Delay Fast Packets (DFP):
Prevention of DNS Cache Poisoning

Shimrit Tzur-David Kiril Lashchiver ~ Danny Dolev  Tal Anker

School of Computer Science
The Hebrew University Of Jerusalem
shimritd,kiril,dolev,anker @cs.huji.ac.il

Abstract. The Domain Name System (DNS) protocol is used as a haming sys-
tem for computers, services, or any other network resodrgis. paper presents
a solution for the cache poisoning attack in which the atadghserts incorrect
data into the DNS cache. In order to successfully poison élole;, the attacker
response must beat the real response in the race back tacti®NS server. In
our model, we assume an eavesdropping attacker that catrieire response
that is identical to the legal response. The primary aim ofsmlution is to con-
struct a normal profile of the round trip time from when theuest is sent until
the arrival of the response, and then to search for anomeligee constructed
profile.

In order to poison the cache of a DNS server, the attackemhasowv the source
port and the Transaction ID (TID) of the request. As far as wevk all current
solutions which do not change the protocol, assume an aitabkt cannot see
the request and therefore hagtess the TID. All these solutions try to increase
entropy in order to make the guesswork harder. In our strimleh) increasing
entropy is useless. We in no way claim that our scheme is fimwMevertheless,
this effort represents the first step towards preservingR& cache assuming
an eavesdropping attacker.

1 Introduction

The Domain Name System (DNS)][ [2] is a hierarchical naming system built on a
distributed database for computers, services, or any resamonnected to the Internet
or a private network. The DNS distributes the responsyhilftassigning domain names
and mapping those names to IP addresses by designatingitati® name servers
for each domain. Authoritative name servers are respan$ibolthe domains in their
jurisdiction. In general, the DNS also stores other typaafoffmation, such as a list of
mail servers that accept email for a given Internet domaiis Tole of the DNS puts it
in a sensitive spot. The user must trust the DNS server torréte correct result for
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his request. If the DNS server sends an incorrect IP addoetbeetuser, the user will
access a different site while assuming he is accessingtéhlessintended to access. This
problem becomes more severe with the DNS caching systenistbaed by the DNS
servers for speeding up the requests’ processing. Attacaarch for opportunities to
place faulty records into the DNS’s cache. Once the attategrages to implant such a
record (that is to poison the cache), every user that regjtigist(poisoned) record will
receive an IP address of a malicious site.

The DNS protocol usually uses User Datagram Protocol (UBPa éorth level
protocol for its data communication. If for some reason thguest or the response
fails to reach its destination, the DNS Server simply issaresther request. For such a
case, the DNS Server needs to be able to handle the situhtibarises from packet
delays, as these may be accidently interpreted as pacleeslofhe DNS operates in
a straightforward approach. It simply accepts and cache§irgt valid response (that
is, a response from an authoritative server) and ignorestladir responses. This is a
drawback in the DNS security and a gateway for attackersisopdhe cache. (Se8][)

Pharming occurs when an attacker redirects a web site’s traffic to abogb site.
Pharming is the primary risk associated with cache poigpittackers employ pharm-
ing for four primary reasond]: identity theft, distribution of malware, dissemination
of false information, and man-in-the-middle attacks.

This paper presents@elay Fast Packets (DFP) algorithm which detects and pre-
vents attempts of cache poisoning attacks. In order to ssdéy poison the cache, the
attacker response must beat the real response (from arritatikie server) in the race
back to the DNS resolver, which is the local DNS server thigfiloated the request. In
our model, we assume an eavesdropping attacker. The attzkgenerate a response
that is identical to the real response. Since the window @baotpinity is short, the at-
tacker tries to send a response as soon as possible and/uResiso much faster than
it takes the authoritative server to generate a responsdER algorithm identifies that
exact point by analyzing the distribution of the round tiipe (RTT) from the moment
the request leaves the resolver to the time the resolvetlyetesponse. This distribu-
tion is saved for each potential authoritative server. Withenalgorithm identifies an
anomaly in the RTT of a response, it delays the response foor imterval and waits
for another response of the same request to arrive. If ndiaddi response arrives in
that interval, the delayed response is sent to the resolver.

