
On Self-stabilizing Synchronous Actions Despite
Byzantine Attacks?

Danny Dolev?? and Ezra N. Hoch

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel,

{dolev,ezraho}@cs.huji.ac.il

Abstract. Consider a distributed network of n nodes that is connected
to a global source of “beats”. All nodes receive the “beats” simultane-
ously, and operate in lock-step. A scheme that produces a “pulse” every
Cycle beats is shown. That is, the nodes agree on “special beats”, which
are spaced Cycle beats apart. Given such a scheme, a clock synchroniza-
tion algorithm is built. The “pulsing” scheme is self-stabilized despite any
transient faults and the continuous presence of up to f < n

3
Byzantine

nodes. Therefore, the clock synchronization built on top of the “pulse” is
highly fault tolerant. In addition, a highly fault tolerant general stabilizer
algorithm is constructed on top of the “pulse” mechanism.
Previous clock synchronization solutions, operating in the exact same
model as this one, either support f < n

4
and converge in linear time,

or support f < n
3

and have exponential convergence time that also
depends on the value of max-clock (the clock wrap around value). The
proposed scheme combines the best of both worlds: it converges in linear
time that is independent of max-clock and is tolerant to up to f < n

3

Byzantine nodes. Moreover, considering problems in a self-stabilizing,
Byzantine tolerant environment that require nodes to know the global
state (clock synchronization, token circulation, agreement, etc.), the work
presented here is the first protocol to operate in a network that is not
fully connected.

1 Introduction

Most distributed tasks require some sort of synchronization. Clock synchroniza-
tion is a very basic and intuitive tool for supplying this. pulse synchronization
can be used as an underlying building block to achieve clock synchronization, as
well as solving other synchronization problems; in a sense, pulse synchronization
is a more fundamental synchronization problem.

It thus makes sense to require an underlying pulse synchronization mech-
anism to be highly fault-tolerant. This paper presents a pulse synchroniza-
tion algorithm that is self-stabilizing and is tolerant to permanent presence of
? A pre-copy of the paper appearing in Disc, Sept. 2007.
?? Part of the work was done while the author visited Cornell university. The work was

funded in part by ISF, ISOC, NSF, CCR, and AFOSR.



2 Danny Dolev and Ezra N. Hoch

Byzantine faults. That is, it attains synchronization, once lost, while containing
the influence of the permanent presence of faulty nodes.

Consider a system in which the nodes execute in lock-step by regularly re-
ceiving a common “pulse” or “tick” or “beat”. The objective is to agree on some
“special beats” that are Cycle beats apart. We will use the “beat” notation for
the “global” signal received, and “pulse” for the “special beats” agreed upon.

The pulse synchronization problem is to ensure that eventually all correct
nodes pulse together, and as long as enough nodes remain correct, they continue
to pulse together, Cycle beats apart. For example, given Cycle = 7 we would
like all correct nodes, that may start at arbitrary initial states, to eventually
pulse together every 7 beats, and continue so as long as there are enough correct
nodes.

The global beat system provides some measure of synchronization. For ex-
ample, given a global beat system with beat interval at least as long as the
worst-case execution-time for terminating Byzantine agreement, the pulse syn-
chronization problem is solved by initiating a Byzantine agreement on the next
time when the nodes should pulse, each time a beat is received. The crux of the
problem is to achieve synchronization when it is not given by the global beat
system; that is, when the beat interval length is in the order of the commu-
nication’s end-to-end delay. Since in that scenario the global beat system does
not provide - by itself - enough synchronization, and a more complex algorithm
is required to exert the required synchronization. The main contribution of the
current paper is achieving exactly that.

Related Work: pulseing has been used as an underlying fault tolerant
mechanism in clock synchronization, token circulation and to create a general
stabilizer (see [4] for an overview). All of these algorithms are self-stabilizing
and Byzantine tolerant, due to the fault tolerant nature of the underlying pulse
mechanism. This gives the motivation for producing robust and efficient pulseing
algorithms, as they can be used to improve the robustness of a variety of appli-
cations.

Clock synchronization is one of the first problems that was solved in a self-
stabilizing and Byzantine tolerant fashion. In [9] and [12] it was solved directly,
and in [4] it was solved using an underlying pulseing algorithm. [9] was the first
work to discuss the exact same model as presented here, as opposed to [4], which
operates without a global beat system.

Synchronization of clocks of integer values was previously termed digital clock
synchronization ([2,7,8,16]) or “synchronization of phase-clocks” ([11]). However,
in this paper we concentrate on the pulseing mechanism, as it yields clock
synchronization as well as other fault tolerant protocols.

Several fault tolerant stabilizers exist (see [1], [10] and [13]) with varying
requirement and features (such as local containment of faults). In [3], it was
shown that pulse synchronization can be used to create a generalized stabilizer.
However, in [3] the stabilizer is complex, and can stabilize a narrow class of
algorithms. In Section 9 we show a simpler stabilizer, which can stabilize a
wider range of algorithms.



