
Self-stabilizing Byzantine Agreement

Ariel Daliot
School of Engineering and Computer Science

The Hebrew University, Jerusalem, Israel

adaliot@cs.huji.ac.il

Danny Dolev
∗

School of Engineering and Computer Science
The Hebrew University, Jerusalem, Israel

dolev@cs.huji.ac.il

ABSTRACT
Byzantine agreement algorithms typically assume implicit
initial state consistency and synchronization among the cor-
rect nodes and then operate in coordinated rounds of in-
formation exchange to reach agreement based on the in-
put values. The implicit initial assumptions enable correct
nodes to infer about the progression of the algorithm at
other nodes from their local state. This paper considers a
more severe fault model than permanent Byzantine failures,
one in which the system can in addition be subject to severe
transient failures that can temporarily throw the system out
of its assumption boundaries. When the system eventually
returns to behave according to the presumed assumptions
it may be in an arbitrary state in which any synchroniza-
tion among the nodes might be lost, and each node may be
at an arbitrary state. We present a self-stabilizing Byzan-
tine agreement algorithm that reaches agreement among the
correct nodes in optimal time, by using only the assumption
of bounded message transmission delay. In the process of
solving the problem, two additional important and challeng-
ing building blocks were developed: a unique self-stabilizing
protocol for assigning consistent relative times to protocol
initialization and a Reliable Broadcast primitive that pro-
gresses at the speed of actual message delivery time.
Categories and Subject Descriptors: C.2.4 [Distributed
Systems]: Distributed applications;
General Terms: Algorithms, Reliability, Theory.
Keywords: Byzantine Agreement, Self-Stabilization, Byzan-
tine Faults, Pulse Synchronization, Transient Failures, Reli-
able Broadcast.

1. INTRODUCTION
The Byzantine agreement (Byzantine Generals) problem

was first introduced by Pease, Shostak and Lamport [11]. It
is now considered as a fundamental problem in fault-tolerant
∗Part of the research was done while visiting Cornell Uni-
versity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06, July 22-26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

distributed computing. The task is to reach agreement in a
network of n nodes in which up-to f nodes may be faulty. A
distinguished node (the General or the initiator) broadcasts
a value m, following which all nodes exchange messages un-
til the non-faulty nodes agree upon the same value. If the
initiator is non-faulty then all non-faulty nodes are required
to agree on the same value that the initiator sent.
Standard deterministic Byzantine agreement algorithms

operate in the synchronous network model in which it is
assumed that all correct nodes initialize the agreement pro-
cedure (and any underlying primitives) at about the same
time. By assuming concurrent initializations of the algo-
rithm a synchronous rounds structure can be enforced and
used to infer on the progression of the algorithm from the
point of initialization. Moreover, there is always an implicit
assumption about the consistency of the initial states of all
correct nodes, or at least a quorum of them.
We consider a more severe fault-model in which in addi-

tion to the permanent presence of Byzantine failures, the
system can also be subject to severe transient failures that
can temporarily throw all the nodes and the communication
subsystem out of the assumption boundaries. E.g. resulting
in more than one third of the nodes being Byzantine or mes-
sages of non-faulty nodes getting lost or altered. This will
render the whole system practically unworkable. Eventually
the system must experiences a tolerable level of permanent
faults for a sufficiently long period of time. Otherwise it
would remain unworkable forever. When the system even-
tually returns to behave according to the presumed assump-
tions, each node may be in an arbitrary state. It makes
sense to require a system to resume operation after such a
major failure without the need for an outside intervention
to restart the whole system from scratch or to correct it.
Classic Byzantine algorithms cannot guarantee to execute

from an arbitrary state, because they are not designed with
self-stabilization in mind. They typically make use of as-
sumptions on the initial state of the system such as assum-
ing all clocks are initially synchronized or that the initial
states are initialized consistently at all correct nodes (cf.
from the very first polynomial solution [8] through many
others like [12]). Conversely, A self-stabilizing protocol con-
verges to its goal from any state once the system behaves
well again, but is typically not resilient to the permanent
presence of faults.
In trying to combine both fault models, Byzantine failures

present a special challenge for designing self-stabilizing dis-
tributed algorithms due to the “ambition” of malicious nodes
to incessantly hamper stabilization. This difficulty may be

indicated by the remarkably few algorithms resilient to both
fault models (see [4] for a review). The few published self-
stabilizing Byzantine algorithms are typically complicated
and sometimes converge from an arbitrary initial state only
after exponential or super exponential time ([7]).
In our model correct nodes cannot assume a common ref-

erence to time or even to any common anchor in time and
they cannot assume that any procedure or primitive initial-
ize concurrently. This is the result of the possible loss of
synchronization following transient faults that might corrupt
any agreement or coordination among the correct nodes and
alter their internal states. Thus synchronization must be re-
stored from an arbitrary state while facing on-going Byzan-
tine failures. This is a very tricky task considering that all
current tools for containing Byzantine failures, such as [2,
12], assume that synchronization already exists and are thus
preempted for use. Our protocol achieves self-stabilizing
Byzantine agreement without the assumption of any exist-
ing synchrony besides bounded message delivery. In [1] it
is proven to be impossible to combine self-stabilization with
even crash faults without the assumption of bounded mes-
sage delivery.
Note that the problem is not relaxed even in the case of

a one-shot agreement, i.e. in case that it is known that the
General will initiate agreement only once throughout the
life of the system. Even if the General is correct and even
if agreement is initiated after the system has returned to its
coherent behavior following transient failures, then the cor-
rect nodes might hold corrupted variable values that might
prevent the possibility to reach agreement. The nodes have
no knowledge as to when the system returns to coherent be-
havior or when the General will initiate agreement and thus
cannot target to reset their memory exactly at this criti-
cal time period. Recurrent agreement initialization by the
General allows for recurrent reset of memory with the as-
sumption that eventually all correct nodes reset their mem-
ory in a coherent state of the system and before the General
initializes agreement. This introduces the problem of how
nodes can know when to reset their memory in case of many
ongoing concurrent invocations of the algorithm, such as in
the case of a faulty General disseminating several values all
the time. In such a case correct nodes might hold different
sets of messages that were sent by other correct nodes as
they might reset their memory at different times.
In our protocol, once the system complies with the the-

oretically required bound of 3f < n permanent Byzantine
faulty nodes in a network of n nodes and messages are de-
livered within bounded time, following a period of transient
failures, then regardless of the state of the system, the goal
of Byzantine agreement is satisfied within O(f ′) communica-
tion rounds (where f ′ ≤ f is the actual number of concurrent
faults). The protocol can be executed in a one-shot mode
by a single General or by recurrent agreement initializations
and by different Generals. It tolerates transient failures and
permanent Byzantine faults and makes no assumption on
any initial synchronized activity among the nodes (such as
having a common reference to time or a common event for
triggering initialization).
For ease of following the arguments and proofs, the struc-