Our contributions are two-fold. Firstly, we prevent attackder a very strict model
against a powerful adversary. To our knowledge, we are thietdiintroduce an engine
that does not change the DNS protocol and which still asswemesavesdropping at-
tacker that has all the information it needs in order to gateea valid response. DNS
requests and responses today are completely unencryptet@ibroadcast to any at-
tacker who cares to look. Anybody with access to the copdeastructure camaves-
drop. Moreover, most of this wiring is relatively unprotectediaasy to access. In fact,
this strict model has a significant impact on the motivatiehibd solutions that encrypt
the DNS packets (e.g.5]). Existing solutions that do not change the DNS protocol do
not defend a DNS server in such model (as detailed in Se8)ioim addition to the
strict model, our solution can be implemented as a black hak gets each request
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right after it leaves the resolver. Therefore, no modifmadiare required, neither to the
DNS protocol nor to the BIND (Berkeley Internet Name Domaiejver code.

The rest of this paper is organized as follows. SecZdescribes the cache poison-
ing attack and the common approach to prevent it. Sec8qresents the state of the
art algorithms against a cache poisoning attack. Sectipresents our algorithm. Sec-
tion 5 details the considerations we examined when we chose thethlg parameters.
Section 6 presents our experimental results, and Secia@oncludes this paper.

2 Cache Poisoning

When a client waits for a DNS response, it will only acceptitifermation returned if
it includes the client’s correct source port and addresglditen to the correct DNS
transaction ID. These three pieces of information are thg fmmm of authentication
used to accept DNS responses. Knowing the source IP ist#tiaigzard as we know the
address of the name server to be queried. The source porykgvand the transaction
ID present a challenge. BIND often reuses the same sourtépapueries on behalf of
the same name server, therefore discovering the sourcéspuot a hard taskg]. The
only real obstacle that stands between the attacker andcassfal cache poisoning
is the transaction ID field in the DNS protocol. Therefore #ttackers look for weak
spots in the protocol implementation that can allow them &kena goodjuess of the
transaction ID and, in this way, interfere with the traffic.this section we present the
methods used by the attacker to overcome this obstacle.

BIND (Berkeley Internet Name DomainY]is the most commonly used Domain
Name System (DNS) server on the Internet. The earliest Bldiess did very little
to address security. In order to avoid a same transactioep@ating at the same time
in the network, the server used an “Increment by One” metkagh new query was
issued with the previousansactionl D + 1. Guessing the transaction ID in such a case
is a fairly easy job. This weakness was patched and the nevDBi&sions issue a
random transaction ID to every new query. In the new verdBdND 9), the transaction
ID is a randomly generated number, or more precisely, theséetion ID is a pseudo
random generated number. The algorithm that generate®thaleach of the BIND
versions is open to the public and can be easily obtainedtadies. As shown ing],
in many of the BIND 9 versions, the algorithm is weak and thet nendom number
can be derived from the previous one. This particular prmobleas fixed in the %.0
BIND version. Here, in order to guess the correct transadi an attacker can use
thebirthday paradox. The attacker first simultaneously sends a large quantjpaokets
to the DNS server requesting the same Domain Name. The DN8rgggnerates the
same number of queries and sends them to the authority s€heeattacker generates
the same amount of DNS bogus responses with a random tremmsHat The birthday
paradox dictates that a few hundred packets will suffice éonise a 50% success rate
where there will be a match of the transaction ID with at I@a& query and one bogus
response. This leads to a successful poisoning of the cactie tDNS server. Such
an attack was fully described ][ The birthday attack guaranties high chances of
success with a relatively low number of packets requiredefyular packet spoofing, if
the attacker sends responses for one query, the probability of succe% vghereT
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is the total number of packets possible (in the DNS dase2'6 — 1 = 65535). In the

birthday paradox attack, the attacker only needs to matetobthe requests to one of

the responses. The probability of success can be calcligtdeb following formula:
P(success) =1-1(1-3)(1- 2)..(1- "1y =1 ﬁ .

The power of the birthday paradox attack over the regulakgtagpoofing attack
is that it requires a relatively small number of packets idesrto make a successful
attack. A mere 300 packets guarantees 50% success, whilpack@ts guarantees a
99% success rate. In the regular packet spoofing attack, &8s only guarantees a
%5 = 1.14% success rate. The birthday paradox attack shows thataekendomly
generated transaction ID used in the latest BIND versionslliserable to brute-force
attacks.