On Self-stabilizing Synchronous Actions Despite Byzantine Attacks 3

Some of the previous results combining Byzantine faults and self-stabilization
consider a class of problems in which the state of each correct node is determined
locally. Usually such solutions can operate in a general graph (see [17], [15]
and [14]) without the need to aggregate or accumulate information across the
network. In the class of problems in which the state of each correct node is
correlated with the state of the other correct nodes, the current paper is the
first paper to present a solution that operates in a network that is not fully
connected.

Contributions: We construct a self stabilizing pulseing algorithm, that is
tolerant to up to f < n

3 Byzantine nodes, and converges in linear time, for any
target interval of pulsing.

As will be shown in Section 8, clock synchronization and pulse synchro-
nization are equivalent. Hence, this work is compared to the state of the art of
previous clock synchronization results that operate in the exact same model.

Previous results have either linear convergence time with f < n
4 (see [12])

or exponential convergence time with f < n
3 (see [9]). In this paper we obtain a

linear convergence time with f < n
3 . Moreover, our convergence time is indepen-

dent of the max-clock value (the clock wrap around value) of the digital clock,
in contrast to [9].

In addition, our algorithm is the first one in this model and for this type of
problems that does not require each node to be connected to every other node,
it only requires that there are 2 · f + 1 distinct routes between any two correct
nodes, matching the lower bound of [5].

2 Model and Definitions

Consider a fully connected network of n nodes (we later generalize the results to
a more general network). All the nodes are assumed to have access to a “global
beat system” that provides “beats” with regular intervals. The communication
network and all the nodes may be subject to severe transient failures, which
might leave the system in an arbitrary state.

We say that a node is Byzantine if it does not follow the instructed algorithm
and non-Byzantine otherwise. Thus, any node whose failure does not allow it
to exactly follow the algorithm as instructed is considered Byzantine, even if
it does not behave fully maliciously. A non-Byzantine node will be called non-
faulty. In the following discussion f will denote the upper bound on the number
of Byzantine nodes.1 The presented solution supports f < n

3 .

Definition 1. The system is coherent if there are at most f Byzantine nodes,
and each message sent at a beat to a non-faulty destination arrives and is pro-
cessed at its destination before the next beat.

Nodes are instructed to send their messages immediately after the occurrence
of a beat from the global beat system. Therefore, when the system is coherent
1 In the literature the term ”permanent” Byzantine node is sometimes used.



4 Danny Dolev and Ezra N. Hoch

message delivery and the processing involved can be completed between two
consecutive global beats, by any node that is non-faulty. More specifically, the
time required for message delivery and message processing is called a round, and
we assume that the time interval between global beats is greater than and in
the order of such a round. Due to transient faults, different nodes might not
agree on the current beat/round number. We will use the notion of an external
beat number r, which the nodes are not aware of, but will simplify the proofs’
presentation and discussion.

At times of transient failures there can be any number of concurrent Byzantine
faulty nodes; the turnover rate between faulty and non-faulty behavior of nodes
can be arbitrarily large and the communication network may also behave ar-
bitrarily. Eventually the system behaves coherently again. At such case a non-
faulty node may still find itself in an arbitrary state. Since a non-faulty node
may find itself in an arbitrary state, there should be some time of continues
non-faulty operation before it can be considered correct.

Definition 2. A non-faulty node is considered correct only if it remains non-
faulty for ∆node rounds during which the system is coherent.2

The algorithm parameters n, f, as well as the node’s id are fixed constants and
thus are considered part of the incorruptible correct code at the node. Thus, it is
assumed that non-faulty nodes do not hold arbitrary values of these constants.

2.1 The pulseing Problem

We say that a system is [φ, ψ]-pulsing if all correct nodes pulse together in the
following pattern: φ consecutive beats of pulses followed by ψ consecutive beats
of non-pulse. That is, the system has a Cycle of length φ+ψ beats, out of which
only the first φ beats are pulses. More formally, denote by pulsedp(r) = True
if p pulsed on beat r and pulsedp(r) = False, otherwise.

Definition 3. A system is [φ, ψ]-pulsing in the beat interval [r1, r2] if there
exists some 0 ≤ k < φ+ψ, such that for every correct node p, and for every beat
r ∈ [r1, r2], it holds that:

1. pulsedp(r) = True, in case 0 ≤ r − k (mod φ+ ψ) < φ; and
2. pulsedp(r) = False in case φ ≤ r − k (mod φ+ ψ) < φ+ ψ.

(k denotes the offset, from r1, of the first pulse in the pattern.)

For example, consider “1” to represent a beat in which all correct nodes
pulse, and “0” a beat in which all correct nodes do not pulse. Using this
notation, the following is a pulseing pattern of a [φ, ψ]-pulsing system.

[. . . ,

φ beats︷ ︸︸ ︷
1, 1, . . . , 1,

ψ beats︷ ︸︸ ︷
0, 0, . . . , 0︸ ︷︷ ︸

Cycle beats

,

φ beats︷ ︸︸ ︷
1, 1, . . . , 1,

ψ beats︷ ︸︸ ︷
0, 0, . . . , 0︸ ︷︷ ︸

Cycle beats

, . . .]

