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DETERMINISM VS. NONDETERMINISM IN MULTIPARTY COMMUNICATION
COMPLEXITY*

DANNY DOLEVt AND TOMAS FEDER1

Abstract. A given Boolean function has its input distributed among many parties . The aim is to determine
which parties to talk to and what information to exchange in order to evaluate the function while minimizing
the total communication . This paper shows that it is possible to evaluate the Boolean function deterministi-
cally with only a polynomial increase in communication and number of parties accessed with respect to the
information lower bound given by the nondeterministic communication complexity of the function .
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1. Introduction . Our model of multiparty communication complexity is motivated
by two basic earlier models . The two-party communication model assumes that each
of two processors has a part of the input, and the aim is to compute a function on the
input minimizing the amount of communication . In the decision tree model, the input
is distributed among many memory locations, and the aim is to compute a function on
the input while minimizing the number of memory locations examined . Our multiparty
communication model extends these two basic models by assuming that the input is dis-
tributed among many processors ; here the goal is to minimize both communication and
number of processors accessed .

Two-party communication has been extensively studied . The main issues studied
were the relative power of determinism, nondeterminism, and randomization . Yao [19]
introduced the tool of minimum fooling set (or crossing sequence) as a measure for the
amount of information that needs to be exchanged for a given input partitioned among
the two parties. The same technique was widely used in [2], [7], [9], [11], [13] .

The decision tree model has been studied in several contexts [3], [10], [12], [15], [16],
[17] . An area that inspired research in this direction is the study of graph properties (see
[14], for example) . The main focus in these studies is how to minimize the fraction of
the input that must be examined in order to verify a given property . Here again we are
interested in the relative power of determinism, nondeterminism, and randomization .
The basic issue is how to decide what input locations to examine . Similar reduction
ideas appear in the proof of Theorem 1 in [1] .

In the multiparty communication model, when a large amount of information is
distributed among a large number of processors, it is crucial to decide both which pro-
cessors to communicate with and what information to exchange . We can neither talk
to all parties as in the two-party model, nor obtain all the information known to each
party as in the decision tree model. A natural measure for the least amount of infor-
mation required is the information that a nondeterministic algorithm needs to exchange
in order to decide the value of the function . In this paper we show that when comput-
ing a Boolean function, this information can be obtained deterministically with limited
overhead. More precisely, we prove that the deterministic and the nondeterministic
communication complexity of multiparty Boolean function evaluation are polynomially
related.

Tight bounds relate the deterministic and the nondeterministic communication com-
plexity in the two-party model. Let C1 be the nondeterministic communication complex-
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ity of the language defined by a Boolean function AX1, x2), and Co that of its comple-
ment. Aho, Ullman, and Yannakakis [2] showed that the deterministic complexity off is
at most O(Co CI) ; Halstenberg and Reischuk [9] improved this bound to CoC1(1 +o(1)) .
A matching lower bound was obtained by Halstenberg and Reischuk [9], improving an
earlier result of Mehlhorn and Schmidt [11] . Fiirer [8] obtained similar lower bounds
for the randomized case. Further restrictions on the communication exchange, such as
bounding the number of rounds, have been studied by Papadimitriou and Sipser [13] ;
Duris, Galil, and Schnitger [7] ; and others .

Quadratic bounds relating deterministic and nondeterministic complexities have
also been obtained for decision trees . Let k1 and ko be the nondeterministic com-
plexity (the number of memory locations examined) of a Boolean function of n vari-
ables f(X1, . . . , xn) and its complement . Blum and Impaglia77o [3], Hartmanis and
Hemachandra [10], and Tardos [17] independently showed that the deterministic deci-
sion tree complexity of f is at most kok1 . Related results for randomized decision trees
can be found in Saks and Wigderson [16] and Nisan [12] .

Our work was motivated by the striking similarity of the results in these two mod-
els, which give quadratic Co ,C1 and k0k1 bounds, respectively. The methods used to
obtain the bounds in these two models, however, are very different . Since in distributed
computing, the natural model is one that combines both, we should wonder whether a
similar relation holds for multiparty communication. Our result gives a bound on the
order of ko 2 k 1 for the number of parties accessed with COC1 bits exchanged with each
one, up to logarithmic factors, where k 1 and C1 are the number of parties accessed and
the total number of bits exchanged in a nondeterministic algorithm for f, and ko and Co
are the analogous parameters for the complementary function 1 - f . This bound essen-
tially matches the communication bound for the two-party case while only increasing the
bound on the number of parties accessed by a factor of ko with respect to the decision
tree case. It improves the bound (koCo ) 2 (k1C1 ) on the total communication from an
earlier version of this paper by a factor of Co [6] .

Communication complexity in distributed computing has mainly focused on the num-
ber of messages or bits required to compute a specific function in a system . The com-
plexity usually arises from either symmetry breaking or asynchronous behavior . The
only study that is somewhat close to ours was done by Tiwari [18] . Tiwari mainly studies
a chain of processors computing a function f(X1, x2 ), where the inputs are at both ends
of the chain . The difficulties in this model are knowing what information to distribute
(as in the two-party model) and how that information should be propagated along the
chain. In this model the added complexity of deciding what processors to query does not
arise .

In order to concentrate on the combined complexity of deciding what processors to
query and what information to exchange with them, we assume the following model . The
input is distributed among n parties, and a single coordinator can communicate directly
with each one of them. We can easily show that allowing direct communication among
the parties will not significantly affect the bounds that we obtain .

In [5] a different communication complexity model was defined. In that model each
party has all the inputs but one, and all parties communicate through a shared "black-
board." This model was also used in [4] . Our results do not apply to this model because
the inputs that individual parties hold are not independent .