The big security news of Summer 2008 has been Dan Kaminsigcevkry of a
serious vulnerability in DNS server&(]. In this exploit, the attacker causes the target
name server to query for random host names at the target doiftaé attacker can
spoof a response to the target server including an answehdoguery, an authority
server record, and an additional record for that servesinguhe target name server to
insert the additional record into the cache.

There are several solutions available for the problem othe@oisoning attack as
presented in Sectio. In our algorithm we assume the attacker knows the trarmsacti
ID, source port, or any other information from the requestdeal in order to generate
a valid response. In contrary to other solutions, we are ny@iig to increase entropy,
rather we assume it is known to the attacker. The preserjedtéim detects anomalies
in the RTT of the responses. Since in order to get into theesachpoofed response has
to arrive before the correct one, the RTT of those respormssgsarter than it usually is
and therefore is considered anomalous.

3 Related Work

There are several available solutions on how to preventecaclisoning attacks and
attempts. In this section we present some of them. BIND isrtbst widely used DNS
software over the Internet], [2], and therefore it is a constant target to attackers
attacks. New versions and version updates are constaiinly tedeased constantly with
new updates and patches for bugs and security issues. dretbke easiest way to
enhance the security of a local DNS server is to run the moshtesersion of BIND.

DNS security solutions can be categorized into two categofThe solutions in
the first category extend the existing DNS protocol. Sohgim the second category
require massive changes and thus new DNS servers deployBiroé a large-scale
deployment may not be reached in the near future, an extessarch is made in order
to design solutions that do not require new deployment.

A lot of effort has been spent in trying to make the DNS tratieadD more ran-
dom and less predictabl&], [12]. Ultimately, such efforts are insufficient since with
only 16 bits to fight over, a determined attacker can use alypuaeadom attack, or
even a constant attack, and theoretically, eventually,satistically speaking, break
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through the requestor’s defenses. Most of the research tfes is based on increasing
the entropy of DNS queries in order to make forging a valijpoese more difficult.
In [13] [14], the authors describe a method by which an initiator carravetransac-
tion identity using the £20 bit in DNS labels. This idea uses the question section to
add random bits to the query. DNS servers do not care if thstigueis presented in
upper or lower case, and therefore a combination of the @@seprovide the essential
random bits to the query. In practice, all question sectinmesponses are exact copies
of question sections from requests. The difference betimear and upper case let-
ter is the 0x20 bit. Therefore, for any character in the donm@me in the question,
a request initiator can randomly choose this bit and thestretion ID can be effec-
tively lengthened beyond 16 bits. The effectiveness of agerithm is a function of
the length of the domain. In the Random prefi¥]| [16] method, the authors propose
to use wildcard Domain Names to increase the entropy. Fanpba if a user wants to
resolve the “www.example.com”, the DNS server will geneatandom prefix for the
query and send “ralbc3twgj.www.example.com”. The authtive DNS server returns
the same domain name with the “www.example.com” IP addi@ss.method using a
prefix length of 10 will generate in the region of k6'° ~ 52 bits. In another solution,
presented inJ7], the authors extend the DNS query ID with up to 63 alpha-migne
characters into the query/response question name (QNAMik)mg the range of pos-
sible transactions IDs so large that any brute force gugssibirthday attack attempts
are futile.

Most name-servers, prior to the patches released on Jul§, 20@ays sent out
their queries from port 53. Therefore, another directicimialso randomize the source
port [18], [19], [12]. In this method, the name server uses a random source pdvisfo
query. The name server cannot use an entire UDP port spaseyén even an extra
10 or 11 bits of randomness is many times greater. A DNS squoderandomization
becomes vulnerable if the DNS traffic is behind NAT. NAT cdad¢lke DNS source port
randomization by translating source ports to non-randortspo

Since the DNS protocol does not include any security, DoriEme System Se-
curity Extensions (DNSSEC)[] were developed as described in RFC 3823][
DNSSEC was designed to prevent cache poisoning by havirtg ahswers digitally
signed, thereby allowing the correctness and the compsteof the data to be easily
verified. DNSSEC is a new protocol and only lately have somasofritical pieces
been formally defined. Using DNSSEC necessarily means dieiglmew servers or
reinstalling the protocol in the existing ones. Consedyedéploying the protocol on
large-scale networks becomes a challenging task. DNSS&@dirces new security
issues such as chain of trust problems, timing and syncratban attacks, Denial of
Service amplification, increased computational load, anahge of key management
issues as presented 2.

