
SPADE:
Statistical Packet Acceptance Defense Engine

Shimrit Tzur-David Harel Avissar Danny Dolev Tal Anker
The Hebrew University Of Jerusalem

Email: {shimritd,harela01,dolev,anker}@cs.huji.ac.il

1

Abstract— A security engine should detect network traf-
fic attacks at line-speed. “Learning” capabilities can help
detecting new and unknown threats even before a vulner-
ability is exploited. The principal way for achieving this
goal is to model anticipated network traffic behavior, and
to use this model for identifying anomalies.

This paper focuses on denial of service (DoS) attacks and
distributed DoS (DDoS). Our goal is detecting and prevent-
ing of attacks. The main challenges include minimizing the
false-positive rate and the memory consumption.

SPADE: a Statistical Packet Acceptance Defense Engine
is presented. SPADE is an accurate engine that uses an
hierarchical adaptive structure to detect suspicious traffic
using a relatively small memory footprint, therefore can be
easily applied on hardware. SPADE is based on the assump-
tion that during DoS/DDoS attacks, a significant portion
of the traffic that is seen belongs to the attack, therefore,
SPADE applies a statistical mechanism to primarily filter
the attack’s traffic.

I. INTRODUCTION

A bandwidth attack is an attempt to disrupt an online
service by flooding it with large volumes of bogus
packets in order to overwhelm the servers. The aim is
to consume network resources at the targeted network
to such an extent that it starts dropping packets. As the
dropped packets may also include legitimate traffic, the
result is denial of service (DoS) to valid users.

Normally, a large number of machines is required
to generate a volume of traffic large enough to flood
a network. This is referred to as a distributed denial
of service (DDoS), as the coordinated attack is carried
out by multiple machines. Furthermore, to diffuse the
source of the attack, such machines are typically located
in different networks, so it is impossible to identify a
single network address as the source of the attack and
block it. Most access links on the internet are limited in
their capacity, therefore, a successful DDoS attack may
only involve a single attacker that generates flows from
multiple sources to bring down the system. Moreover, the
size of some reported attack networks [1] suggests that

1This is the authors copy of the paper that will appear in HPSR
2010.

one determined attacker might be capable of overloading
even the largest access link.

Currently, detection of such attacks is done by mon-
itoring IP addresses, ports, TCP state information and
other attributes to identify anomalous network sessions.
The weakness of simply applying such a methodology is
that accumulated state information grows linearly with
the number of flows; thus lacking scalability.

In designing a fully accurate and scalable engine, one
needs to address the following challenges:

1) Prevention of Threats: The engine should be able
to prevent threats from entering the network.
Threat prevention (and not just detection) makes
the engine more complicated, mostly because of
the need to work at line-speed. This makes the
engine potentially a bottleneck - thus increasing
latency and reducing throughput.

2) Accuracy: The engine must be accurate. Accuracy
is measured by false-negative and false-positive
rates. A false-negative occurs when the engine
does not detect a threat and a false-positive con-
versely, when the engine drops normal traffic.

3) Scalability: One of the major problems in supply-
ing an accurate engine is the memory explosion.
There is a clear trade-off between accuracy and
memory consumption.

This paper presents SPADE: Statistical Packet Ac-
ceptance Defense Engine. SPADE detects and prevents
DoS/DDoS attacks from entering the network. SPADE
maintains multiple dynamic hierarchical data structures
to measure traffic statistics. These dynamic structures
maintain the information used in identifying offending
traffic. Each hierarchical structure is represented as a
tree. Each level of the tree represents a different ag-
gregation level. The main goal of the tree is reflecting
the network behavior for efficient identification of an
attack. Leaf nodes are used to maintain the most detailed
statistics. Each inner-node of the tree represents an
aggregation of the statistics of all its descendants.

SPADE starts dropping packets only when the device
is overloaded and might crash. I.e. the maximum service

rate is about to be reached. At such a point the algorithm
enters a defense mode to focus on traffic load reduction.

Following each packet’s arrival the algorithm updates
the relative tree nodes (or adds new nodes). Every N
packets. the engine examines the rate of each node; if it is
a leaf node and its rate is above a threshold, a spread-flag
is marked and a descending nodes are added. Once the
rate drops, the node’s descendants are removed and the
spread-flag is turned off. This enables holding detailed
information of active incoming flows that may poten-
tially become suspicious, with a reasonable memory size.
In addition, the algorithm predicts the rate of the next
N packets; if the predicted rate is above a threshold, the
algorithm analyzes the tree to identify which packets to
remove, relative to their contribution to the excess load.