ture and logic of our ss-Byz-Agree procedure is modeled
on that of [12]. The rounds in that protocol progress follow-
ing elapsed time. Each round spans a constant predefined
time interval. Our protocol, besides being self-stabilizing,

has the additional advantage of having a message-driven
rounds structure and not time-driven rounds structure. Thus
the actual time for terminating the protocol depends on the
actual communication network speed and not on the worst
possible bound on message delivery time.
It is important to note that we have previously presented a

distributed self-stabilizing Byzantine pulse synchronization
procedure in [3]. It aims at delivering a common anchor in
time to all correct nodes within a short time following tran-
sient failures and with the permanent presence of Byzan-
tine nodes. We have also previously presented a protocol
for making any Byzantine algorithm be self-stabilizing [5],
assuming the existence of synchronized pulses. Byzantine
agreement can easily be achieved using a pulse synchro-
nization procedure: the pulse invocation can serve as the
initialization event for round zero of the agreement proto-
col. Thus any existing Byzantine agreement protocol may be
used, on top of the pulse synchronization procedure, to at-
tain self-stabilizing Byzantine agreement. The current paper
achieves Byzantine agreement without assuming synchro-
nized pulses. Moreover, we show in [6] that synchronized
pulses can actually be produced more efficiently atop the
protocol in the current paper. This pulse synchronization
procedure can in turn be used as the pulse synchroniza-
tion mechanism for making any Byzantine algorithm self-
stabilize, in a more efficient way and in a more general model
than by using the pulse synchronization procedure in [3].
In [13] it is shown how to initialize Byzantine clock syn-

chronization without assuming a common initialization phase.
It can eventually also execute synchronized Byzantine agree-
ment by using the synchronized clocks. The solution is not
self-stabilizing as nodes are booted and thus do not initialize
with arbitrary values in the memory.
In [9] consensus is reached assuming eventual synchrony.

Following an unstable period with unbounded failures and
message delays, eventually no node fails and messages are
delivered within bounded, say d, time. At this point there
is no synchrony among the correct nodes and they might
hold copies of obsolete messages. This is seemingly similar
to our model but the solution is not truly self-stabilizing
since the nodes do not initialize with arbitrary values. Fur-
thermore, the solution only tolerates stopping failures and
no new nodes fail subsequent to stabilization. Consensus is
reached within O(d). That paper also argues that in their
model, although with Byzantine failures, consensus cannot
be reached within less than O(f ′)·d time, which is essentially
identical to our time complexity. Our solution operates in a
more severe fault model and thus converges in optimal time.

2. MODEL AND PROBLEM DEFINITION
The environment is a network of n nodes that communi-

cate by exchanging messages. We assume that the message
passing medium allows for an authenticated identity of the
senders. The communication network does not guarantee
any order on messages among different nodes. Individual
nodes have no access to a central clock and there is no ex-
ternal pulse system. The hardware clock rate (referred to as
the physical timers) of correct nodes has a bounded drift, ρ,
from real-time rate. Ensuant to transient failures there can
be an unbounded number of concurrent Byzantine nodes,
the turnover rate between faulty and non-faulty nodes can
be arbitrarily large and the communication network may
behave arbitrarily.

Definition 1. A node is non-faulty at times that it
complies with the following:

1. (Bounded Drift) Obeys a global constant 0 < ρ < 1
(typically ρ ≈ 10−6), such that for every real-time in-
terval [u, v] :
(1− ρ)(v − u) ≤

‘physical timer’(v)− ‘physical timer’(u) ≤
(1 + ρ)(v − u).

2. (Obedience) Operates according to the instructed pro-
tocol.

3. (Bounded Processing Time) Processes any message of
the instructed protocol within π real-time units of ar-
rival time1.

A node is considered faulty if it violates any of the above
conditions. A faulty node may recover from its Byzantine
behavior once it resumes obeying the conditions of a non-
faulty node. In order to keep the definitions consistent,
the “correction” is not immediate but rather takes a certain
amount of time during which the non-faulty node is still not
counted as a correct node, although it supposedly behaves
“correctly”2. We later specify the time-length of continu-
ous non-faulty behavior required of a recovering node to be
considered correct.

Definition 2. The communication network is non-faulty
at periods that it complies with the following:

1. Any message arrives at its destination node within δ
real-time units;

2. The sender’s identity and content of any message being
received is not tampered.

Thus, our communication network model is a “bounded-
delay” communication network. We do not assume the exis-
tence of a broadcast medium. We assume that the network
cannot store old messages for arbitrary long time or lose any
more messages, once it becomes non-faulty3.
We use the notation d ≡ δ + π. Thus, when the com-

munication network is non-faulty, d is the upper bound on
the elapsed real-time from the sending of a message by a
non-faulty node until it is received and processed by every
non-faulty node4.
Note that n, f and d are fixed constants and thus non-

faulty nodes do not initialize with arbitrary values of these
constants.
A recovering node should be considered correct only once

it has been continuously non-faulty for enough time to en-
able it to have deleted old or spurious messages and to have
exchanged information with the other nodes.

Definition 3. The communication network is correct
following ∆net real-time of continuous non-faulty behavior5.
1We assume that the bounds include also the overhead of
the operating system in sending and processing of messages.
2For example, a node may recover with arbitrary variables,
which may violate the validity condition if considered correct
immediately.
3A non-faulty network might fail to deliver messages within
the bound but will be masked as a fault and accounted for
in the f faults. Essentially, we assume that messages among
correct nodes are delivered within the time bounds.
4Nodes that were not faulty when the message was sent.
5We assume ∆net ≥ d.

Definition 4. A node is correct following ∆node real-
time of continuous non-faulty behavior during a period that
the communication network is correct6.

Definition 5. (System Coherence) The system is said
to be coherent at times that it complies with the following:

1. (Quorum) There are at least n − f correct nodes7,
where f is the upper bound on the number of poten-
tially non-correct nodes, at steady state.

2. (Network Correctness) The communication network is
correct.

Hence, if the system is not coherent then there can be an
unbounded number of concurrent faulty nodes; the turnover
rate between the faulty and non-faulty nodes can be arbi-
trarily large and the communication network may deliver
messages with unbounded delays, if at all. The system is
considered coherent, once the communication network and
a sufficient fraction of the nodes have been non-faulty for a
sufficiently long time period for the pre-conditions for con-
vergence of the protocol to hold. The assumption in this
paper, as underlies any other self-stabilizing algorithm, is
that the system eventually becomes coherent.
It is assumed that each node has a local timer that pro-

ceeds at the rate of real-time. The actual reading of the vari-
ous timers may be arbitrarily apart, but their relative rate is
bounded in our model. To simplify the presentation we will
ignore the drift factor of hardware clocks. Since nodes mea-
sure only periods of time that span several d, we will assume
that d is an upper bound on the sending time of messages
among correct nodes, measured by each local timer. To dis-
tinguish between a real-time value and a node’s local-time
reading we use t for the former and τ for the latter. The
function rt(τp) represents the real-time when the timer of p
reads τp at the current execution.