DNSCurve p] is an alternative to DNSSEC. DNSCurve uses high-speegitielli
curve cryptography, and simplifies the key management prolthat affects DNSSEC.
There is not much documentation on DNSCurve, but like DNSBechard to deploy.
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4 The DFP Algorithm

The primary aim of the DFP algorithm is to estimate the RTTURb Trip Time) be-
tween the DNS Server and each of the authoritative serverscitunters and to delay
the responses that are arrivitmp fast according to the approximation. Furthermore,
the processing time for each service type (MX, A, AAAA, CNAMETR etc...) might
have different lengths, such as in a case due to a more extetigiabase search on
the authoritative side. Therefore, the DFP algorithm esté® the RTT for each ser-
vice type the authoritative server can provide. For eachaiiative server and service
type, the estimated RTT predicts the average time needdtid¢anext response to ar-
rive. If for any reason, a response comes too soon, accotalitng DFP algorithm, the
DNS Server waits for a certain amount of time before it fogathe response to the
requestor. If another valid response arrives in that windbtime, both responses are
dropped, and a new request is generated (as is done whenlarrB{s packet loss
occurred). If the attacker is persistent and sends a resfongach request, the user
experiences DoS (Denial of Service) attack, since the Dg&igthm will not pass any
of the responses back to the user. In this case, the user dbgstrthe service, but at
least he is also not exposed to more harmful attacks suchhésgfiand theft of critical
information. Moreover, under the assumption of an eavegang attacker and with-
out changing the DNS protocol, we believe that there is not&ni that can also solve
the DoS problem. A simple cache poisoning attack with an sdrepping attacker is
presented in Figuré. A local name server that is deployed with the DFP engine is no
vulnerable to a cache poisoning attack as shown in Figure

1. LNS sends request
2. DFP records departure time
3. DFP gets too fast response from attacker
4. DFP delays the too fast response
5. DFP gets response from ANS
: 16. DFP drops hoth response
Y L

1. LNS sends request
2. LNS gets response from Attacker
3. LNS saves response in cache
4. LNS gets response from ANS
! & _—)
< 14

Local Name Server Authoritative Name Server '
Local Name Server
(LNS) Attacker eavesdrops (ANS) (NS) Attacker eavesdrops
and sends response and sends response

Authoritative Name Server
(ANS)

1 1
+ e

Attacker Attacker

Fig. 1. Cache Poisoning Example Fig. 2. DFP Operation

Algorithm 1 presents a simplified pseudo-code that demonstrates theoidihe
DFP algorithm. In the case of a multiple packet attack, ther@hmclosesthe request
after the first duplicate response, so any other responsaatihave a corresponding
request and, thus, will be dropped. Another issue we havertsider is the legdbo fast
packets that might affect the RTT estimations. In the caseravthere are no attacks,
thosetoo fast packets can mark a change in the topology of the network aaréfibre
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Algorithm 1 DFP - Delay Fast Packets

1: PacketDictionary.Init() /mapping responses to request
2: SatsDictionary.Init() //save auth. server statistics

3: loop
4:  NewPacket < Sni f f DNSPacket()
5:  key < GetKey(NewPacket. Auth — server, NewPacket. Transactionl D, NewPacket. Type)
6:  if NewPacket.isQuery() then
7 PacketDictionaly. put (key, NewPacket )
8. else
9: Request Packet < PacketDictionary.get (key)
10: if RequestPacket == NULL then
11: Drop(NewPacket )
12: else
13: if RequestPacket.hasDel ayedResponse() then
14: Drop(Del ayedResponse)
15: PacketDictionary.cl ear (key)
16: Drop(NewPacket)
17: else
18: RTT < NewPacket. TimeOfArrival — RequestPacket. TimeOf Send
19: DelayTime <«  AuthServerSats AddSample(RT T, NewPacket. Auth —
Server, NewPacket. Type)
20: Del ayPacket (DelayTime)
21: PacketDictionary.cl ear (key)
22: end if
23: end if
24:  endif
25: end loop

AddSample(RTT, Auth-Server, Type)

10:

11:
12:
13:

N~ WNE

: AuthServer Sats = StatsDictionary.get (Auth— Server + Type)
if AuthServerSats== NULL then
AuthServer Stats = CreateStat (key)
AuthServer Sats.EstimatedRTT < RTT
AuthServer Sats.DevRTT < 0
end if
: AuthServer Sats.EstimatedRTT < (1—a) x AuthServer Sats.EstimatedRT T +a x RTT
: AuthServerSatsDevRTT < (1 — B) x AuthServerSatsDevRTT + B x |RTT —
AuthServer Sats.EstimatedRT T

if RTT < AuhServerSats.EsimatedRTT — AuthServerSats.DevRTT  x

AuthServer Sats.FactorWindow then
return (AuthServer Stats.EstimatedRTT + AuthServerSatsDevRTT  x
AuthServer Sats.FactorWindow) — RTT

else
return 0

end if
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must be considered in the RTT estimations. However, in the oépossible attacks, the
algorithm should not include them in the estimations, ag thay be an attempt of the
attacker to lower our RTT estimations in order to make a ssgfoéattack in the near
future. Thereforetoo fast packets must not affect the RTT until the algorithm verifies
their authenticity. This functionality is omitted from thike pseudo-code in order to
save its simplicity.

The algorithm was tested on real traffic from the local DNSeeof our university.
The traffic contains 3800 DNS requests.

The DFP algorithm uses two hash tablBacketDictionary maps between the out-
going requests and the incoming responSesDictionary stores the statistics for each
authoritative DNS server. On each packet arrival, a key mstacted from the author-
itative server IP, the transaction ID, and the packet typtiad packet is a request, the
packet is saved, by its key, in the@@ETDICTIONARY hash table. If the packet is
a response, the corresponding DNS request is retrieved, aain, by the same key.
The scenario when no matching request is found, that ise tisea response with no
request, can be a result of two cases. One, the attacker saritigle responses and
the request was previously cleared. Two, there is a respeitiseut a request. In both
cases, this condition can never be fulfilled unless thera mtiack on (or a bug in) the
DNS server; therefore, the packet is dropped. If the comedimg request has a delayed
response (#oo fast response was previously arrived to that request), the itthgore-
moves the request from the®<ETDICTIONARY hash table and drops both responses.
In the normal case, where both the response and the reqeestuand, the algorithm
calculates the RTT between the local DNS server and the atative DNS server by
measuring the time difference between the time the reqaestit to the arrival of the
response. Note that the RTT is calculated for each authigatserver and service type.
It then calculates the €'ITMATEDRTT DEVRTT and estimates the normal window. If,
however, the packet tvo fast, it is delayed foid milliseconds, wherd is the deviation
between the RTT and the upper bound of the estimated normdbwi. Otherwise, the
response is immediately sent to the server to be saved iratifec

5 Design Parameters

The DFP algorithm uses the following formula in order to deteo fast packets:
RTT < EsimatedRTT — DevRTT x FactorWindow. Each DNS response that arrives
too soon according to the formula is considered suspicioasdelayed, thereby al-
lowing time for another possible response with the sameséetion id to arrive. The
variables in the formula are controlled by three parameterf andFactorWindow.
The performance of the DFP algorithm, in terms of speedgtieteaccuracy, and mem-
ory consumption, depends on how well these parameters afigamed. In this section
we describe the considerations and the experiments thasl&achoose the values for
these three parameters.

5.1 The Window Parameters

The Window is the time interval in which response arrivals are congiderormal.
Each response that arrives before the window begins is deresl suspicious. Each
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pair of authoritative server and request type has its owrdewn For example, for
www.abc.com authoritative DNS server with type A, the windmight begin 3400
ms after the request is sent, while for type MX it might bedie@3800 ms. Th&Vin-

dow Starting Point is the beginning of the window. Each response arriving heefor
the starting point is considered asoa fast packet. Respectively, th&indow Ending
Point is the end of the window and each response arriving afterttimg point will be
considered as 8o slow packet. A false alarm occurs when a packet originated by the
authoritative server arrives before the window startingppdcvery false alarm causes
the DNS server to store the packet in memory for a short tinderalease it only after

it is safe. Figure8 presents these parameters over the time axis. The sendiagfia
specific request ikend reques- The average of the arrivals times of all legal responses
for the specific request type and authoritative name sesigJgiresponses. This average
has margins that define the window’s starting point and epgaint. Any response that
arrives betweetiend request t0 Waart_point is consideredioo fast and any response that ar-
rives afteMng_point is consideredoo slow. Some authoritative servers are infrequently
requested and due to the dynamics of the network the DFPitigomight not have
enough samples in a certain point to create a distributiba.algorithm either takes the
minimum values of the window starting point and window emgdgoint, if they exist,

or it takes the minimum values of an authoritative name sdreen the same parent
domain.