2 The assumed bound on the value of ∆node is defined in Remark 3.



On Self-stabilizing Synchronous Actions Despite Byzantine Attacks 5

Definition 4. The pulseing problem:
Convergence: Starting from an arbitrary state, the system becomes [φ, ψ]-pulsing
after a finite number of beats.
Closure: If the system is [φ, ψ]-pulsing in the beat interval [r1, r2] it is also
[φ, ψ]-pulsing in the interval [r1, r2 + 1].

Definition 5. a [φ, ψ]-pulser is an algorithm A, such that once the system is
coherent (and stays so), it solves the pulseing problem.

The objective is to develop an algorithm that pulses only once every Cycle.

Notation: We denote a [1, ψ]-pulser as [ψ + 1]-pulser.

Using the previously used notation of “1” for pulseing and “0” for non-
pulseing, a [Cycle]-pulser looks as follows:

[. . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸
Cycle beats

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
Cycle beats

, . . .]

The goal is to build a [Cycle]-pulser for any Cycle > 0. That is, a self-
stabilizing, Byzantine tolerant algorithm that eventually pulses every Cycle
beats. The following section outlines the solution.

3 Constructing a [Cycle]-pulser

In contrast to previous solutions that were very involved, the new solution pre-
sented below is more modular. Addressing the problem in a modular way en-
abled us to unwrap the difficulties in solving the problem, and to come up with
a tight solution. Its modularity also enables to simplify the proof of correct-
ness and to better present the intuition behind it. The core of the protocol is
the Large-Cycle-Pulser algorithm that produces a [∆,∆+Cycle′]-pulser. This
module uses another module called BBB to limit the ability of the Byzantine
nodes to disrupt the protocol. To obtain the complete solution the core protocol
is wrapped with two additional modules, as detailed below.

We first show how to construct a [∆,∆+Cycle′]-pulser A for any Cycle′ >
∆, where ∆ is a bound on running a given distributed agreement protocol. We
continue by showing how to construct a [φ+ψ]-pulser from any [φ, ψ]-pulser.
Using this, we construct a [2 ·∆+Cycle′]-pulser A′ for any Cycle′ > ∆. Lastly,
using A′, we construct a [Cycle]-pulser for any Cycle ≥ 1.

Remark 1. Note that [φ+ψ]-pulser is actually [1, φ+ψ−1]-pulser, and hence
a [φ, ψ]-pulser (pulses for φ beats then it is quiet for ψ beats) is transformed
into a [1, φ+ ψ − 1]-pulser (pulses once, then it is quiet for φ+ ψ − 1 beats).

The construction of A uses a building block that is essentially a Byzantine
consensus. We denote this building block by BBB (Byzantine Black Box).



6 Danny Dolev and Ezra N. Hoch

3.1 The Byzantine Black Box Construction

BBB is defined to be a round based distributed protocol, such that each node p
has a binary input value vp and a binary output value Vp. BBB has the following
properties:

1. Termination: The algorithm terminates within ∆ rounds.
2. Agreement : All non-faulty3 nodes agree on the same output value V. That

is, for any two non-faulty nodes p, p′ it holds that Vp = Vp′ = V.
3. Validity : If n− f non-faulty nodes have the same input value ν then that is

the output value, V = ν.

BBB is required to be Byzantine tolerant, but is not required to be self-
stabilizing. The self-stabilization of the [φ+ ψ]-pulser A (presented later) will
not be hampered by this.4 In addition, A will rely only on the properties of
BBB (when it is executed by enough correct nodes) for its operation. In A all
messages exchanged among the nodes will use BBB. Since the presented BBB
can tolerate f < n

3 faulty nodes, A can tolerate the same failure ratio.

Remark 2. BBB can be implemented via any algorithm that solves the Byzantine
consensus problem; the only difference lies in the “validity” condition, where
instead of limiting the validity to the case that “all correct nodes” start with
the same initial value, BBB limits the validity condition to having only n − f
non-faulty nodes with the same initial value, even if there happen to be more
non-faulty nodes at that instance.

Remark 3. A non-faulty node that has recently recovered from a transient failure
cannot immediately be considered correct. In the context of this paper, a non-
faulty node is considered correct once it remains non-faulty for at least ∆node =
∆+ 1, and as long as it continues to be non-faulty.

3.2 A [∆,∆+ Cycle′]-pulser

Figure 1 presents an algorithm that produces a [∆,∆ + Cycle′]-pulser, for
Cycle′ > ∆. This algorithm executes ∆ simultaneous BBB protocols. Consider
BBBi as a “pointer” to a BBB instance, hence the statement

BBB2 := BBB1;BBB1 := new BBB(“1”);

means that BBB2 will contain the previous instance of BBB1, and BBB1 will
contain a new instance of BBB initialized with the input value 1. The output
value of BBBi is V(BBBi).
3 in the context of BBB, a node is considered non-faulty only if it is non-faulty through-

out the whole execution of BBB.
4 BBB is initiated, executed and terminated repeatedly; each instance starts with a

“clean slate”, thus not harming the self-stability of the algorithm that uses it.