3. THE ss-Byz-Agree PROTOCOL
We consider the Byzantine agreement problem in which

a General broadcasts a value and the correct nodes agree
on the value broadcasted. In our model any node can be a
General. An instance of the protocol is executed per Gen-
eral, and a correct General is expected to send one value at
a time8. The target is for the correct nodes to associate a
local-time with the protocol initiation by the General and
to agree on a specific value associated with that initiation,
if they agree that such an initiation actually took place. We
bound the frequency by which correct Generals may initiate
agreements, though Byzantine nodes might trigger agree-
ments on their values as frequent as they wish.
The General initiates agreement by disseminating a mes-

sage (Initiator, G, m) to all nodes. Upon receiving the Gen-
eral’s message, each node invokes the ss-Byz-Agree proto-
col, which in turn invokes the Initiator-Accept primitive.
Alternatively, if a correct node concludes that enough nodes
have invoked the protocol (or the primitive) it will partici-
pate by executing the various parts of the Initiator-Accept
6We assume ∆node ≥ 14(2f + 3)d + 10d.
7The result can be replaced by 2f + 1 correct nodes with
some modifications to the structure of the protocol.
8One can expand the protocol to a number of concurrent
invocations by using an index to differentiate among the
concurrent invocations.

primitive, but will not invoke it. If all correct nodes invoke
the protocol within a “small” time-window, as will happen
if the General is a correct node, then it is ensured that the
correct nodes agree on a value for the General. If all correct
nodes do not invoke the ss-Byz-Agree protocol within a
small time-window, as can happen if the General is faulty,
then if any correct node accepts a non-null value, all correct
nodes will accept and agree on that value.
For ease of following the arguments and the logic of our

ss-Byz-Agree protocol, we chose to follow the building-
block structure of [12]. The equivalent of the broadcast
primitive that simulates authentication in [12] is the prim-
itive msgd-Broadcast presented in Section 5. The main
differences between the original synchronous broadcast prim-
itive and msgd-Broadcast are two-folds: first, the latter
executes rounds that are anchored at some agreed event
whose local-time is supplied to the primitive through a pa-
rameter; second, the conditions to be satisfied at each round
at the latter, need to be satisfied by some time span that is a
function of the round number and need not be executed only
during the round itself. This allows nodes to rush through
the protocol in the typical case when messages happen to
be delivered faster than the worse case round span.
The ss-Byz-Agree protocol needs to take into considera-

tion that correct nodes may invoke the agreement procedure
at arbitrary times and with no knowledge as to when other
correct nodes may have invoked the procedure. A mecha-
nism is thus needed to make all correct nodes attain some
common notion as to when and what value the General has
sent. The differences of the real-time representations of the
different nodes’ estimations should be bounded. This mech-
anism is satisfied by the Initiator-Accept primitive de-
fined in Section 4.

We use the following notations in the description of the
agreement procedure:

• Let Φ be the duration of time equal to (τG
skew + 2d)

local-time units on a correct node’s timer, where τG
skew =

5d in the context of this paper. Intuitively, Φ is the
duration of a “phase” on a correct node’s timer.

• ∆ will be equal to (2f +3)·Φ, the upper bound on the
time it takes to run the agreement protocol.

• ⊥ denotes a null value.

• In the Initiator-Accept primitive:

– A I-accept9 is issued on values sent by G.
– τG

q denotes the local-time estimate, at node q, as
to when the General have sent a value that has
been I-accept in Initiator-Accept by node q.

In the context of this paper we assume that a correct node
will not initiate agreement on a new value at least 6d time
units subsequent to termination of its previous agreement.

Definition 6. We say:

A node p decides at time τ if it stops at that local-time and
returns value 6=⊥ .

A node p aborts if it stops and returns ⊥ .

A node p returns a value if it either aborts or decides.

9An accept is issued within msgd-Broadcast.

The ss-Byz-Agree protocol is presented (see Figure 1)
in a somewhat different style than the original protocol in
[12]. Each round has a precondition associated with it: if
the local timer value associated with the initialization by
the General is defined and the precondition holds then the
step is to be executed. It is assumed that the primitives
instances invoked as a result of the ss-Byz-Agree protocol
are implicitly associated with the agreement instance that
invoked them. A node stops participating in the procedures
and the invoked primitives 3d time units after it returns a
value.
The ss-Byz-Agree protocol satisfies the following typi-

cal properties:
Agreement: The protocol returns the same value (6=⊥) at
all correct nodes;
Validity: If all correct nodes are triggered to invoke the
ss-Byz-Agree protocol by a value sent by a correct Gen-
eral G, then the all correct nodes return that value;
Termination: The protocol terminates in a finite time.

It also satisfies the following properties:

Timeliness:
1. (agreement) For every two correct nodes q and q′ that

decide on (G, m) at τq and τq′ , respectively:

(a) |rt(τq)− rt(τq′)| ≤ 3d, and if validity holds, then
|rt(τq)− rt(τq′)| ≤ 2d.

(b) |rt(τG
q)− rt(τG

q′)| ≤ 5d.

(c) rt(τG
q), rt(τG

q′) ∈ [t1 − 2d, t2], where [t1, t2] is the
interval within which all correct nodes that actu-
ally invoked the ss-Byz-Agree (G, m) did so.

(d) rt(τG
q) ≤ rt(τq) and rt(τq)−rt(τG

q) ≤ ∆ for every
correct node q.

2. (validity) If all correct nodes invoked the protocol in
an interval [t0, t0 +d], as a result of some value m sent
by a correct General G that spaced the sending by at
least 6d from the completion of the last agreement on
its value, then for every correct node q, the decision
time τq, satisfies t0 − d ≤ rt(τG

q) ≤ rt(τq) ≤ t0 + 3d.

3. (termination) The protocol terminates within ∆ time
units of invocation, and within ∆ + 7d in case it was
not invoked explicitly.

4. (separation) Let q be any correct node that decided on
any two agreements regarding p, then t2 +5d < t̄1 and
rt(τq) + 5d < t̄1 < rt(τ̄q), where t2 is the latest time
at which a correct node invoked ss-Byz-Agree in the
earlier agreement and t̄1 is the earliest ss-Byz-Agree
invoked by a correct node in the later agreement.

Note that the bounds in the above property is with respect
to d, the bound on message transmission time among correct
nodes and not the worse case deviation represented by Φ.
Observe that since there is no prior notion of the possibil-

ity that a value may be sent, it might be that some nodes
associate a ⊥ with a faulty sending and others may not no-
tice the sending at all.
The proof that the ss-Byz-Agree protocol meets its prop-

erties appears in Section 6.3.