The window has a very dynamic nature. Its starting point taortfy changes and
shifts on the time axis. This is due to the dynamic nature efititernet network and
the constant changes in the RTT of the arriving requests.vilihdow starting point
dictates which packets are considetedlfast, and which thus need to be delayed, and
which packets are within the normal time boundary and caretbee immediately pass
through. An attacker might try to influence the location af thindow by flooding the
authoritative server. In this case, the latency of the resps from the flooded author-
itative server increases and the window is shifted to thetrigesulting in a delayed
starting point and fewer chances to successfully poisoi8 cache. In order to ad-
just the parameters that define the window starting poietgtlare two observations to
consider:

— An early starting point allows more packets to pass thrauighout a delay. The
DNS server does not need to delay too many suspected packeisit(is safe
to pass them on) and therefore the latency is reduced. Hoyweewindow of
opportunities is increased, and a potential attacker cajusti above the starting
point and pass the filter without triggering an alarm.

— Alate starting point delays more packets since it consitlesm asoo fast packets.
This configuration hardens the attacker cache poisoniegnatt since in order to
avoid the DFP filter he has to compete on a small time inteitalvever, a late
starting point forces the DNS server to delay many packetssidering them as
potential threats. The major consideration of this configjon is the larger memory
consumption and a slower response of the DNS server to thg.use

In the following sectionsg.2 and5.3) we refer toa,  and theFactorWindow.
We perform a set of experiments in order to demonstrate theeimce of each of the
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Fig. 3. The window Parameters

parameters on the window starting point and hence on thedféldetween the number
of false alarms and the probability of detecting and prewngrd potential attack.

5.2 o and B Considerations

The two parameters influencing the EstimatedRTT and the Déy&rameters in the
DFP algorithm aret and. They determine the weight of the new RTT sample against
the history, thereby influencing the window starting pointorder to find howa and

B influence the number of fast packets detected by the DFPitdggrwe conducted
several experiments on real traffic without any attemptéatks. In each experiment
we measured the number of false positives alarms. The foltpfigures4, 5, 6 demon-
strate the results of the experiments, using differentasbfa andp. In order to clearly
demonstrate the results, the graphs present only 100 patiettrepresent the general
case.

Note: TheFactorWindow parameter is set to 2 in each of the following experiments.
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In each of the experiments, the newest sample is given a mghkhweight since
it is better at predicting the future RTT. Figude deals with the case of low values
of o andf. Low a andf3 values, as in TCP RTT estimation, smooth the estimated
RTT function, since more weight is given to the history of g@mnples rather than
to the newest sample (in comparison to higher values ahd3). For each peak in
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the sampled RTT, the DevRTT rises. (Note, for example, ttak jre the sample RTT
and the rise of DevRTT at packet number 10.) As a result, tmelovi starting point
becomes low. This situation allows potentially malicioasponses a wider window of
opportunity to attack the DNS server. Only two packets wenesieredoo fast in
this configuration. The graph shows that those packets’ RM& &xceeded the starting
point. In Figureb, we used high values of andf3. High values give most of the weight
to the newest sample. Hence, the RTT deviation is very smadlltlae window starting
point is extremely late, making DNS attacks attempts verg @ succeed. However,
this situation also creates many false alarms as any fluctuiatthe RTT will probably
put the new sample before the window starting point. We sagitththis configuration
about 20% of the packets were considetea fast. Figure6 deals with the case of
medium values aft andp. The values oft andp are the median of the ‘Low’ and ‘High’
configurations. As expected, the window starting point is tase is later than in the
‘Low’ configuration and the RTT deviation is higher than irettidigh’ configuration.
We see that in this configuration five of the packets were densiitoo fast.