On Self-stabilizing Synchronous Actions Despite Byzantine Attacks 7

Algorithm Large-Cycle-Pulser /* executed repeatedly at each beat */

1. for each i ∈ {1, .., ∆} do
execute the ith round of the BBBi protocol;

2. (a) if Counter > 0 then
Counter := min{Counter − 1, Cycle′};
WantToPulse := 0;

(b) else
WantToPulse := 1;

3. if V(BBB∆) = 1 then
(a) do pulse;
(b) Counter := Cycle′;

4. for each i ∈ {2, ..., ∆} do
BBBi := BBBi−1;

5. initialize a new instance of BBB, BBB1 = BBB(WantToPulse).

Fig. 1. A [∆,∆+ Cycle′]-pulser algorithm for Cycle′ > ∆.

4 Proof of Large-Cycle-Pulser’s correctness

All the lemmata, theorems, corollaries and definitions hold only as long as the
system is coherent. We assume that nodes may start in an arbitrary state, and
nodes may fail and recover, but from some time on, at any round there are at
least n− f correct nodes.

Let G denote a group of non-Byzantine nodes that behave according to the
algorithm, and that are not subject to (for some pre-specified number of rounds)
any new transient failures. We will prove that if |G| ≥ n − f and all of these
nodes remain non-faulty for a long enough period of time (Ω(∆) global beats),
then the system will converge.

For simplifying the notations, the proofs refer to some “external” beat num-
ber. The nodes do not maintain it and have no access to it; it is only used for
the proofs’ clarity.

Definition 6. A group G is Correct(α, β) if |G| ≥ n−f , and every node p ∈ G
is correct during the beat interval [α, β]. Let δ mark the length of the interval,
that is δ = β − α+ 1.

Note that each node p ∈ G, when G is Correct(α, β), has not been subject
to a transient failure in the beat interval [α−∆node, β]; and is non-faulty during
that interval.

Definition 7. We say that a system is Correct(α, β) if there exists a set G
such that G is Correct(α, β).

In the following lemmata, G refers to any set implied by Correct(α, β),
without stating so specifically. The proofs hold for any such set G.

Note that if the system is coherent, and there has not been a transient failure
for at least ∆+ 1 beats, then, by definition, G contains all nodes that were non-
faulty during that period.



8 Danny Dolev and Ezra N. Hoch

Lemma 1. ∀β ≥ α: If the system is Correct(α, β) then at any beat r ∈ [α, β],
either all nodes in G pulse or they all do not pulse.

Proof. A node pulses only in Line 3.a, which is executed only when the value
of V(BBB∆) = 1. All nodes in G have not been subject to transient failures
in the ∆node = ∆ + 1 beats preceding r. Therefore, BBB∆ has been initialized
properly ∆ beats ago, and during the ∆ rounds of BBB∆’s execution, it has
been executed properly by at least n− f nodes. Hence, according to Agreement
of BBB, all nodes in G have the same value of V(BBB∆). Therefore, all nodes in
G “act the same” when considering Line 3.a: either all of them execute Line 3.a
or they all do not execute it. This holds for any beat after α (as long as G
continues to contain n−f correct nodes). Therefore, at any such beat r ∈ [α, β],
either all nodes in G pulse or they all do not pulse. ut

Lemma 2. ∀β ≥ α+∆+Cycle′: If the system is Correct(α, β), then at some
beat r ∈ [α, β] all nodes in G pulse.

Proof. According to the previous lemma, all nodes in G pulse together during
the interval [α, β]. Hence, if one of them pulsed in the interval [α, α + Cycle′],
all of them pulsed, proving the claim.

Otherwise, consider the case where no node in G has pulsed in the interval
[α, α + Cycle′]. Hence, at beat α + Cycle′, for all the nodes in G, the Counter
variable has decreased to 0 or is negative. This is because Counter is bounded
from above by Cycle′ (which is a fixed parameter of the protocol and is identical
at all nodes); and as long as it holds a positive value, it decreases by 1 during
each beat of the interval [α, α + Cycle′] (since no node pulses in that interval,
Counter never increases). Since the interval is at least Cycle′ beats long, the
value of Counter is less than (or equal to) 0.

Therefore, at beat α + Cycle′ there are |G| ≥ n − f correct nodes with
WantToPulse = 1. Therefore, according to Validity of BBB, ∆ beats afterwards
V(BBB∆) will output 1, and all nodes in G will pulse. Thus, in the interval
[α, α+∆+Cycle′] all nodes in G pulse. Therefore, the claim holds for any beat
interval [α, β], where β ≥ α+∆+ Cycle′]. ut

Remark 4. The above lemma proves progress. That is, starting from any state,
eventually there will be a pulse.

Consider a system that is Correct(α, β) (for β ≥ α + ∆ + Cycle′), from
Lemma 1, starting from beat α all nodes in G pulse together. From Lemma 2,
by beat α + ∆ + Cycle′ all nodes in G have pulsed. Therefore, by that round
they have all reset their Counter values at the same beat. Since WantToPulse
depends solely on the value of Counter, and since all nodes in G agree on the
output value of the BBB protocols, all nodes in G perform exactly the same lines
of code following each beat in the beat interval [α+∆+ Cycle′, β].