Protocol ss-Byz-Agree on (G, m) /* Executed at node q. τq is the local-time at q. */
/* Block Q is executed only when (and if) invoked. */

/* Each block is executed at most once, when the precondition holds. */
/* Executed as a result of I-accept at Line R1, or when τG

q is defined. */
/* Invoked at node q upon arrival of a message (Initiator, G, m) from node G. */

Q. Initiator-Accept (G, m). /* determines τG
q and a value m′ for node G */

R1. if I-accept 〈G, m′, τG
q 〉 and τq − τG

q ≤ 4d then
R2. value := 〈G, m′〉;
R3. msgd-Broadcast (q, value, 1);
R4. stop and return 〈value, τG

q 〉.

S1. if by τq (where τq ≤ τG
q + (2r + 1)·Φ)

accepted r distinct messages (pi, 〈G, m′′〉, τi, i)
where ∀i, j 1 ≤ i ≤ r, and pi 6= pj 6= G then

S2. value := 〈G, m′′〉;
S3. msgd-Broadcast (q, value, r + 1);
S4. stop and return 〈value, τG

q 〉.

T1. if by τq (where τq > τG
q + (2r + 1)·Φ) |broadcasters| < r − 1 then

T2. stop and return 〈⊥, τG
q 〉.

U1. if τq > τG
q + (2f + 3)·Φ then

U2. stop and return 〈⊥, τG
q 〉.

cleanup:
3d after returning a value reset the related Initiator-Accept and msgd-Broadcast;
Remove any value or message older than (2f + 3)·Φ + 3d time units.

Figure 1: The ss-Byz-Agree protocol

4. THE Initiator-Accept PRIMITIVE
In the protocol in [12] a General that wants to send some

value broadcasts it in a specific round (round 0 of the proto-
col). From the various assumptions on synchrony all correct
nodes can check whether a value was indeed sent at the
specified round and whether multiple (faulty) values were
sent. In the transient fault model no such round number
can be automatically adjoined with the broadcast. Thus a
faulty General has more power in trying to fool the correct
nodes by sending its values at completely different times to
whichever nodes it decides.
The Initiator-Accept primitive aims at making the cor-

rect nodes associate a relative time to the invocation of the
protocol by (the possibly faulty) General, and to converge
to a single candidate value for the agreement to come. Since
the full invocation of the protocol by a faulty General might
be questionable, there may be cases in which some correct
nodes will return a ⊥ value and others will not identify the
invocation as valid. If any correct node returns a value 6=⊥,
all will return the same value.
Each correct node records the local-time at which it first

received messages associated with the invocation of the pro-
tocol and produces an estimate to its (relative) local-time
at which the protocol may have been invoked. The primi-
tive guarantees that all correct nodes’ estimates are within
bounded real-time of each other.
We say that a node does an I-accept of a value sent by

the General if it accepts this value as the General’s initial
value, and τG

q is the estimated local-time at q associated
with the invocation of the protocol by the General.
The nodes maintain a vector initiator[G,_] for the pos-

sible values sent by the General G, where each non-empty
entry is a local-time associated with the entry value. We
will consider the data structures of a node fresh if up to d
units of time ago initiator[G,_] did not contain any value
and latest_accept was ⊥.
Nodes decay old messages and reset the data structures

shortly after completion of the primitive, as defined be-
low. It is assumed that correct nodes will not invoke the
Initiator-Accept primitive when the data structures are
not fresh.
The Initiator-Accept primitive satisfies the following

properties:

IA-1 (Correctness) If all correct nodes invoke
Initiator-Accept (G, m), with fresh data structures,
within some real-time interval [t0, t0 + d], then:

1A All correct nodes I-accept 〈G, m, τG〉 within 2d
time units of the time the last correct node in-
vokes the primitive Initiator-Accept(G, m).

1B All correct nodes I-accept 〈G, m, τG〉 within 2d
time units of each other.

1C For every pair of correct nodes q and q′ that
I-accepts 〈G, m, τG

q 〉 and 〈G, m, τG
q′ 〉, respectively:

|rt(τG
q′)− rt(τG

q)| ≤ d.

1D For each correct node q that I-accepts 〈G, m, τG
q 〉

at τq, t0 − d ≤ rt(τG
q) ≤ rt(τq) ≤ t0 + 3d.

IA-2 (Unforgeability) If no correct node invokes
Initiator-Accept (G, m), then no correct node
I-accepts 〈G, m, τG〉.

Primitive Initiator-Accept (G, m)
/* Executed at node q. τq is the local-time at q. */

/* Lines L1 and L2 are repeatedly executed until I-accept. */
/* The rest are executed at most once, when the precondition holds. */

/* Block K is executed only when (and if) the primitive is explicitly invoked. */

K1. if τq − last_τq > 7d and if at τq − d initiator[G, _] =⊥ then /* allow recent entries */
K2. send (support, G, m) to all; /* for a single m ever */
K3. set initiator[G, m] := τq − d; /* recording time */

L1. if received (support, G, m) from ≥ n− 2f distinct nodes
within a window of α ≤ 4d time units of each other then

L2. initiator[G, m] := max[initiator[G, m], (τq − α− 2d)]; /* recording time */
L3. if received (support, G, m) from ≥ n− f distinct nodes

within a window of 2d time units of each other then
L4. send (ready, G, m) to all;

M1. if received (ready, G, m) from ≥ n− 2f distinct nodes then
M2. send (ready, G, m) to all;
M3. if received (ready, G, m) from ≥ n− f distinct nodes then
M4. τG

q := initiator[G, m]; I-accept 〈G, m, τG
q 〉; last_τq := τq;

cleanup:
Remove any value or message older than ∆ + 7d time units.
If last_τq > τq then last_τq :=⊥ .

Figure 2: The Initiator-Accept primitive that yields a common notion of protocol invocation

IA-3 (∆-Relay) If a correct node q I-accepts 〈G, m, τG
q 〉 at

real-time t, such that 0 ≤ t− rt(τG
q) ≤ ∆, then:

3A Every correct node q′ I-accepts 〈G, m, τG
q′ 〉, at some

real-time t′, with |t− t′| ≤ 2d and
|rt(τG

q)− rt(τG
q′)| ≤ 5d.

3B Moreover, rt(τG
q), rt(τG

q′)∈ [t1−2d, t2], where [t1, t2]
is the interval within which all correct nodes that
actually invoked ss-Byz-Agree (G, m) did so.

3C For every correct node q′, rt(τG
q′) ≤ rt(τq′) and

rt(τq′)− rt(τG
q′) ≤ ∆ + 7d.

IA-4 (Uniqueness) If a correct node q I-accepts 〈G, m, τG
q 〉,

then no correct node I-accepts 〈G, m′, τG
p 〉 for m 6= m′,

for |rt(τG
q)− rt(τG

p)| ≤ 5d.