Our experiments show that most of the time the deviation @R T is relatively
low. Therefore the created starting point is rather highe Thange in the deviation
occurs when an extremely slow packet arrives. In this sdnathe window starting
point is lowered for a short period of time and possible &ddtave a higher chance
of success. However, as we can see from the results, sloveisas&ldom arrive. In
consideration of memory consumption, it is important to/pre false alarms that might
be created by valitbo fast packets. Thus, for those, the ‘Low’ version should be chosen
However, if the local DNS server can afford saving mue fast packets, the better
configuration is the one that prevents more attacks, andirctse it is better to choose
the ‘Medium’ or even (if memory is not a problem) the ‘High’rdgguration.

5.3 FactorWindow Considerations

After setting up thex and parameters, the configuration of thactorWindow param-
eter should be determined. This parameter goal is to loveestdrting point created by
o andp. As before, the tradeoff between the number of false alarmdgtze probability
of a successful attack dictates which value will be choséjures7, 8 and9 present
theFactorWindow influence on the window starting point. As above, in ordeld¢ady
demonstrate the results, the graphs present only 100 patiettrepresent the general
case.

Note: Thea and 3 parameters are set tol®5 and 25 respectively in each of the
following experiments.

Figure7 deals with the case wheFactorWindow = 1. FactorWindow = 1 means
that the window starting point is modified only byand(3. Therefore the created start-
ing point is high and the probability for a packet to come befine starting point is
respectively high. In this case, many packets will have tddlayed. We see that in this
configuration, about 30% of the packets are consida@thst packets.

In Figure 8 we usedFactorWindow = 2, i.e. the starting point is two estimated
deviations from the estimated RTT. Using the ‘Chebyshequiadity’ the probability
for a packet to exceed the starting point is less tbaHowever, in practice, the bound
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is tighter. Our experiments show that only abglyof the packets are consideredtas
fast.

Figure9 deals with the case wheFactorWindow = 3. Again, using the ‘Cheby-
shev inequality’ the probability for a packet to exceed ttagtgg point is less thaé,
butin practice, almost no packet exceeds the starting piietwindow starting point is
so low that an attacker can easily intrude even without knguhat a detection and pre-
vention DFP algorithm is running. In this configuration,pohe packet is considered
too fast.

The main consideration for choosing the configuration offaetorWindow pa-
rameter is, again, the tradeoff between the number of falsiiyes and the probability
of a successful attack. By analyzing our results, we corecthdt the best value for the
FactorWindowz2 is 2.

5.4 Slow Packets Consideration

The main assumption of the DFP algorithm is that the devidtiom the EstimatedRTT
approximates zero. This assumption was proven to be truanymxperiments carried
out on real traffic. But in some cases, the deviation risesliart periods of time. In
those moments, the attacker gets an opportunity for a ssfttestack since many
too fast packets fall after the window starting point oEstimatedRTT — DevRTT x
FactorWindow bound and are therefore considered normal.

This situation occurs after a very slow packet is receivda: tdo slow packet cre-
ates a temporary increment of the deviation and lowers ggirg point, as seen in
Figures10and 11 The starting point returns to normal parameters after afeek-
ets, when the influence of theo slow packet weakens. The temporary lowering of the
starting point creates an opportunity for a attacker tccitthe DNS server.

The way to prevent this weakness is to eliminate tibe slow packets from the
calculation of the deviation, thereby preventing the terapplowering of the starting
point. However, the DFP algorithm must take into considerathe possibility of rapid
changes in the network characteristics or topology. Thi? @istinguishes between
seldomtoo slow packets to a real tendency and tioe slow packets are considered
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accordingly. An attacker cannot reduce the algorithm isigupoint by sendinglow
responses. The original response is likely to arrive beéore spoofed slow response
and therefore either the spoofed response is just droppieaiiives after the window
ending point) or both the original and spoofed responsesliamgped (if the spoofed
response arrives within the window). In either case, thefgibresponse is not consid-
ered when calculating the distribution parameters. Anatipéion the attacker has is to
flood a specific authoritative server in order to fost®v responses from that server. As
a result, the window starting point in the local name serseeduced and the attacker
can send a spoofed response without being delayed. The Djftieatioes not handle
these kinds of combined attacks.