Many DoS/DDoS detection systems use time intervals.
At the end of each interval they try identifying suspicious
traffic. As a result, short attacks that start and end
within one interval might be missed. For example, the
system presented in [2] tracks changes in traffic, if a
change occurs at the same time-scale of the measurement
interval, the system may miss the attack. In SPADE an
interval spans over N packets, therefore when the load
increases the intervals become shorter and very short
attacks can be detected.

Another major advantage of SPADE over present so-
lutions is that it does not require any learning period of
“attack free” traffic in order to operate correctly. SPADE
can gain form such traffic, but in essence it is “Plug and
Play”, as it can start protecting against an ongoing attack
from the first round onwards and will stabilize to discard
only attack packets over time. Moreover, SPADE has
a mechanism to detect and prevent long and moderate
attacks. Such attacks usually are too “slow” for current
engines to detect, and thus avoid detection.

In our previous work [3] MULAN-filter is presented.
Both systems, MULAN and SPADE, protect the network
against DoS and DDoS attacks using a tree data-structure
to obtain a scalable solution. The two systems differ by
their methods. MULAN learns the network and when it
detects an anomaly in the traffic rate, it identifies the
attack and filters the offending traffic. SPADE, on the
other hand, filers packets only when the network is under
a risk of crashing. This difference has a major impact on
performance. MULAN is exposed to false-positives, i.e. if
the rate of the network grows sharply by normal traffic,
MULAN identifies this as an anomaly and it raises an
alert. This happens regardless of the load at the target.
SPADE is much more resistant, and thus even if there are
sharp changes in the rate, SPADE does not interfere as
long as the total traffic can be handled. Moreover, since

SPADE filters packets only when there is an actual risk of
crashing, packets should be dropped one way or another.

Another difference is the use of the tree. MULAN
clusters the nodes at each level in the tree by one of
the chosen attributes, e.g. IP addresses. This clustering
decelerates the process of identification and filtering
of attack’s packets. SPADE uses the tree to reflect the
incoming traffic, and its consolidated nodes do not affect
the algorithm effectiveness, as we detail below.

MULAN uses time intervals to examine the tree and
decide whether to spread a cluster or not. This cannot
provide protection against short attacks not only for
the reason mentioned above, but also because of the
aggregation method. When MULAN identifies high rate
at a cluster, it splits the cluster and examines its specific
samples to find the attacked IP. From the time the
high rate of the cluster is identified until the specific
target is located, the attack may be over. SPADE maps
each IP address seen by the engine to a node in the
first level of the tree. To target the scalability problem,
SPADE consolidates IP addresses with low rate into a
range by holding a node for the prefix. A prefix splits
again when the rate of the prefix node grows. The use
of prefixes was previously presented in [4] and [5].
However, the approaches and purposes are different.
The authors of [4] provide valuable information for the
network administrator by identifying the dominant traffic
type, and the goal of [5] is packet classification; our goal
is to automatically defend the network.

The last difference is the algorithm complexity. SPADE
uses statistical methods to identify attacks and as a
result it is much more efficient than MULAN, as detailed
later. SPADE was implemented in software and was
demonstrated on 10 days of incoming traffic at our
School of Computer Science. The results show that with
the use of TCAM SPADE can work at high wire speed
with great accuracy.

II. RELATED WORK

Detection of network anomalies is currently performed
by monitoring IP addresses, ports, TCP state information
and other attributes to identify network sessions, or by
identifying TCP connections that differ from a profile
trained on attack-free traffic.

MULTOPS [6] is a denial of service bandwidth de-
tection system. In that system, each network device
maintains a data structure that monitors certain traffic
characteristics. The data structure is a tree of nodes
containing packet rate statistics for subnet prefixes at
different aggregation levels. The detection is performed
by comparing the inbound and outbound packet rates.
As MULTOPS fails to detect attacks that deploy a large

number of proportional flows to cripple the victim, it
will not detect many of the DDoS attacks.

PacketScore [2] is a statistics-based system against
DDoS attacks. It is based on packet-scoring approach.
Arriving packets are given scores based on their TCP/IP
attribute values, as compared to nominal traffic profile.
In addition to the difficulty in detecting short attacks,
PacketScore does not handle properly mixed attacks
and for this reason generates a high false-positive rate.
PacketScore assigns score to each attribute based on
currently measured histogram and the nominal profile.
The implementation complexity arises from calculating
these two histograms for each packet attribute.