Each node maintains in addition to initiator[G,_] a data
structure in which the latest message from each partner re-
garding a possible value sent by the General is kept. The
data structure records as a time stamp the local-time at
which each message is received. If the data structure con-
tains illegal values or future time stamps (due to transient
faults) the messages are removed. The protocol also requires
the knowledge of the state of the vector initiator[G,_] d
time units in the past. It is assumed that the data structure
reflects that information.
When the primitive is explicitly invoked the node exe-

cutes block K. A node may receive messages related to the
primitive, even in case that it did not explicitly invoke the
primitive. In this case it executes the rest of the blocks of the
primitive, if the appropriate preconditions hold. A correct
node repeatedly executes Line L1 and Line L2, whenever
the precondition holds. The rest are executed at most once,
when the precondition holds for the first time.

Following the completion of ss-Byz-Agree, the data struc-
tures of the related Initiator-Accept instance are reset.
The proof that the Initiator-Accept primitive satisfies

the [IA-*] properties, under the assumption that n > 3f,
appears in Section 6.1.

5. THE msgd-Broadcast PRIMITIVE
This section presents the msgd-Broadcast (a message

driven broadcast) primitive, which accepts messages being
broadcasted by executing it. The primitive is invoked by
the ss-Byz-Agree protocol presented in Section 3. The
primitive follows the broadcast primitive of Toueg, Perry,
and Srikanth [12]. In the original synchronous model, nodes
advance according to rounds that are divided into phases.
This intuitive lock-step process clarifies the presentation and
simplifies the proofs. The primitive msgd-Broadcast is
presented without any explicit or implicit reference to time,
rather an anchor to the potential initialization point of the
protocol is passed as a parameter by the calling procedure.
The properties of the Initiator-Accept primitive guaran-
tee a bound between the real-time of the anchors of the
correct nodes. Thus a general notion of a common round
structure can be implemented by measuring the elapsed time
units since the local-time represented by the passed anchor.
In the broadcast primitive of [12] messages associated with

a certain round must be sent by correct nodes at that round
and will be received, the latest, at the end of that round
by all correct nodes. In msgd-Broadcast, on the other
hand, the rounds progress with the arrival of the antici-
pated messages. Thus for example, if a node receives some
required messages before the end of the round it may send
next round’s messages. The length of a round only imposes
an upper bound on the acceptance criteria. Thus the pro-
tocol can progress at the speed of message delivery, which
may be significantly faster than that of the protocol in [12].

Primitive msgd-Broadcast (p, m, k)
/* Executed per such triplet at node q. */

/* Nodes send specific messages only once. */
/* Nodes execute the blocks only when τG is defined. */

/* Nodes log messages until they are able to process them. */
/* Multiple messages sent by an individual node are ignored. */

At node q = p: /* if node q is node p that invoked the primitive */
V. node p sends (init, p, m, k) to all nodes;

W1. At time τq : τq ≤ τG
q + 2k ·Φ

W2. if received (init, p, m, k) from p then
W3. send (echo, p, m, k) to all;

X1. At time τq : τq ≤ τG
q + (2k − 1)·Φ

X2. if received (echo, p, m, k) from ≥ n− 2f distinct nodes then
X3. send (init′, p, m, k) to all;
X4. if received (echo, p, m, k) messages from ≥ n− f distinct nodes then
X5. accept (p, m, k);

Y1. At time τq : τq ≤ τG
q + (2k + 2)·Φ

Y2. if received (init′, p, m, k) from ≥ n− 2f then
Y3. broadcasters := broadcasters ∪ {p};
Y4. if received (init′, p, m, k) from ≥ n− f distinct nodes then
Y5. send (echo′, p, m, k) to all;

Z1. At any time:
Z2. if received (echo′, p, m, k) from ≥ n− 2f distinct nodes then
Z3. send (echo′, p, m, k) to all;
Z4. if received (echo′, p, m, k) from ≥ n− f distinct nodes then
Z5. accept (p, m, k); /* accept only once */

cleanup:
Remove any value or message older than (2f + 3)·Φ time units.

Figure 3: The msgd-Broadcast primitive with message-driven round structure

Note that when a node invokes the primitive it evaluates
all the messages in its buffer that are relevant to the prim-
itive. The msgd-Broadcast primitive is executed in the
context of some initiator G that invoked ss-Byz-Agree,
which makes use of the msgd-Broadcast primitive. No
correct node will execute the msgd-Broadcast primitive
without first producing the reference (anchor), τG, on its
local timer to the time estimate at which G supposedly in-
voked the original agreement. By IA-3A this happens within
2d of the other correct nodes.
The synchronous Reliable Broadcast procedure of [12] as-

sumes a round model in which within each phase all message
exchange among correct nodes take place. The equivalent
notion of a round in our context will be Φ defined to be:
Φ := tG

skew + 2d.
The msgd-Broadcast primitive satisfies the following

[TPS-*] properties of Toueg, Perry and Srikanth [12], which
are phrased in our system model.

TPS-1 (Correctness) If a correct node p
msgd-Broadcast(p, m, k) at τp, τp ≤ τG

p +(2k−1)·Φ,
on its timer, then each correct node q accepts (p, m, k)
at some τq, τq ≤ τG

q + (2k + 1) ·Φ, on its timer and
|rt(τp)− rt(τq)| ≤ 3d.

TPS-2 (Unforgeability) If a correct node p does not
msgd-Broadcast(p, m, k), then no correct node ac-
cepts (p, m, k).

TPS-3 (Relay) If a correct node q1 accepts (p, m, k) at τ1,
τ1 ≤ τG

1 +r·Φ on its timer then any other correct node
q2 accepts (p, m, k) at some τ2, τ2 ≤ τG

2 + (r + 2) ·Φ,
on its timer.

TPS-4 (Detection of broadcasters) If a correct node accepts
(p, m, k) then every correct node q has p ∈ broadcasters
at some τq, τq ≤ τG

q +(2k+2) ·Φ, on its timer. Further-
more, if a correct node p does not msgd-Broadcast
any message, then a correct node can never have p ∈
broadcasters.

Note that the bounds in [TPS-1] are with respect to d, the
bound on message transmission time among correct nodes.
The msgd-Broadcast primitive satisfies the [TPS-*] prop-

erties, under the assumption that n > 3f. The proofs that
appear in Section 6.2 follow closely the original proofs of [12],
in order to make it easier for readers that are familiar with
the original proofs.

6. PROOFS
Note that all the definitions, theorems and lemmata in

this paper hold only from the moment, and as long as, the
system is coherent.

6.1 Proof of the Initiator-Accept Properties

Theorem 1. The Initiator-Accept primitive presented
in Figure 2 satisfies properties [IA-1] through [IA-4], assum-
ing that a correct node that invokes the primitive invokes it
with fresh data structures.