Lemma 3. ∀β ≥ α+3 ·∆+2 ·Cycle′: If the system is Correct(α, β), then the
system is [∆,∆+Cycle′]-pulsing in the beat interval [α+ 3 ·∆+ 2 ·Cycle′, β].



On Self-stabilizing Synchronous Actions Despite Byzantine Attacks 9

Proof. According to previous lemmas, all correct nodes pulse at some beat γ,
no later than beat α + ∆ + Cycle′; and from then on they all pulse together.
At beat γ they all reset their counters and will have positive Counter values for
at least Cycle′ rounds. Since Cycle′ > ∆, in the following ∆ beats, the value of
WantToPulse will be 0, and hence BBB1 is initialized during these beats with
the value 0. Therefore, once these values will emerge from BBB, there will be
a period of Cycle′ > ∆ with no pulses. That “quiet” period will start at beat
γ+∆. This quiet period might be longer than Cycle′, if there were other pulses
during the beat interval [γ, γ+∆]. In any case, a quiet period will commence at
beat γ+∆ and will be at least Cycle′ beats long, and no more than Cycle′+∆
beats long.

Now consider what happens after this quiet period. Eventually, the value
of WantToPulse will be set to 1 (after no more than Cycle′ + ∆ beats), and
will stay so until the next pulse. Mark the beat at which all nodes in G set
WantToPulse to 1 as γ′. Notice that because the quiet period is greater than
∆, then once its values start emerging of BBB∆ there will be a quiet period for
at least ∆ beats. Hence, once WantToPulse is set to 1, it will stay that way for
∆ beats, until 1 comes out of BBB∆. This will happen at beat γ′+∆. Once this
happens, there are ∆ 1’s “on the way” in the coming BBBs. Therefore, there
will be a pulse for ∆ beats. Due to the first pulse, WantToPulse will be 0 for
all the ∆ pulse beats. After the last pulse beat, WantToPulse will be 0 for an
additional Cycle′ beats. Afterwards, WantToPulse will turn to 1, and will stay
so for ∆ beats. Thus there is a pattern of WantToPulse being 0 for ∆+Cycle′

beats then being 1 for ∆ beats, and so on. Therefore, the pulseing pattern will
satisfy the requirement.

Note that the pulseing pattern starts on beat γ′+∆, and the pattern contin-
ues (at least) until beat β. Hence, the system is [∆,∆+Cycle′]-pulsing in the
beat interval [γ′+∆,β]. Because γ′ ≤ γ+Cycle′+∆ and since γ ≤ α+∆+Cycle′,
we conclude that γ′ +∆ ≤ α+ 3 ·∆+ 2 · Cycle′, as required. ut

Remark 5. The above lemma shows that the convergence time of the pulseing
algorithm depends on the value of Cycle. However, since for clock synchro-
nization the value of Cycle is in the order of ∆, the convergence of the clock
synchronization will depend on ∆ and not on the value of max-clock (the wrap
around value of the digital clock).

The following theorem states that we have constructed a [∆,∆ + Cycle′]-
pulser.

Theorem 1. The Large-Cycle-Pulser algorithm is a [∆,∆+ Cycle′]-pulser.

Proof. By Lemma 3, once there are enough nodes that have not been subject to
transient failures for 3 ·∆+2 ·Cycle′ beats, the system becomes [∆,∆+Cycle′]-
pulsing for the beat interval [γ′ + ∆,β] . This is true for any β ≥ α + 3 ·
∆ + 2 · Cycle′. Hence, as long as the system is coherent, once the system is
[∆,∆+Cycle′]-pulsing in the beat interval [γ′+∆,β], it is also [∆,∆+Cycle′]-
pulsing in the beat interval [γ′ + ∆,β + 1]; and therefore Large-Cycle-Pulser
algorithm is a [∆,∆+ Cycle′]-pulser. ut



10 Danny Dolev and Ezra N. Hoch

5 A [Cycle]-pulser for Cycle > 0

In the previous section a [∆,∆ + Cycle′]-pulser was presented, for any value
of Cycle′ > ∆. Now a general way to transform a [φ, ψ]-pulser into a [φ+ ψ]-
pulser is given. Combining this with the previous result produces a [2 · ∆ +
Cycle′]-pulser. Since Cycle′ > ∆, this technique constructs a [Cycle]-pulser,
for any Cycle > 3 ·∆. In Subsection 5.2 this requirement is eliminated, and the
objective of building [Cycle]-pulser is achieved for any Cycle > 0.

5.1 [φ, ψ]-pulser to [φ+ ψ]-pulser

Given a [φ, ψ]-pulser A, the algorithm B in Figure 2 uses A as a black-box:

Algorithm [φ+ ψ]-pulser /* executed repeatedly at each beat */

1. execute a single round of A;
2. if A pulsed at the current beat and A did not pulse at the previous beat,

then B pulses at the current beat.

Fig. 2. An algorithm that transforms a [φ, ψ]-pulser into a [φ+ ψ]-pulser.

Note that the above algorithm B does not rely on anything other than the
output of A in the current and previous beats. Hence, if A is self-stabilizing, so
is B.