ALPI [7] is an extension of PacketScore. It uses
a leaky-bucket scheme to calculate an attribute-value-
variation score for analyzing deviations of the current
traffic attributes. The authors proposed two additional
scoring methods, one simpler but less accurate and the
complexity of the second is between the other two. All
the three schemes need to build histograms in order to
generate nominal profiles and they all generate relatively
high false-negative rate.

Many DoS defense systems, like [8], instrument
routers to add flow meters at either all or at selected
input links. Flow measurement approach does not scale.
Updating per-packet counters in DRAM is impossible
given today’s line speed. Cisco NetFlow [9] attempts to
solve this problem by sampling, which affects measure-
ment accuracy. Some of the systems, like [10] and [11],
use Cisco NetFlow as their input. Estan and Varghese
presented in [12] algorithms that use an amount of
memory that is a constant factor larger than the number
of large flows. The solutions presented lack accuracy.

Schuehler et al., [13], use an FPGA implementation
of a modular circuit design of a content processing
system. It requires a large per-flow state, supporting
8 million bidirectional TCP flows concurrently. The
memory consumption grows linearly with the number
of flows. The processing rate of the device is limited to
2.9 million 64-byte packets per second.

Other solutions, [14], [15], use aggregation to scalably
detect attacks. Aggregation affects accuracy; for exam-
ple, due to behavioral aliasing, the solution presented
in [14] doesn’t produce good accuracy. Behavioral alias-
ing may cause false-positives and false-negatives results.
Another drawback of this solution is its vulnerability
against spoofing.

LAD [16] is a triggered multi-stage infrastructure for
the detection of large-scale network attacks. In the first
stage, LAD detects volume anomalies using SNMP data
feeds. These anomalies are then used to trigger flow
collectors and then, on the second stage, LAD performs

analysis of the flow records by applying a clustering
algorithm that discovers heavy-hitters along IP prefixes.
By applying this multi-stage approach, LAD targets the
scalability goal. Since SNMP data has coarse granularity,
the first stage of LAD produces false-negatives. The
collection of flow records in the second stage requires a
buffer to hold the data and adds bandwidth overhead to
the network, thus LAD uses a relatively high threshold
that leads to the generation of false-negatives.

III. NOTATIONS AND DEFINITIONS
• Ln - the number of levels in the tree.
• N - the size of the sample interval.
• History Tree - the regular traffic distribution tree.
• Attack Tree - the attack traffic distribution tree.
• N-Tree - the N packets traffic distribution tree.
• Abandon Tree is a tree representing the odds that

packets have to be discarded in the next round.
• Network Capacity is a predefined rate that the target

network can handle without a risk to crash.
• Attack Threshold is a predefined fraction of the Net-

work Capacity that once crossed will make SPADE
switch to behaving like under attack.

IV. SPADE DESIGN
A. Data Structures

All tree structures aggregate packets’ statistics using
predefined parameters.

The N-Tree is a tree containing distribution of the
current N packets - where each branch holds a counter of
the number of packets with the branch’s IP destination,
protocol and specific data. When a packet is processed,
it is first added to its branch in the tree (if the branch
does not exist, it is created) and counters along the
whole branch are updated accordingly. This tree profiles
the current traffic and allows us to find anomalies by
comparing it against the other trees.

The History Tree is a weighted average over the N-
Trees with a long tail to ensure stability. The long tail
is used to ensure that long moderate attacks cannot
become part of the normal history - however the length
of the tail is a parameter left to the administrator to
determine according to the threat level it anticipates and
the response time it expects. In our numeric tests at each
round the History Tree is updated as follows:
History Tree = History Tree × 0.95 + N-Tree × 0.05.

The Attack Tree is a weighted average over the N-Trees
during an attack, with short tail as attacks are not neces-
sarily stable. This tree is created when communications
load crosses the predefined Attack Threshold, and while
load remains over the threshold. It is updated instead
of the History Tree. This helps in preventing long and
moderate attacks to be inserted into the history. In our

numeric tests the Attack Tree is updated as follows:
Attack Tree = Attack Tree × 0.5 + N-Tree × 0.5.

The Abandon Tree is constructed differently. The
nodes in the Abandon Tree do not count packets, but
rather the odds of packets to be discarded in the next
round. The Abandon Tree is constructed only when
the load exceeds the Attack Threshold. Packets are
dropped only when the prediction is that at the next
sample the load might exceed the Network Capacity. The
Abandon Tree is constructed by subtracting the normal
traffic profile represented by the History Tree from our
current traffic profile represented by the Attack Tree.
This construction identifies the branches responsible for
the increase in traffic and these branches are assigned
odds accordingly. Experimentally, the Abandon Tree size
quickly stabilizes to hold only branches of real attack,
leading to lower false-positives.