Proof.
Correctness: Assume that within d of each other all cor-
rect nodes invoke Initiator-Accept (G, m). Let t1 be
the real-time at which the first correct node invokes the
Initiator-Accept and t2 be the time the last one did so.
Since all data structures are fresh, then no value {G, m′} ap-
peared in broadcasters d time units before that, thus Line K1
will hold for all correct nodes. Therefore, every correct node
sends (support, G, m). Each such message reaches all other
correct nodes within d. Thus, between t1 and t2 + d ev-
ery correct node receives (support, G, m) from n − f dis-
tinct nodes and sends (ready, G, m) and by t2 +2d I-accepts
〈G, m, τ ′〉, for some τ ′, thus, proving [IA-1A].
To prove [IA-1B], let q be the first to I-accept after ex-

ecuting Line M4. Within d all correct nodes will execute
Line M2, and within 2d all will I-accept.
Note that for every pair of correct nodes q and q′, the

associated initial recording times τ and τ ′ satisfy |τ−τ ′| ≤ d.
Line K3 implies that the recording times of correct nodes
can not be earlier than t1 − d. Some correct node may see
n− 2f, with the help of faulty nodes as late as t2 + 2d. All
such windows should contain a support from a correct node,
so should include real-time t2 + d, resulting in a recording
time of t2 − d. Recall that t2 ≤ t1 + d, proving [IA-1C].
To prove [IA-1D] notice that the fastest node may set τ ′

to be t1 − d, but may I-accept only by t2 + 2d ≤ t1 + 3d.

Unforgeability:
If no correct node invokes Initiator-Accept and will not
send (support, G, m), then no correct node will ever execute
L4 and will not send (ready, G, m). Thus, no correct node
can accumulate n− f (ready, G, m) messages and therefore
will not I-accept 〈G, m〉.

∆-Relay:
Let q be a correct node that I-accepts 〈G, m, τG

q 〉 at real-
time t, such that 0 ≤ t − rt(τG

q) ≤ ∆. It did so as a result
of executing Line M4. Let X be the set of correct nodes
whose (ready, G, m) were used by q in executing Line M4.
Either there exists in X a correct node sending it as a result
of executing Line L4, or at least one of the nodes in X have
heard from such a node (otherwise, it heard from other f +1
distinct nodes and there will be at least n − f + f + 1 > n
distinct nodes in total, a contradiction).
Let q̄ be the first correct node to execute Line L4, and

assume it took place at some real-time t′′. Note that t′′ ≤
t. Node q̄ collected n − f support messages, with at least
n − 2f from correct nodes10. Let t1 be the time at which
the (n− 2f)th support message sent by a correct node was
received. Since q̄ executed Line L4, all these messages should
have been received in the interval [t1−2d, t1]. Node q̄ should
have set a recording time τ ≥ t1 − 4d as a result of (maybe
repeating) the execution of Line L2.
10Ignore for a moment decaying of messages (we will prove
below that no correct node decays these messages at that
stage).

Every other correct node should have received this set of
(n − 2f) support messages sent by correct nodes in the in-
terval [t1−3d, t1 +d] and should have set the recording time
after (maybe repeatedly) executing Line L2, since this win-
dow satisfies the precondition of Line L1. Thus, eventually
all recording times are ≥ t1 − 5d.
Some correct node may send a support message, by ex-

ecuting Line K2, at most d time units later (just before
receiving these n − 2f messages). This can not take place
later than t1 + d, resulting in a recording time of t1, though
earlier than its time of sending the support message. This
support message (with the possible help of faulty nodes) can
cause some correct node to execute Line L2 at some later
time. The window within which the support messages at
that node are collected should include the real-time t1 + 2d,
the latest time any support from any correct node could have
been received. Any such execution will result in a recording
time that is ≤ t1 + 2d− 2d = t1. Thus the range of record-
ing times for all correct nodes (including q) are [t1 − 5d, t1].
Proving the second part of [IA-3A].
Since we assumed that 0 ≤ t − rt(τG

q) ≤ ∆, all messages
above are within the decaying window of all correct nodes
and none of these messages will be decayed, proving that
the result holds. For the same reason, all correct messages
collected by q will not be decayed by other correct nodes. By
time t + d all correct nodes will be able to execute Line M2,
and by t + 2d each correct node q′ will execute Line M4 to
I-accept 〈G, m, τq̄〉. Proving the first part of [IA-3A].
To prove [IA-3B] notice that any range of values in Line L2

includes a support of a correct node. The resulting record-
ing time will never be later than the sending time of the
support message by that correct node, and thus by some
correct node. To prove the second part of [IA-3B] consider
again node q̄ from the proof of the ∆−relay property. It col-
lected n− 2f support messages from correct nodes in some
interval [t̄1, t1], where t̄1 ≥ t1 − 2d. These messages, when
received by any correct node will be within an interval of
4d, with the first message in it from a correct node. These
messages will trigger a possible update of the recording time
in Line L2. Thus, the resulting recording time of any correct
node cannot be earlier than some 2d of receiving a support
message from a correct node, thus not earlier than 2d of
sending such a message.
The first part of [IA-3C] is immediate from Line L2 and

Line K3. For the second part observe that for every other
correct node q′, rt(τq′) ≤ rt(τq) + 2d and rt(τG

q′) ≥ rt(τG
q)−

5d. Thus, rt(τq′)− rt(τG
q′) ≤ rt(τq)− rt(τG

q) + 7d ≤ ∆ + 7d.
To prove [IA-4] observe that each node sent a support for

a single m. In order to I-accept, some correct node needs to
send ready after receiving n−f support messages. That can
happen for at most a single value of m. What is left to prove,
is that future invocations of the primitive will not violate
[IA-4]. Observe that by [IA-3B], once a correct node sends
a ready message, all recording times are within 2d of the
reception time of some support message from a correct node.
Moreover, by [IA-3C], this is always prior to the current time
at any node that sets the recording time. Let q be the latest
correct node to I-accept, at some time τq on its clock with
some last_τq as the returned recording time. Let p be the
first correct node to send a support following that, at some
local-time τ̄p. We will denote by τ timings in the former
invocation and by τ̄ timings in the later one.

Observe that τG
q ≤ last_τq and that rt(last_τq) − 2d ≤

rt(last_τp). When p sends its support, rt(τ̄p)−rt(last_τp) >
9d implying that rt(τ̄p) − rt(last_τq) > 7d. Once any cor-
rect node will send ready in the later invocation the resulting
recording time of all correct nodes, including q will satisfy
rt(τ̄G

q) ≥ rt(τ̄p)− 2d, which implies rt(τG
q) ≤ rt(last_τq) <

rt(τ̄p)− 7d ≤ rt(τ̄G
q)− 5d.

6.2 Proof of themsgd-Broadcast Properties
For lack of space we do not present all the proofs. The

proofs essentially follow the arguments in the original pa-
per [12].