Theorem 2. The algorithm B is a [φ+ ψ]-pulser.

Proof. A is a [φ, ψ]-pulser, hence, it pulses in a pattern of φ pulses, then ψ
quiet rounds. Therefore, once every φ + ψ beats, there is a transition from not
pulseing to pulseing. Thus, the pulseing output of A, implies that exactly
once every φ+ψ beats it holds that A pulsed at the current beat, and did not
pulse at the previous beat. This is continuously true (as long as A continues to
pulse), which implies that the proposed algorithm B will pulse exactly once
every φ + ψ beats, in a pattern of a single pulse, and then φ + ψ − 1 beats of
quiet rounds.

Since A is a [φ, ψ]-pulser, starting from an arbitrary state, it eventually
starts pulseing in the required pattern, and continues so as long as the system
is coherent. Hence, the above algorithm B will eventually start pulseing in the
expected pattern, and will continue so as long as the system is coherent. Hence
it is a [φ+ ψ]-pulser. ut

5.2 Case Cycle ≤ 3 ·∆

Building upon the [2 · ∆ + Cycle′]-pulser, B, from the previous subsection, a
[Cycle]-pulser, C, for any Cycle ≤ 3 ·∆ is presented in Figure 3.



On Self-stabilizing Synchronous Actions Despite Byzantine Attacks 11

Algorithm [Cycle ≤ 3 ·∆]-pulser /* executed repeatedly at each beat */

/* set Cycle′ > ∆ to be such that Cycle′ + 2 ·∆ is divisible by Cycle */

1. execute B;
2. if B pulsed at the current beat then

Counter := Cycle′ + 2 ·∆;
3. if Counter is divisible by Cycle then
C pulses at the current beat;

4. Counter := Counter − 1.

Fig. 3. A [Cycle]-pulser algorithm for 1 ≤ Cycle ≤ 3 ·∆.

Theorem 3. The algorithm C is a [Cycle]-pulser for any 1 ≤ Cycle ≤ 3 ·∆.

Proof. Since B is a [Cycle′ + 2 · ∆]-pulser, starting from an arbitrary state,
eventually it starts pulseing in a pattern of a single pulse, and then Cycle′ +
2·∆−1 beats of quiet rounds (and continues so as long as the system is coherent).
Therefore, eventually, all correct nodes will see the same pulseing output from
B. Hence, each time B pulses, all correct nodes set Counter to Cycle′+2 ·∆, and
have the same value of Counter at each beat (because they all set it together, and
decrease it together). Thus, each time a correct node enters Line 3, all correct
nodes do the same. Therefore, all correct nodes have C pulse together. Lastly,
since each Cycle beats Counter will be divisible by Cycle, C pulses once every
Cycle beats.

Therefore, for each pulse of B we have 2·∆+Cycle′

Cycle pulses of C. Due to the
choice of Cycle′ such that 2 · ∆ + Cycle′ is divisible by Cycle, the pulses are
nicely aligned with the pulses of B; and therefore, the above algorithm C is a
[Cycle]-pulser. ut

Theorem 4. For any Cycle > 0, a [Cycle]-pulser can be constructed.

Proof. If Cycle > 3·∆, then set Cycle′ := Cycle−2·∆. By Theorem 1, construct
a [∆,∆+Cycle′]-pulser and by Theorem 2 construct a [2 ·∆+Cycle′]-pulser.
According to the choice of Cycle′ the required [Cycle]-pulser is constructed.

If Cycle ≤ 3 · ∆, calculate Cycle′ such that Cycle′ > ∆ and 2·∆+Cycle′

Cycle is
an integer number. Now, by Theorem 1 build a [∆,∆ + Cycle′]-pulser. From
Theorem 2 construct a [2·∆+Cycle′]-pulser. Finally, from the above algorithm
construct an algorithm that is a [Cycle]-pulser, as required. ut

6 Network Connectivity

The above discussion did not assume anything about the network connectivity.
More precisely, the only connectivity assumption was about the behavior of the
BBB protocol. That is, whatever connectivity BBB requires to operate properly,
is the required connectivity in order for the [Cycle]-pulser construction to work
properly.



12 Danny Dolev and Ezra N. Hoch

In [5] it is shown that Byzantine agreement is achievable if and only if:

1. f is less than one-third of the total number of nodes in the system.
2. f is less than one-half of the connectivity of the system (that is, between

any two nodes there are at least 2 · f + 1 distinct paths).

These lower bounds clearly hold for Byzantine consensus. Therefore, since
BBB is implemented by executing Byzantine Consensus for each node’s input
value, BBB can be tolerant to up to n−1

3 Byzantine faults. In addition BBB can
work properly even if the connectivity graph is not fully connected, but rather
there are at least 2 · f + 1 distinct paths between any two non-faulty nodes.

Remark 6. As noted in [5], the nodes are required to know the connectivity
graph while executing the algorithm. This implies, due to self-stabilization, that
each node has the network connectivity as incorruptible data.5

Since the pulseing algorithm presented in this paper depends solely on BBB
for communication with other nodes, it is tolerant up to n−1

3 Byzantine faults
and can operate in a network where there are at least 2 · f + 1 distinct paths
between any two nodes, and it is optimal with respect to these two parameters.

