires O(n?) mes-
sages per event, where 7 is the number of machines in the

411

cluster. By comparison, in our cluster architecture, asyn-
chronous event handling requires only O(n) messages, to
notify the machines in the cluster, since each machine can
always communicate directly with all other machines.

5.3 Heartbeat

During normal operations of the cluster, every monitor
needs to be able to communicate with all other monitors.
A Heartbeat mechanism [2] detects any disconnection
among the monitors in the cluster. Monitors broadcast a
special heartbeat signal at predetermined intervals (rounds),
and acknowledge every arriving heartbeat signal. Not
receiving a timely acknowledgement form some monitor
indicates that there is a disconnection, entailing recovery
action in the cluster.

If there are no assumptions on connectivity among the
machines, a distributed heartbeat mechanism (i.e. no desig-
nated central authority) may require up to O(n?) messages
per round, where n is the number of machines in the
cluster. This is since every machine may have to send
signals to all other machines in each round. This adds sig-
nificant overhead to the communication layer, and message
delivery within a short period of time cannot be guaranteed.

The O(n?) message bound can be improved to O(n) if the
communication medium connecting the machines has the
following property, called connection transitivity and symme-
try (CTS): for any three machines i, j, and k,

» if i is connected to j, and j is connected to k, then i is
connected to k.

¢ Connections are bidirectional.

Assume there is a disconnection between machines j and k.
By the CTS property, every machine in the cluster is dis-
connected from either j or k. In other words, in the heart-
beat algorithm, every machine will detect a disconnection.

Thus, it suffices that in each round only one machine will
issue the heartbeat signals, requiring only O(n) messages.
In a realistic distributed environment, an O(n) bound can
be achieved by setting the time of the next heartbeat at each
machine randomly within a certain window around the
exact time. This minimizes the probability of two machines
simultaneously initiating heartbeat signals.

The AS/400 System I/O bus has the CTS property, thus
enabling us to design an optimal heartbeat mechanism.

A different heartbeat protocol, also requiring only O(n)
messages, can be based on the approach in [6]. There, pro-
cesses are arranged in a virtual ring, and messages are
exchanged among neighbors on the ring.

6 Prototype Performance

This section presents the results of performance tests con-
ducted on the Highly Available Cluster prototype. Meas-
urements focus on throughput overhead during normal
application flow, and on switchover time in various cases.

The cluster used in the tests consists of two AS/400 model
D60 machines, each with 64MB main memory. One
machine has 3166MB of DASD storage, and the other has
1583MB. The machines are attached to a dedicated bus

via fiber-optic links. The cluster monitor processes run in a
separate subsystem with 2MB dedicated storage.

The benchmark application is a variant of TPC-B[10].
Instead of a single set of four database files, there are four
identical sets (16 files total). Each set can reside on a dif-
ferent machine. The benchmark application opens all 16
files, and for each transaction chooses randomly the set to
be used. It is possible to obtain configurations where the
primary and backup machines are defined independently
for each set. Two different configurations were used in the
tests:

1. A single group comprising all four sets. Application
jobs initially have agents only on the machine defined
as primary for the group, requiring agents to be
created on the backup during switchover.

2. Two groups of two sets each, with a different primary

" machine for each group. Every application job has an

agent on both machines, thus avoiding the overhead of
agent creation during switchover.

Notice that the cluster consists of two machines only, so
application jobs run either on the primary or on the backup
machine of the data.

Two benchmark drivers were used: a batch driver and an
interactive driver. The difference between the two is that
the interactive driver sleeps for 10 to 20 seconds between
TPC-B transactions to simulate “key-think” time.

6.1 Throughput Tests

Throughput tests were conducted using the batch driver.
Although all tests consist of two time intervals, one for
“burn-in” (to stabilize the system) and the other for meas-
urements, there was a significant variance between succes-
sive runs, even when long (25 minutes) burn-in time was
used. The seed of the random transaction selector was set
to a constant, so that tests would become more uniform
and stabilized.