Lemma 1. If a correct node pi sends a message at local-
time τi, τi ≤ τG

i + r ·Φ on pi’s timer it will be received
and processed by each correct node pj at some local-time τj ,
τj ≤ τG

j + (r + 1)·Φ, on pj’s timer.

Lemma 2. If a correct node ever sends (echo′, p, m, k)
then at least one correct node, say q′, must have sent
(echo′, p, m, k) at some local-time τq′, τq′ ≤ τG

q′ +(2k +2)·Φ.

Lemma 3. If a correct node ever sends (echo′, p, m, k)
then p’s message (init, p, m, k) must have been received by
at least one correct node, say q′, at some time τq′, τq′ ≤
τG

q′ + 2k ·Φ.

Lemma 4. If a correct node p invokes the primitive
msgd-Broadcast (p, m, k) at real-time tp, then each cor-
rect node q accepts (p, m, k) at some real-time tq, such that
|tp − tq)| ≤ 3d.

Theorem 2. The msgd-Broadcast primitive presented
in Figure 3 satisfies properties [TSP-1] through [TSP-4].

Proof. For lack of space and the essential similarity to
the original proofs we will prove only the relay part.
Relay: The delicate point is when a correct node issues an

accept as a result of getting echo messages. So assume that
q1 accepts (p, m, k) at t1 = rt(τ1) as a result of executing
Line X5. By that time it must have received (echo, p, m, k)
from n − f nodes, at least n − 2f of them sent by correct
nodes. Since every correct node among these has sent its
message by τG + 2k ·Φ on its timer, by Lemma 1, all those
messages should have arrived to every correct node qi by
τi ≤ τG

i + (2k + 1)·Φ on its timer. Thus, every correct node
qi should have sent (init′, p, m, k) at some τi, τi ≤ τG

i +(2k+
1)·Φ, on its timer. As a result, every correct node will receive
n− f such messages by some τ̄ , τ̄ ≤ τG + (2k + 2) ·Φ on its
timer and will send (echo′, p, m, k) at that time, which will
lead each correct node to accept (p, m, k) at a local-time τi.
Now observe that all n−2f (echo, p, m, k) were sent before

time t1. By t1 +d they arrive to all correct nodes. By t1 +2d
all will have their τG defined and will process them. By t1 +
3d their (init′, p, m, k) will arrive to all correct nodes, which
will lead all correct nodes to send (echo′, p, m, k). Thus, all
correct nodes will accept (p, m, k) at time τi ≤ t1 + 4d.
By assumption, t1 = rt(τ1) ≤ rt(τG

1) + r ·Φ. By IA-3A,
rt(τG

1) ≤ rt(τG
i) + tG

skew. Therefore we conclude: rt(τi) ≤
rt(τ1)+4d ≤ rt(τG

1)+r·Φ+4d ≤ rt(τG
i)+ tG

skew +r·Φ+4d ≤
rt(τG

i) + (r + 2)·Φ.
The case that the accept is a result of executing Line Z5

is a special case of the above arguments.

6.3 Proof of the ss-Byz-Agree Properties

Theorem 3. (Convergence) Once the system is coherent,
any invocation of ss-Byz-Agree presented in Figure 1 sat-
isfies the Termination property. When n > 3f , it also sat-
isfies the Agreement and Validity properties.

Proof. Notice that the General G itself is one of the
nodes, so if it is faulty then there are only f − 1 potentially
faulty nodes. We do not use that fact in the proof since the
version of ss-Byz-Agree presented does not refer explicitly
to the General. One can adapt the proof and reduce ∆ by
2·Φ when specifically handling that case.
Let t̂ be the real-time by which the network is correct

and there are at least n− f non-faulty nodes. These nodes
may be in an arbitrary state at that time. If G does not
send any (Initiator, G, M) message for ∆ + 7d, all spurious
invocations of the primitives and the protocol will be reset
by all correct nodes. If G sends such an Initiator message,
then within ∆ + 3d of the time that any non-faulty node
invokes the protocol, either a decision will take place (by
all non-faulty nodes) or all will reset the protocol and its
primitives. Beyond that time, any future invocation will
happen when all data structures are reset at all non-faulty
nodes. Note, that before that time a non-faulty G will not
send the Initiator message again.
Thus, by time t̂ + 2∆ + 10d, when the system becomes

coherent, any invocation of the protocol will take place with
empty (fresh) data structures and will follow the protocol as
stated.

Lemma 5. If a correct node p aborts at local-time τp, τp >
τG

p +(2r +1)·Φ, on its timer, then no correct node q decides
at a time τq, τq ≥ τG

q + (2r + 1)·Φ, on its timer.

Proof. Let p be a correct node that aborts at time τp,
τp > τG

p + (2r + 1)·Φ. In this case it should have identified
at most r − 2 broadcasters by that time. By the detection
of the broadcasters property [TPS-4], no correct node will
ever accept 〈G, m′〉 and r−1 distinct messages (qi, m

′, i) for
1 ≤ i ≤ r − 1, since that would have caused each correct
node, including p, to hold r − 1 broadcasters by some time
τ, τ ≤ τG + (2(r − 1) + 2)·Φ on its timer. Thus, no correct
node, say q, can decide at a time τq ≥ τG

q + (2r + 1)·Φ on
its timer.

Lemma 6. If a correct node p decides at time τp, τp ≤
τG

p + (2r + 1)·Φ, on its timer, then each correct node, say q,
decides by some time τq, τq ≤ τG

q + (2r + 3)·Φ on its timer.

Proof. Let p be a correct node that decides at local-time
τp, τp ≤ τG

p + (2r + 1)·Φ. We consider the following cases:

1. r = 0: No correct node can abort by a time τ, τ ≤
τG + (2r + 1) ·Φ, since the inequality will not hold.
Assume that node p have accepted 〈G, m′〉 by τp ≤
τG

p + 4d ≤ τG
p + Φ. By the relay property [TPS-3]

each correct node will accept 〈G, m′〉 by some time
τ, τ ≤ τG + 3 ·Φ on its timer. Moreover, p invokes
msgd-Broadcast (p, m′, 1), by the Correctness prop-
erty [TPS-1] it will be accepted by each correct node
by time τ, τ ≤ τG +3·Φ, on its timer. Thus, all correct
nodes will have value 6=⊥ and will broadcast and stop
by time τG + 3·Φ on their timers.

2. 1 ≤ r ≤ f : Node p must have accepted 〈G, m′〉 and
also accepted r distinct (qi, m

′, i) messages for all i, 2 ≤
i ≤ r, by time τ, τ ≤ τG + (2r + 1) ·Φ, on its timer.
By Lemma 5, no correct node aborts by that time.
By Relay property [TPS-3] each (qi, m

′, i) message will
be accepted by each correct node by some time τ,
τ ≤ τG + (2r + 3) ·Φ, on its timer. Node p broad-
casts (p, m′, r+1) before stopping. By the Correctness
property, [TPS-1], this message will be accepted by ev-
ery correct node at some time τ, τ ≤ τG + (2r + 3)·Φ,
on its timer. Thus, no correct node will abort by time
τ, τ ≤ τG + (2r + 3)·Φ, and all correct nodes will have
value 6=⊥ and will thus decide by that time.