5.5 Imitation of the DFP Profile

An eavesdropping attacker may adopt the DFP algorithm aitdterthe same profiles.
Afterwards, the attacker can apply fine control on the isptiime of forged DNS re-
sponses to make them reach the server after the starting poorder to successfully
poison the cache, the attacker’s response needs to arfiveelibe real response. The
RTTs are distributed normally, thereforexifs the arrival time of the attacker response
andtge response iS the arrival time of the real response, the probability suacessful
attack (after standardizing is

fgetresponse 1 1.0
/ ez dx.
Wsan_point \% 21

We can see, there are two factors that influence the odds aicessful attack, the
window starting point and the arrival time of the real resggiWWe have no control over
the arrival time of the real response, but we can decreasEdti®rWindow to nar-
row the window of opportunity of the attacker. This scena@monstrates the tradeoff
between memory and accuracy.
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6 Experimental Results

The results are measured by two factors, memory consumatidraccuracy. Usually,
there is a tradeoff between these two factors. In our casertddeoff is insignificant.

6.1 Memory Consumptions

The main consideration in choosing the best configuratiorife DFP algorithms is

to prevent attacks. In order to prevent attacks, the stapoint should be as tight as
possible to the estimated RTT. However a tight starting ppmiight create many false
alarms (as explained above). In this section we present hiffereht starting point
values affect the memory consumption. We examined threégeoations. In the first
one,a =0.125 3 =0.25;inthe secondy = 0.2, $ = 0.4; and in the third configuration,

o = 0.875 B = 0.75. Figurel2 presents the percentage of packets that are considered
too fast in each of the configurations.

El Factor Window = 1 El Factor Window = 1
40| ] Factor Window = 2 1 [ Factor Window = 2

o
4
i 30-
200
10
I I I o I I
conf 1 conf2 conf3 conf 1 conf2

Fig. 12.Percentage of Fast Packets Fig. 13.Memory Consumption

Percent of Too Fast Packets

The DNS payload has a limit of 512 bytes (for IPv4). Our expents show that
an average response is about 155 bytes long. The DFP algarmitlst allocate those
bytes in memory for each delayed packet, usually for abauthiendred ms, until the
response is either released or dropped. The memory consumg&pends on the in-
bound rate of the local DNS server. The university DNS seceeronly handle a few
dozen responses in parallel. Since this server might no¢sept the general case, Fig-
urel3estimates how many KB the DFP algorithm consumes assumiragndles 1000
responses in parallel. As we can see, even for the most wasteffiguration, the mem-
ory consumption is no more than 65KB on average and 215KBanvbrst case. Thus,
memory consumption is not a limiting factor even for busewers.

The presented algorithm was implemented and tested orraéfad tollected from
our university DNS Server. The traffic was sniffed and savegdap files that were
later used for different configurations testing and analyEhe traffic was filtered to
contain only DNS responses with an authoritative flag on.gaah of the samples, the
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algorithm calculates the EstimatedRTT, the DevRTT, antl wigiven FactorWindow,
it deduces which packets are considered ttobdast.

6.2 Attacks Detection

In order to test the DFP algorithm we planted a few randomidad response packets
with random arrival times in the tested traffic. The spoofsponses arrived before the
real responses. The DFP algorithm with the above configuratias able to classify

all of the attacks asoo fast packets and therefore delayed them until the real result
arrived. We believe that there were no real attempts tolatiac university local DNS
server while the samples were captured, since no duplieatesps were found beside
the faked packets planted by us. Unfortunately, we cannopewme our results to other
solutions since all other solutions fail to protect the DN®ver from cache poisoning
attack on our strict model.

7 Conclusions

This paper presents the DFP algorithm against DNS cachemoig attacks. The al-
gorithm assumes an eavesdropping attacker that can seedgihest and therefore can
easily create and send a spoofed response. Our algorithsunesastatistics per author-
itative server and type of query in order to build a profileattthe RTT distribution for
these two parameters. Since, in order to get into the cackgoa@fed response has to
arrive before the correct one, the RTT of those responsé®ites than it usually is and
therefore, out of the constructed profile. We showed thaatperithm is scalable and
its memory consumption can fit in a standard cache.

The weak spot of the DFP engine is its vulnerability to a Da&ckt (in the case
where the attacker repeatedly sends spoofed responses)r fature work, we will
integrate the DFP engine with a mechanism that detects tiepstitive spoofed re-
sponses and instead of just dropping duplicate resporisegl save a copy of each
unique response and choose the correct one according tusansiderations.
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