For the results presented here, 5 minutes burn-in time and
S minutes measurement time were used. Several successive
runs were made for each test case, and the results of the
last run (which were generally the best) were chosen.

Table 1 shows the transaction rate for different configura-
tions. It also shows the degradation with respect to the
non-cluster (single machine) environment.

Table 1. Throughput for the TPC-B variant

Test description Trans- Degrada-
actions/ tion
second

Single job, non-cluster environment 8.2 100%

Single job running on the primary 6.25 76%

machine, no backup. Overhead consists
of database access via local communi-
cation with an agent.

Single job running on the primary 6.07 4%
machine, with backup. Overhead con-
sists of database access via local com-
munication with an agent and sending of
journal entries to a remote machine.
Single job running on the backup 54 66%
machine. Overhead consists of database
access via remote communication with
an agent and sending of journal entries
10 a remote machine.

With a single application running, and the primary being
on the same machine as the application, the total CPU utili-
zation of the primary machine is 60%. By comparison,
CPU utilization is 45% when running the same application
in a non-cluster (single machine) environment.

Table 2 shows the CPU utilization of various functions of
the cluster.

Table 2. CPU utilization of individual cluster functions. Data taken
from the WRKACTJOB display.

Function CPU %
Primary Agent 17%
Backup Receiver 3%

Backup Applier . 8%
Application 22%—36%1
Monitor 0.2%%

t Depends on the number of applications (1—3).
1 During normal operation (not during switchover).

6.2 Switchover Tests

Switchover tests were conducted using the interactive driver.
Similar results were achieved when running one batch
application vs. one interactive application. The time of
successive switchovers tended to decrease. The reason for
this behavior needs to be studied more closely (notice that
the system should respond well to the first switchover rather
than the second). Page faults are not suspected. The
results presented here are from the last of a series of two or
three successive switchovers.

The sets of files used by the benchmark jobs were organ-
ized in two ways: all four sets (16 files) in the same resilient
group; and divided into two groups of two sets (8 files)
each, with a different primary machine for each group.
The latter eliminates the need to create agents on the
backup during switchover.

The jobs were run for 4 minutes before performing the
switchover. No major differences were observed between
cases where the application is remote or local to the
primary. The results are shown in Table 3.

Table 3. Switchover performance

Number of Switchover time (seconds)

applications All files in same Files divided into

groupt two groupst

0 0.45 NA

1 1 NA

5 2.5 NA

7 33 NA

10 5 2.2

20 10.7 4

t Switchover includes the time to submit all agents and re-open 16
files per application on the backup machine.

1 Agents on the backup machine exist prior to switchover. The
switchover includes the time to re-open 8 files per application on
the backup.

7 Summary

The methodology and design of a cluster that provides
highly available data have been presented.

The project demonstrates that high availability can be tran-
sparent. Neither the application nor the database need to
be changed.

Data is replicated at a primary and one or more backup
machines. Data operations are intercepted by a stub that
performs remote data access at the primary. Mechanisms
have been developed to preserve data integrity and to
perform seamless switchover upon primary failure. Con-
sistent cluster state is maintained by a combination of pro-
tocols for global serialization and asynchronous
dissemination of events. The entire cluster is resilient to
single failures.

We have implemented an experimental prototype cluster of
IBM AS/400 machines. Tests have been conducted using a
commercial database application, without any change to the
application or the database. The prototype substantiates
the feasibility of our approach.

Acknowledgments

The authors wish to thank Jim Ranweiler for his invaluable
contributions and support.

References

[1] Amir Y., D. Dolev, S. Kramer and D. Malki,
“Transis: A Communication Sub-System for High
Availability,” Proceedings of the 22nd Interna-
tional Conference on Fault Tolerant Computing,
pp- 76-84, 1992.

[2] Bartlett J.F., “A Nonstop Kernel,” Proceedings of
the 8th ACM Symposium on Operating Systems
Principles, pp. 22-29, 1981.

[3] Bhide A. and S.P. Morgan, “A Highly Available
Network File Server”, IBM Research Report
RCl16161, 1990.