3. r = f +1: Node p must have accepted a (qi, m
′, i) mes-

sage for all i, 1 ≤ i ≤ f , by τp, τp ≤ τG
p + (2f + 3)·Φ,

on its timer, where the f + 1 qi’s are distinct. At
least one of these f + 1 nodes, say qj , must be cor-
rect. By the Unforgeability property [TPS-2], node qj

invoked msgd-Broadcast (qj , m
′, j) by some local-

time τ, τ ≤ τG+(2j+1)·Φ and decided. Since j ≤ f+1
the above arguments imply that by some local-time τ,
τ ≤ τG + (2f + 3)·Φ, each correct node will decide.

Lemma 6 implies that if a correct node decides at time τ,
τ ≤ τG + (2r + 1) ·Φ, on its timer, then no correct node p
aborts at time τp, τp > τG

p + (2r + 1)·Φ. Lemma 5 implies
the other direction.

Termination: Each correct node either terminates the pro-
tocol by returning a value, or by time (2f + 3) ·Φ + 3d all
entries will be reset, which is a termination of the protocol.

Agreement: If no correct node decides, then all correct
nodes that execute the protocol abort, and return a ⊥ value.
Otherwise, let q be the first correct node to decide. There-
fore, no correct node aborts. The value returned by q is
the value m′ of the accepted (p, m′, 1) message. By [IA-4] if
any correct node I-accepts, all correct nodes I-accept with
a single value. Thus all correct nodes return the same value.

Validity: Since all the correct nodes invoke the primitive
ss-Byz-Agree as a result of a value sent by a correct G,
they will all invoke Initiator-Accept within d of each
other with fresh data structure, hence [IA-1] implies validity.

Timeliness:

1. (agreement) For every two correct nodes q and q′ that
decide on (G, m) at τq and τq′ , respectively:

(a) If validity hold, then |rt(τq)−rt(τq′)| ≤ 2d, by [IA-
3A]; Otherwise, |rt(τq)−rt(τq′)| ≤ 3d, by [TPS-1].

(b) |rt(τG
q)− rt(τG

q′)| ≤ 5d by [IA-3A].

(c) rt(τG
q), rt(τG

q′) ∈ [t1 − 2d, t2] by [IA-3B].

(d) rt(τG
r) ≤ rt(τr), by [IA-3C], and if the inequality

rt(τr) − rt(τG
r) ≤ ∆ would not hold, the node

would abort right away.

2. (validity) If all correct nodes invoked the protocol in an
interval [t0, t0 + d], as a result of (Initiator, G, m) sent
by a correct G that spaced the sending by 6d from its
last agreement, then for every correct node q that may
have decided 3d later than G, the new invocation will

still happen with fresh data structures, since they are
reset 3d after decision. By that time it already reset
the data structures (including latest_accept) of the last
execution, and the new decision time τq, satisfies t0 −
d ≤ rt(τG

q) ≤ rt(τq) ≤ t0 + 3d as implied by [IA-1D].

3. (separation) By [IA-4] the real-times of the I-accepts
satisfy the requirements. Since a node will not reset
its data structures before terminating the protocol, it
will not send a support before completing the previ-
ous protocol execution. Therefore, the protocol itself
can only increase the time difference between agree-
ments. Thus, the minimal difference is achieved when
a decision takes place right after the termination of the
Initiator-Accept primitive.

7. ACKNOWLEDGEMENTS
We wish to thank Ittai Abraham and Ezra Hoch for dis-

cussing some of the fine points of the model and the proofs.
This research was supported in part by grants from ISF,
NSF, CCR, and AFOSR.

8. REFERENCES
[1] J. Beauquier, S. Kekkonen-Moneta, “Fault-tolerance and

Self-stabilization: Impossibility Results and Solutions
Using Failure Detectors”, Int. J of Systems Science, Vol.
28(11) pp. 1177-1187, 1997.

[2] B. Coan, D. Dolev, C. Dwork and L. Stockmeyer, “The
distributed firing squad problem”, Proc. of the 7th Annual
ACM Symposium on Theory of Computing, pp. 335-345,
Providence, Rhode Island, May 1985.

[3] A. Daliot, D. Dolev and H. Parnas, “Self-stabilizing Pulse
Synchronization Inspired by Biological Pacemaker
Networks”, Proc. of the 6th Symposium on Self-Stabilizing
Systems (SSS’03 San-Francisco), pp. 32-48, 2003.

[4] A. Daliot and D. Dolev, “Self-stabilization of Byzantine
Protocols”, Proc. of the 7th Symposium on Self-Stabilizing
Systems (SSS’05 Barcelona), pp. 48-67, 2005.

[5] A. Daliot, D. Dolev and H. Parnas, “Linear Time
Byzantine Self-Stabilizing Clock Synchronization”, Proc.
of 7th Int. Conference on Principles of Distributed
Systems (OPODIS’03 La Martinique), France, Dec. 2003.

[6] A. Daliot and D. Dolev, “Making Order in Chaos:
Self-stabilizing Byzantine Pulse Synchronization”,
unpublished manuscript July 2006.

[7] S. Dolev, and J. L. Welch, “Self-Stabilizing Clock
Synchronization in the presence of Byzantine faults”,
Journal of the ACM, Vol. 51, Issue 5, pp. 780 - 799, 2004.

[8] D. Dolev, H. R. Strong, “Polynomial Algorithms for
Multiple Processor Agreement”, In Proceedings, the 14th
ACM SIGACT Symposium on Theory of Computing
(STOC-82), pp. 401-407, May 1982.

[9] P. Dutta, R. Guerraoui, L. Lamport, “How Fast Can
Eventual Synchrony Lead to Consensus?”, Proc. of the
2005 Int. Conf. on Dependable Systems and Networks
(DSN’05 Yokohama), Japan, June 2005.

[10] L. Lamport, R. Shostak, M. Pease, “The Byzantine
Generals Problem”, ACM Transactions on Programming
Languages and Systems, 4(3):382-301, 1982.

[11] M. Pease, R. Shostak, L. Lamport, “Reaching Agreement
in the Presence of Faults”, Journal of the ACM, Vol. 27,
No. 2. pp. 228-234, Apr. 1980.

[12] S. Toueg, K. J. Perry, T. K. Srikanth, “Fast Distributed
Agreement”, SIAM Journal on Computing, 16(3):445-457,
June 1987.

[13] J. Widder, “Booting clock synchronization in partially
synchronous systems”, In Proc. the 17th Int. Symposium
on Distributed Computing (DISC’03 Sorrento), Oct. 2003.