B. Predicting the Rate of Next Sample

Rate prediction is calculated at the end of each sample.
This prediction determines whether the engine should
start constructing the Attack Tree or to continue adding
nodes to the History Tree. The prediction rate is calcu-
lated as follows:
AvgRate = CurrentRoundRate × 0.5 + AvgRate × 0.5

AvgDelta = (CurrentRoundRate-PreviousRoundRate) ×
0.5 + AvgDelta × 0.5.

AvgRate recurrence relation is responsible for predict-
ing the current typical rate with bias towards current
data, while AvgDelta is responsible for predicting the
change based on recent data. This simple mechanism
is powerful over traffic data, since traffic usually has a
large variance. The above approach may not be accurate
at each round, but the average stabilizes after few rounds.
The predicted rate is (1+Margin)×(AvgRate+AvgDelta).
The Margin is a small percentile (1%-5%) that allows
control over how much we regularly overshoot beyond
the Network Capacity. As our engine is probabilistic,
there is a certain chance that, for few seconds, the rate
will exceed the assigned Network Capacity, and this can
be controlled using a larger Margin.

V. THE ALGORITHM

1) The Algorithm Parameters: The simulations con-
structed three levels’ trees:
Level 1 - the destination host IP, or network IP.
Level 2 - the upper layer protocol encapsulated within
the IP packet. This level is less susceptible to overflow
by malicious attacker trying to cause overflow in the tree
data structures. Specific protocols are manually config-
urable with basic defaults, and therefore the maximum
number of nodes in this level is known.

Level 3 - the protocol specific information, which is, for
example, port number for TCP and UDP or operation
code in ICMP. This level can be configured for specific
and non-standard protocols or, in case no protocol spe-
cific information is available, a wildcard can be used.

An additional parameter to determine is N. The value
of N depends on the network’s typical rate.

In our simulation, we run our engine on a small
network with a Network Capacity of 10000 packets
per second so we set N to be 1000. The rate of large
networks can reach 1000000 packets per second, and an
appropriate value of N should be around 100000.

When the network rate exceeds the Attack Threshold,
the engine enters into a defensive mode. In the SPADE
implementation we choose this threshold to be 80% of
the Network Capacity.

Other parameters that can be tuned are the Margin
percentile and thresholds that control the size of the
trees. We use a Margin of 2% which, in turn, makes
sure over 99% of the samples have legal rates; in the
single samples when Network Capacity is breached, it is
by less than 400 packets - well within the capabilities of
a standard buffer.

The last parameter is a threshold that helps the engine
control the size of the History Tree and the Attack Tree.
In both trees, if a node at the first level gets less than 1%
of the traffic that the tree represents, the branch rooted
by this node is pruned and the node is consolidated with
other nodes with the same prefix into one node that
represents the network address. During each sample, if a
consolidated node gets traffic beyond this threshold, the
branches are reconstructed.

2) Non-Attack Mode: As long as rates do not go over
our Attack Threshold, the operation of the algorithm is
very simple - on each packet’s arrival the engine updates
the N-Tree; and at the end of a sample it updates the
History Tree, and predicts the rate for the next sample.

3) Attack Mode: The attack mode starts when the
predicted rate goes over the Attack Threshold. In the
attack mode, the operation of the algorithm is changed
- updating the History Tree is stopped to avoid further
“poisoning” of the history and the Attack Tree starts
getting updated. The N-Tree and the Attack Tree are
updated as in the non-attack mode. In addition, at the
end of each sample, the engine creates the Abandon Tree
by subtracting the Attack Tree from the History Tree. As
long as the predicted traffic rate is between the Attack
Threshold and the Network Capacity, no packet will
be discarded. However once capacity is breached, the
engine uses the Abandon Tree to discard packets biased
towards attack packets. The discarding odds of each node
in the Abandon Tree are calculated using each branch’s

relative weight in the tree. Let’s assume, for example,
that the discarding percentage should be T %, and the tree
holds two branches, one accounts A% of total traffic in
the Abandon Tree and the other B% of it. These branches
correspond to two branches of the N-Tree with weight
a% and b% of the entire round traffic. The first branch
packets will be discarded with odds (T ∗(A/100))/a and
the second with odds (T ∗(B/100))/b. This ensures that
overall we have a discarding percentage of T % with bias
according to the tree’s entries. From now on, on each
packet’s arrival, the algorithm draws a random number
in the range 0−1 and discards the packet if the drawn
number is less than the discarding odds. When a packet
is discarded it is also subtracted from the History Tree
to ensure that, over time, our history will become clean
of attacks from previous rounds.