Previous synchronization algorithms do not easily extend to operate in a
network that is not fully connected. This is a result of the dependency of their
“current state” on messages received in the “current round”; in a network that
is not fully connected, such messages are received D rounds later, where D is
the diameter of the network.

For example, in [12], the DigiClock value depends on the values sent in the
current round. Therefore, if the network is not fully connected, node p does not
receive messages from node p′ that is not his neighbor, in the same round. Hence,
p cannot change its current state according to the algorithm’s definition. This
does not mean that previous algorithms cannot be transformed to operate in
such a setting, just that it is not straightforward.

7 Complexity Analysis

Using pulseing for clock synchronization leads using a Cycle that is in the
order of ∆. Hence, the pulseing algorithm presented in the previous sections
converges in O(∆) beats. If the system is fully connected, then ∆ = 2f + 3,
because efficient implementations of Byzantine consensus require about 2f + 3
rounds. Therefore, convergence is reached in O(f) beats.

If the system is not fully connected, as discussed in the previous section, and
the diameter is D, then ∆ = D · 2 · (f + 1). Therefore, convergence is reached in
O(D · f) beats.

5 One can somewhat relax this assumption, but then either a flooding algorithm needs
to be used, or one needs to come up with an algorithm that finds enough independent
paths on the fly - despite the Byzantine behavior; we are not aware of any self-
stabilizing algorithm to do that.



On Self-stabilizing Synchronous Actions Despite Byzantine Attacks 13

Considering message complexity, at each beat ∆ BBBs are executed simulta-
neously. Since BBB can be implemented via Byzantine consensus (see Remark 2),
it requires n2 messages at each beat. Hence we have that the message complexity
at each beat is O(f ·n2). Note that one can use early stopping agreements. Such
agreements will use less messages, if the number of faults is small, but will still
take the same worse case time.

8 The Digital Clock Synchronization Problem

In the digital clock synchronization problem, each node has a variableDigiClock,
and the objective is to have all correct nodes agree on the value of DigiClock
and increase it by one at each beat. A more detailed discussion of this problem
(along with a solution) is given in [12].

The digital clock synchronization problem is equivalent to the pulseing prob-
lem. Given an algorithm that solves the digital clock synchronization problem,
simply pulse every time the DigiClock variable is divisible by Cycle. This pro-
duces a [Cycle]-pulser algorithm.

The other direction is a bit more complicated. Given a [f + 2]-pulser al-
gorithm, every pulse execute a Byzantine agreement on what the DigiClock
value will be in the next pulse. In addition, each beat DigiClock is increased
by 1, and when the Byzantine agreement terminates, the DigiClock is set to
the agreement value (similar to [6]). This way, all nodes agree on the value of
DigiClock and increase it by one at each beat.

Note that the digital clock synchronization problem has been solved directly
in [12] for f < n

4 and assuming a fully connected graph. Due to the equivalence
to the pulseing problem, a digital clock synchronization algorithm can be built
with an underlying pulseing algorithm presented in this paper, which supports
f < n

3 and assumes only that there are 2 · f + 1 distinct paths between any two
nodes. That produces a digital clock synchronization algorithm that is optimal
in these two aspects.

9 Byzantine Tolerant Stabilizer

We now present briefly how a stabilizer can be built using the pulseing algorithm
provided in the above sections. The stabilizer will stabilize a Byzantine tolerant
algorithm A0. That is, given a Byzantine tolerant algorithm A0 that is not self-
stabilizing, the stabilizer will transform it into a self stabilizing version of A0

(preserving the Byzantine tolerance).
Clearly, not all algorithms can be viewed as self-stabilizing. E.g. an algorithm

that is allowed to do some action Act only once, cannot be a self-stabilizing
algorithm. We do not discuss here the requirements of an algorithm A0 so that
it can be stabilized. For a more in depth discussion of such requirements, refer
to [10] and [13]. In the following, it is assumed that the Byzantine tolerant
algorithm A0 has a meaning as a self-stabilizing algorithm.



14 Danny Dolev and Ezra N. Hoch

Intuitively, every so often, all nodes will collect a global snapshot S of the
local states of all nodes. Then, all nodes inspect S for any inconsistencies. If any
are found, all nodes reset their local state to some consistent state.

Given a general Byzantine tolerant algorithm A0, we construct an algorithm
Byz-State-Check. Byz-State-Check gathers a global snapshot of the local states
at each node and ensures that the local states are consistent. In addition if the
states were consistent to start with, then Byz-State-Check does not alter them.
That is, Byz-State-Check alters the local states to a consistent state, only if
required. Figure 4 presents the algorithm Byz-State-Check.

Algorithm Byz-State-Check /* executed at node p*/

1. execute a Byzantine agreement on local state of A0;
2. ∆agree beats after the the beginning of the execution of line 1:

(a) if S represents a legal state
repair local state if it is inconsistent with S;

(b) otherwise
reset local state.

Fig. 4. A Byzantine tolerant state validation and reset.