[4] Birman K.P. and R. Van Renesse, Reliable Dis-
tributed Computinﬁ with the Isis Toolkit, IEEE
Computer Society Press, 1994.

Borghoff U.M., Catalogue of Distributed
File/Operating Systems, Springer-Verlag, 1992.

[s]

[6] Cristian F., “Reaching Agreement on Processor
Group Membership in Synchronous Distributed
Systems,” Distributed Computing, vol. 4, no. 4, pp.
175-187, April 1991.

7 Cristian F., H. Aghili, R. Strong and D. Dolev,
“Atomic Broadcast: from Simple Message Dif-
fusion to Byzantine Agreement,” Proceedings of
the 15th International Conference on Fault Toler-
ant Computing, pp. 200-206, 1985. To appear in
Information and Computation.

[8] Cristian F., B. Dancey and J. Dehn, “Fault Toler-
ance in the Advanced Automation System,”
Proceedings of the 20th International Conference
on Fault Tolerant Computing, pp. 6-17, 1990.

413

9]

[10]

(11]

f12]

[13]

[14]

[15]

f16]

[(17]

(18]

[19]

[20]

f21]

Finkelstein S.J., “Algorithms and System Design
in the Highly Available Systems Project,”
Fault-Tolerant = Distributed Computing, Lecture
Notes in Computer Science no. 448, pp. 138-146,
Springer-Verlag, 1987.

Gray J., The Benchmark Handbook for Database
and Transaction Processing Systems, Morgan
Kaufman Publishers Inc., 1991.

Griefer A. and R. Strong, “DCF: Distributed
Communication with Fauit Tolerance,”
Proceedings of the 7th Annual ACM Symposium
on Principles of Distributed Computing, pp. 18-27,
1988.

Halpern J., B. Simons, R. Strong and D. Dolev,
“Fault-Tolerant Clock Synchronization,”
Proceedings of the 3rd Annual ACM Symposium
on Principles of Distributed Computing, pp.
89-102, 1984. To appear in Journal of the ACM.

IBM Corporation, IBM Application System/400
Technology Journal (Version 2), Publication No.
$325-6020-00, 1992.

Kaashoek M.F. and A.S. Tanenbaum, “Group
Communication in the Amoeba Distributed Oper-
ating System,” Proceedings of the Ilth Interna-
tional Conference on Distributed Computing
Systems, pp. 222-230, 1991.

Lindsay B.G., L.M. Haas, C. Mohan, P.F. Wilms
and R.A. Yost, “Computation and Communi-
cation in R*: a Distributed Database Manager,”
ACM Transactions on Computer Systems, vol. 2,
no. 1, pp. 24-38, Feb. 1984.

Liskov B., S. Ghemawat, R. Gruber, P. Johnson,
L. Shrira and M. Williams, “Replication in the
Harp File System,” Proceedings of the 13th ACM
Symposium on Operating Systems Principles, pp.
226-238, 1991.

Marzullo K. and F. Schmuck, “Supplying High
Availability with Standard Network File Systems,”
Proceedings of the 4th International Conference on
Distributed Computing Systems, pp. 447-453, 1988.

Melliar-Smith P.M., L.E. Moser and V. Agrawala,
“Broadcast Protocols for Distributed Systems,”
IEEE Transactions on Parallel and Distributed
Systems, vol. 1, no. 1, pp. 17-23, Jan. 1990.

Peterson L.L., N.C. Buchholz and R.D. Schlicht-
ing, “Preserving and Using Context Information in
Interprocess Communication,” ACM Transactions
on Computer Systems, vol. 7, no. 3, pp. 217-246,
Aug. 1989.

Satyanarayanan M., J.J. Kistler, P. Kumar, M.E.
Okasaki, E.H. Siegel and D.C. Steere, “Coda: A
Highly Available File System for a Distributed
Workstation Environment,” IEEE Transactions on
Computers, vol. C-39, no. 4, pp. 447-459, April
1990.

Siegel A., K. Birman and K. Marzullo, “Deceit: A
Flexible Distributed File System”, Technical
Report 89-1042, Department of Computer Science,
Cornell University, Nov. 1989.