VI. OPTIMAL IMPLEMENTATION

The main bottleneck that might occur in our engine
are the N-tree lookup, which is performed on arrival of
each packet, and the updates of the History Tree and the
Attack Tree at the end of each sample. Since the engine
has to work at wire speed, software solutions might be
unacceptable. We suggest an alternative implementation.

The optimal implementation is to use a TCAM
(Ternary Content Addressable Memory) [17]. The
TCAM is an advanced memory chip that can store three
values for every bit: zero, one and “don’t care”. The
memory is content addressable; thus, the time required to
find an item is considerably reduced. The RTCAM NIPS
presented in [18] detects signatures-based attacks that
were drawn from Snort [19]. In the RTCAM solution,
the patterns are populated in the TCAM so the engine
detects a pattern match in one TCAM lookup. We can
similarly deploy SPADE’s trees in the TCAM. A TCAM
of size M can be configured to hold bM/wc rows, where
w is the TCAM width. Let |Li| be the length of the
information at level i in the tree, w is taken to be ∑i |Li|.
In our example, the IP address at the first level contains
4 bytes (for IPv4). An additional byte is needed to code
the protocol at the second level. For the port number
at the third level we need another two bytes. Thus, in
our example w = 7. Since the TCAM returns the first
match, it is populated as follows: the first rows hold the
paths for all the leaves in the tree. A row for a leaf at
level i, where i < Ln is appended with “don’t care” signs.
After the rows for the leaves, we add rows for the rest
of the nodes, from the bottom of the tree up to the root.
Each row for a non-leaf node at level l is appended with
“don’t care” signs for the information at each level j,
l < j ≤ n. The last row contains w “don’t care” bytes,
thus indicating that there is no path for the packet and

123.34.55.10,TCP,456

123.34.55.10,TCP,124

123.34.55.10,TCP,876

123.34.55.10,UDP,555

123.34.56.4 , *** , ***

123.34.54.7 , *** , ***

123.34.55.10,TCP, ***

123.34.55.10,UDP, ***

123.34.55.10, *** , ***

******** , *** , ***

root

123.34.56.4 123.34.54.7 123.34.55.10

TCP UDP

124 876456 555

Fig. 1. TCAM Population

providing the default match row. This population is done
for each one of the above trees, the N-tree, the History
Tree and the Attack Tree. Figure 1 presents an example
of a tree structure and the populated TCAM for it. When
a packet arrives, the algorithm extracts the relevant data,
creates a TCAM key and looks for a TCAM match. For
each row in the TCAM we associate a counter and a
pointer to the TCAM row of the parent node. When there
is a TCAM match (except in the last row), the algorithm
updates the counter of the matched row and follows the
pointer to the parent node’s row. The algorithm adds and
removes only leaves. Since leaves can appear at any level
in the tree, and there is no importance to the order of
the rows in the same level, the TCAM is divided into Ln
parts. This way the TCAM can be easily updated while
keeping the right order of the populated rows.

The TCAM can be updated either with a software
engine or with a hardware engine. Using software engine
is much simpler but is practical only when there is a
small number of updates. Figure 2 presents the average
number of TCAM updates for each 1000 packets of
the incoming traffic of the School of Computer Science.
The figure illustrates the creation of the tree. During the
creation of the tree there are many insertions, thus the
number of updates is relatively high.

The total average update rate is 593.82 updates for
1000 packets, more than 99.9995% of the values are
below 1750, with a small number of scenarios when
the engine has to deal with up to 5000 updates. A
typical rate of large networks can be million packets per
second. A software engine will not be able to perform the
updates in time, though a hardware engine can achieve
line speed rates. The available TCAM update speed with
hardware engine is in the range of 3 to 4 nano seconds.
Our findings show that the required performance is well
within the range of the available TCAM update rates.

VII. EXPERIMENTAL RESULTS
The quality of the algorithm is determined by two

factors: scalability and accuracy. In order to analyze

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
7

0

1000

2000

3000

4000

5000

6000

Number of Packets

Nu
mb

er
of

TC
AM

 O
pe

rat
ion

s
TCAM Updates

Fig. 2. TCAM Updates

the performance of the algorithm, a simulation was
implemented and tested on real traffic from our School
of Computer Science.