Remark 7. ∆agree is an upper bound on the number of rounds it takes to execute
Byzantine agreement (2f + 3 for a typical efficient implementation). Since all
correct nodes wait ∆agree beats from entering line 1 until entering line 2, it is
ensured that all correct nodes enter line 2 after they see the same global snapshot
S.

Given a general Byzantine tolerant algorithmA0, a [∆agree+1]-pulser P and
a Byz-State-Check algorithm C, the algorithm SS-Byz-Stabilizer is constructed,
as in Figure 5.

Algorithm SS-Byz-Stabilizer /* executed at each beat */
/* A0 is the algorithm to be stabilized */
/* C is an instance of Byz-State-Check*/

/* P is a [∆agree + 1]-pulser */

1. execute a single round of A0;
2. execute a single round of C;
3. execute a single beat of P;
4. if P pulsed this beat re-initialize C.

Fig. 5. A Self-stabilizing Byzantine tolerant Stabilizer.

Theorem 5. SS-Byz-Stabilizer transforms a Byzantine tolerant algorithm A0

into Self-stabilizing Byzantine tolerant algorithm.

Proof. P is a [∆agree+1]-pulser. Hence, eventually it starts pulseing ∆agree+1
beats apart. When this happens, C is re-executed periodically, and terminates
between such 2 executions . Hence, C performs correctly. This means that the
local states of A0 will be consistent. And we have that starting from any initial
state of A0’s local states, eventually A0’s local states are consistent. ut



On Self-stabilizing Synchronous Actions Despite Byzantine Attacks 15

10 Acknowledgments

We would like to thank Ariel Daliot for helpful discussions and insightful com-
ments.

References

1. Y. Afek and S. Dolev. Local stabilizer. In Proc. of the 5th Israeli Symposium on
Theory of Computing Systems (ISTCS97), Bar-Ilan, Israel, Jun 1997.

2. A. Arora, S. Dolev, , and M.G. Gouda. Maintaining digital clocks in step. Parallel
Processing Letters, 1:11–18, 1991.

3. A. Daliot and D. Dolev. Self-stabilization of byzantine protocols. In In Proc. of the
7th Symposium on Self-Stabilizing Systems (SSS’05), Barcelona, Spain, Oct 2005.

4. A. Daliot, D. Dolev, and H. Parnas. Linear time byzantine self-stabilizing clock
synchronization. In Proc. of 7th Int. Conference on Principles of Distributed Sys-
tems (OPODIS’03), La Martinique, France, Dec 2003. A corrected version appears
in http://arxiv.org/abs/cs.DC/0608096.

5. D. Dolev. The byzantine generals strike again. Journal of Algorithms, 3:14–30,
1982.

6. D. Dolev, J. Y. Halpern, B. Simons, and R. Strong. Dynamic fault-tolerant clock
synchronization. J. Assoc. Computing Machinery, 42(1):143–185, Jan 1995.

7. S. Dolev. Possible and impossible self-stabilizing digital clock synchronization in
general graphs. Journal of Real-Time Systems, 12(1):95–107, 1997.

8. S. Dolev and J. L. Welch. Wait-free clock synchronization. Algorithmica, 18(4):486–
511, 1997.

9. S. Dolev and J. L. Welch. Self-stabilizing clock synchronization in the presence of
byzantine faults. Journal of the ACM, 51(5):780–799, 2004.

10. A. S. Gopal and K. J. Perry. Unifying self-stabilization and fault-tolerance. In
IEEE Proceedings of the 12th annual ACM symposium on Principles of distributed
computing, Ithaca, New York, 1993.

11. T. Herman. Phase clocks for transient fault repair. IEEE Transactions on Parallel
and Distributed Systems, 11(10):1048–1057, 2000.

12. E. N. Hoch, D. Dolev, and A. Daliot. Self-stabilizing byzantine digital clock syn-
chronization. In Proc. of 8th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS’06), Dallas, Texas, Nov 2006.

13. S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems.
Distributed Computing, 7(1):17–26, 1993.

14. M. Nesterenko and A. Arora. Dining philosophers that tolerate malicious crashes.
In 22nd Int. Conference on Distributed Computing Systems, 2002.

15. M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In SRDS,
pages 22–, 2002.

16. M. Papatriantafilou and P. Tsigas. On self-stabilizing wait-free clock synchroniza-
tion. Parallel Processing Letters, 7(3):321–328, 1997.

17. Y. Sakurai, F. Ooshita, and T. Masuzawa. A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In OPODIS, pages 283–298, 2004.


	On Self-stabilizing Synchronous Actions Despite Byzantine Attacks
	Danny Dolev  and Ezra N. Hoch
	Introduction
	Model and Definitions
	The pulseing Problem

	Constructing a [Cycle]-pulser
	The Byzantine Black Box Construction
	A [, +Cycle']-pulser

	Proof of Large-Cycle-Pulser's correctness
	A [Cycle]-pulser for Cycle > 0
	[,]-pulser to [+]-pulser
	Case Cycle 3  

	Network Connectivity
	Complexity Analysis
	The Digital Clock Synchronization Problem
	Byzantine Tolerant Stabilizer
	Acknowledgments