A. Scalability
Demonstration of scalability requires analyzing the

memory requirement at every stage of execution. We
found that the average size of the History Tree is 290.96
nodes and the average size of the Abandon Tree is 1.52.
The Attack Tree size is similar to the size of the History
Tree. The size of the N-Tree depends on N. In the worse
case scenario, if for each packet the algorithm adds a
complete branch in the tree, i.e. Ln nodes, the size of
the tree will be N× Ln. In our implementation, where
Ln = 3, even for large networks, where N is around 105,
the maximum number of nodes is 300000. Since each
node only holds a counter (2 bytes) and a pointer (4
bytes), the required memory for all trees is below 2 MB,
that can be saved in a TCAM with a reasonable cost.

Another major advantage of the algorithm is that
the tree size increase very slowly with respect to the
the number of flows. This is clearly demonstrated in
Figure 3 (Note that the y axis is a logarithm scale). In
general, for any number of flows the size of the History
Tree is below 1100 nodes. There are few cases where the
size of the tree exceeds 1100 nodes. These cases occur
when the traffic contains attacks as can be seen by the
corresponding Abandon Tree size.

Memory consumption is one of the major limitations
when trying to extract per-flow information. The main
problem with flow measurement approach is lack of
scalability. Memory consumption of previously proposed
algorithms is directly influenced by the number of flows.
In our engine the memory consumption does not grow
linearly with the number of flows, thus the accuracy is
not affected.

B. Accuracy
Accuracy is measured by the false-negative and the

false-positive rates. False-negative is a case in which

0 1 2 3 4 5 6 7 8

x 10
4

10
0

10
1

10
2

10
3

10
4

Number of Sessions

Siz
e (

No
de

s)

The Size of the Trees

Histort Tree
Throw Tree

Fig. 3. Tree Size vs. Number of Flows

the system does not detect a threat and false-positive
is when it drops normal traffic. This section describes
the simulated attacks and presents the accuracy results
on the real traffic from our School of Computer Science.

1) Attacks Generation: We randomly added six types
of bandwidth attacks, attacking random or predefined
hosts in the school network. Normal packet is different
from an attack packet only by a tag that was not used
by the algorithms. The tags were used for the analysis.

1) ICMP flood. An attack where a host is bombarded
by many ICMP echo requests in order to consume
its resources by the need to reply.

2) ICMP reflection. An attack where the attacker
spoofs many echo requests coming from the at-
tacked host, and thus the host is swamped by echo
replies.

3) Smurf. An ICMP reflection attack amplified using
network configuration.

4) DNS Flood. Resembles ICMP flood, but more effi-
cient against DNS servers, as such requests require
more time spent on the server side. This attack
can also be amplified by registering the attacked
machine as DNS for many bogus addresses and
using real world DNS servers as Smurf amplifiers,
both attacks appear identical at the attacked side.

5) Syn Storm. An attack where Syn packets are sent
to a specific port on the attacked host with intent
to overflow the resources of the server side appli-
cation on the attacked port. This type of attack is
most efficient when a FW/IPS blocks some ports as
it targets the same port as the real communication.

6) Rand Syn. An attack where random Syn packets
are sent to ports on the attacked host with intent to
fill the number of open connections it can hold and
leave no free resources for new valid connections.

The tests were executed on 3 different configurations:
Configuration A - one host is attacked with increasing

intensity, trying to mask away the behavior by letting the

algorithm “learn” the flow to make it difficult to detect.
This configuration specifically tests our long tail history
and the Attack Threshold.

Configuration B - several hosts (some random) are
attacked with a combination of attacks, including simul-
taneous attacks on the same host.

Configuration C - many random hosts are attacked
by short and very intense bursts. This configuration
specifically tests how contained are the false-positives
that stem from the time it takes SPADE to stabilize.

2) Results: Figure 4 presents the original traffic rates
compared to the rates of the traffic after inserting attacks
and rates after cleaning. The x axis is the number of
samples (each of size N = 1000), and the y axis is the
average rate over this sample calculated by dividing N
packets by sample time. The graphs are not of the same
length as the original traffic had 1000000 packets (1000
samples), after adding attacks, there are more packets
and therefore more samples. We see that the clean traffic
does not resemble the original. This is expected since our
goal is not to eliminate all attacks‘ traffic but merely to
limit it to the Network Capacity. This ensures that when
a communications spike is over our assigned capacity, we
will make optimal use of the capacity to allow as much
traffic as possible. We note that in the original traffic
itself there are already abnormal points of overflow of
the capacity due to normal packet rate variability.

Table I shows results of 7 tests undergone with each
configuration file, listing the number of normal traffic
packets discarded, number of attack packets discarded
and FP%. The optimal number was calculated by sum-
ming up the overflowing packets at each sample based on
the known capacity to illustrate that SPADE discards ap-
proximately the optimal number. This is important when
our defenses are triggered by natural communication
spikes rather than deliberate attack. The worst results
are for configuration B, which is to be expected as it
is the most challenging and include many simultaneous
attacks, with average FP% of 1.77. Configuration A has
average FP% of 1.49, since one large attack is quickly
characterized and FP% becomes negligible, especially
taking into effect real traffic spikes like noted earlier.
The best results with FP% of 1.04 are for configuration
C, where the large number of attacks implies many in-
stances of learning new attack characteristics, discarding
some normal traffic in the process. The large intensity
of each attack makes sure this effect is minimal.

In Figure 5 we can see the fraction of normal packets
discarded (normal discarded/total discarded) plotted as
y over the samples range (note that y axis is in units
of 0.001). The configuration is A, where the host is
moderately but increasingly attacked from sample 2000

onwards, with a large spike in attack intensity at sample
4300. It is clearly visible that, as the attack continues,
the FP% decreases, and while the spike causes some
false positives, due to our Margin overshoot, we can
see that a lengthy attack causes a decrement in FP%.
Since this attack is moderately ceasing, we see that, at
the end of the attack, the ratio becomes almost constant;
if however the attack was to continue with the same
intensity, this relation would have gone down towards
0. [20] concludes that the bulk of the attacks last from
3 to 20 minutes, meaning about 1800−12000 samples,
giving SPADE enough time to characterize and effectively
block the attack for a significant part of its duration.

Figure 6 shows, in configuration B, the advantages of
SPADE over a solution that discards packets without bias
towards attack packets. The y axis is the total number of
packets discarded, plotted against the number of samples.
The “steps”-like behavior of the graphs is caused by
the different attacks and variations in attack intensities.
Major attacks were injected at samples 2000, 4600, 8000
and 16000, each corresponding to a new step in the
attack graphs. The sections between the steps are not
entirely flat as they are not entirely clean of attacks. An
ongoing background attack with low intensity, like the
one injected at sample 4000, causes a slow but steady
rise. Near the end, where the traffic is completely free
of attacks, we notice a totaly flat line. Attacks with
constant intensity (8000 or 16000) cause a linear like
behavior of discarded attack packets. After a preliminary
learning stage the normal traffic stops being affected,
as clearly illustrated by the long flat sections in SPADE
normal graph. Notice that in the naive normal graph
there is a steady increase. In summary, we can clearly
see that SPADE is a significant improvement over the
naive solution due to better attack characterization. The
conclusion is that better characterization of attacks and
of future traffic can even improve the results of SPADE.

VIII. DISCUSSION AND FUTURE WORK

The engine presented is used to detect DoS/DDoS
attacks. We fully simulated our algorithm and tested it on
real and recent traffic. There are two major advantages of
our algorithm versus previous works. One is the ability
to save detailed information of the attacks whilst using
a limited amount of memory. The second advantage is
the fact that our engine finds all the bandwidth attacks
with a negligible number of false-positives. These two
advantages were achieved by the use of a multitude of
hierarchical data structures and statistical tools.

A future work may target attacks that slow down the
server without significantly affect the utilization of the

Configuration A Configuration B Configuration C
Normal Attack Optimal FP% Normal Attack Optimal FP% Normal Attack Optimal FP%

41 103208 97923 0.039 2065 83996 83361 2.399 807 525145 499691 0.153
724 76131 74358 0.942 417 52577 49661 0.786 2697 373002 376724 0.717
283 90600 91074 0.311 379 73401 67643 0.513 5346 391110 384590 1.348

11718 319077 322240 3.542 85538 2016913 2056761 4.068 24516 1540151 1544661 1.566
45 122591 116255 0.036 326 61765 57467 0.525 678 516434 486710 0.131

43141 829376 866682 4.944 55834 2427916 2448462 2.247 51348 1889554 1947882 2.645
3112 501007 481588 0.617 20198 1046486 924609 1.893 19691 2581519 2576794 0.756

TABLE I
FALSE POSITIVES RATE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7
x 10

4

Ra
te

 (
Pa

ck
et

s
pe

r
Se

co
nd

)

Number of Samples

Rate of Traffic

With Attacks
Clean
Origin

Fig. 4. Packet Rate

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

Fr
ac

tio
n

of
 n

or
m

al
tra

ffic
 th

ro
wn

Number of Samples

Ratio of Thrown Packets

Fig. 5. FP Fraction - Configuration A

incoming link, i.e. requests for long-duration tasks at the
server.

REFERENCES

[1] “Cops smash 100,000 node botnet, 2005,”
http://www.cert.org/advisories/CA-1996-21.html.

[2] Y. Kim, W. Cheong, L. Mooi, C. Chuah, and H. J. Chao,
“Packetscore: Statistics-based overload control against distributed
denial-of-service attacks,” in IEEE Infocom, 2004, pp. 2594–
2604.

[3] Shimrit Tzur-David and Danny Dolev and Tal Anker, “Mu-
lan: Multi-level adaptive network filter,” in SecureComm: 5th
International ICST Conference on Security and Privacy in
Communication Networks, 2009, pp. 71–90.

[4] C. Estan, S. Savage, and G. Varghese, “Automatically infer-
ring patterns of resource consumption in network traffic,” in
SIGCOMM, 2003, pp. 137–148.

[5] Y. Zhang, S. Singh, S. Sen, N. G. Duffield, and C. Lund, “Online
identification of hierarchical heavy hitters: algorithms, evaluation,
and applications,” in Internet Measurement Conference, 2004, pp.
101–114.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

10
x 10

5

Su
m

of
Th

ro
wn

 P
ac

ke
ts

Number of Samples

Number of Thrown Packets

Naive Normal

Naive Attack

SPADE Normal

SPADE Attack

Fig. 6. Overall Discarding of Packets - Conf. B

[6] T. M. Gil and M. Poletto, “Multops: a data-structure for band-
width attack detection,” in Proceedings of 10th Usenix Security
Symposium, 2001, pp. 23–38.

[7] P. E. Ayres, H. Sun, H. J. Chao, and W. C. Lau, “Alpi: A ddos
defense system for high-speed networks,” IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS, vol. 24, no. 10,
pp. 1864–1876, 2006.

[8] N. Brownlee, C. Mills, and G. Ruth, “Traffic flow measurement:
Architecture,” http://www.ietf.org/rfc/rfc2063.txt.

[9] “Cisco netflow,” www.cisco.com/en/US/products/
ps6601/products ios protocol group home.html.

[10] H. Choi, H. Lee, and H. Kim, “Fast detection and visualization of
network attacks on parallel coordinates,” Computers & Security,
2008.

[11] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
traffic anomalies,” in ACM SIGCOMM, 2004, pp. 219–230.

[12] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting,” in Proceedings of the 2001 ACM SIGCOMM
Internet Measurement Workshop, 2002, pp. 75–80.

[13] D. V. Schuehler and J. W. Lockwood, “A modular system
for fpga-based tcp flow processing in high-speed networks,” in
14th International Conference on Field Programmable Logic and
Applications (FPL, 2004, pp. 301–310.

[14] R. R. Kompella, S. Singh, and G. Varghese, “On scalable attack
detection in the network,” in Internet Measurement Conference,
2004, pp. 187–200.

[15] S. S. Kim and A. N. Reddy, “A study of analyzing network traffic
as images in real-time,” in IEEE Infocom, 2005, pp. 2056–2067.

[16] V. Sekar, N. Duffield, O. Spatscheck, J. V. D. Merwe, and
H. Zhang, “Lads: Large-scale automated ddos detection system,”
in Proceedings of USENIX ATC, 2006, pp. 171–184.

[17] I. Arsovski, T. Ch, and A. Sheikholeslami, “A ternary content-
addressable memory (tcam) based on 4t static storage and includ-
ing a current-race sensing scheme,” IEEE Journal of Solid-State
Circuits, vol. 38, no. 1, pp. 155–158, January 2003.

[18] Y. Weinsberg, S. Tzur-david, T. Anker, and D. Dolev, “High
performance string matching algorithm for a network intrusion
prevention system (nips),” in HPSR, 2006, p. 7.

[19] “Snort,” http://www.snort.org/.
[20] D. Moore, G. M. Voelker, and S. Savage, “Inferring internet

denial-of-service activity,” in Proceedings of the 10th Usenix
Security Symposium, 2001, pp. 9–22.