2. Definitions. Suppose that a coordinator wishes to evaluate a Boolean-valued func-
tion f(X1, . . . , xn), where each x i is chosen from an arbitrary set hi . The input vector
x = (xi , . . . , x n ) is distributed among n parties, with xi known to party i.
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We shall define nondeterministic algorithms in terms of communication behavior .
A nondeterministic algorithm .M that accepts the language defined by f (the set of input
vectors that map to 1 under f) is a tuple (S1 , . . . , Sn , A 1 , . . . , A,,, V1 ) . The components
of such a tuple are as follows. Each Si is a set of nonempty binary sequences that repre-
sents the possible communication exchanges between the coordinator and party i. The
binary sequences in Si are self-delimiting, i .e ., no one is a prefix of another . (This makes it
possible to uniquely determine the end of the sequence.) Each A i is a function that maps
each sequence Si E Si U {e} to a nonempty subset Ai(si ) of hi; this subset represents the
possible inputs at party i for which s i is a valid communication from the point of view of
party i. Here c is the empty sequence and represents the case where no communication
occurs between the coordinator and party i ; we thus require that Ai(c) = I' i . A commu-
nication vectors = (s l , • . . , sn ) with si C Si U {c} covers an input vector x = (x1 , . . . , x n )
at party i if x i E Ai(si ) . Furthermore, x is consistent with s if s covers x at each party
i . We say that party i is accessed by s if si is nonempty. The communication vector s is
a 1-certificate if f(x) = 1 for all x consistent with s . The last component V 1 is a set of
1-certificates such that each input vector x with f(x) = 1 is consistent with some s E V1 ,
and represents the communication vectors that are accepted by the coordinator .

We characterize the communication complexity of Nl with two parameters. The first
parameter C1 is the maximum over all 1-certificates s E V' of >i length(si ) ; thus C1 is
the maximum number of bits exchanged when Nl accepts. The second parameter k 1 is
the maximum over all 1-certificates s E V1 of the number of parties accessed by s ; thus
k 1 is the maximum number of parties accessed when JV1 accepts. We also assume the
existence of a nondeterministic algorithm No that accepts the language defined by the
complementary function 1- f, and define 0-certificates, V°, C0, ko , and the appropriate
terminology analogously .

We say that a 1-certificate s and a 0-certificate t are incompatible at party i ifA i(si) n
A, (ti) = 0. Notice that every 0-certificate must be incompatible with every 1-certificate
somewhere because otherwise we could construct an input vector on which f takes both
values 0 and 1 .

3 . A deterministic algorithm. The algorithm of Blum and Impagliazzo [3] for the
decision tree model works by repeatedly "exposing" the parties accessed by given 1-
certificates in turn; each 1-certificate chosen for this purpose is required to cover the
input at parties exposed earlier by previous 1-certificates . By incompatibility, if t is a 0-
certificate that covers the input at the parties already exposed, then the next 1-certificate
s chosen must expose a new party accessed by both s and t . Thus by the time ko 1-
certificates have been chosen, any 0-certificate consistent with the input has been com-
pletely exposed, and the value of f can be verified directly . The total number of parties
exposed is at most kok l .

A straightforward adaptation of this approach does not work in our model . The rea-
son is that it is too expensive to obtain all the information stored at each party exposed .
To overcome this difficulty, we choose a set of parties to expose . Each party exposed
evaluates with respect to its input, those 1-certificates that were not yet discarded . It
communicates enough information, via a 0-certificate that covers its input, to discard a
fraction of the possible 1-certificates left . To keep the amount of information "wasted"
bounded, it does not communicate when this implies discarding only a very small frac-
tion. Only when no exposed party has a valuable contribution does the coordinator use
the remaining 1-certificates to choose more parties to expose . Every time the set of
exposed parties increases, the number of exposed accessed parties for each 0-certificate
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consistent with the input increases as well, as in the decision tree algorithm . By the
ko + 1th time the value of the function is determined .

The following lemma will be important in bounding the amount of communication
required by the algorithm .

c

LEMMA 3.1 . If the Boolean function f has nondeterministic complexity bounded by
C0 , ko, C1 , k1, then there exists a nondeterministic algorithm for f for which the set of 1-
ertificates satisfies jV' I < 2Olko /C l .

Proof. The number of 1-certificates in V 1 is at most 2C1n k1 , since each certificates
is described by the C1 bits communicated and the k1 out of n parties accessed . We show
that the dependency on n can be eliminated by replacing n with the potentially smaller
ko . Consider the list of all 0-certificates in Vo in some canonical order (say, the lexico-
graphic order). Choose a 1-certificate s in V 1, and produce the following description .
For each 0-certificate t in the canonical list in turn, find a party i at which s is incompatible
with t, indicate which of the ko parties accessed in t is party i, and then give the sequence
s i that characterizes the communication with party i . Delete then from the list all 0-
certificates that are incompatible with s at party i . When the end of the list is reached,
the description contains at most C 1 communication bits and k 1 parties described by a
number in the range 1, . . . , k o , for a total of 2°1 kok' possible descriptions. The com-
munication vector s' indicated by this description may be smaller than the 1-certificate
s, since only a fraction of the parties accessed by s is listed in the description . On the
other hand, by construction, each 0-certificate t in Vo is incompatible with s', and so s'
is indeed a 1-certificate . The certificate s' can, in fact, be recovered from the description
by traversing the canonical list and identifying the appropriate parties. Thus the number
of 1-certificates s' obtained by this construction is indeed bounded by 2°1 kokl . 0

We now describe a deterministic algorithm for a Boolean function f . In this algo-
rithm, all communication is initiated by the coordinator, who sends messages to various
parties in turn and receives a response from each of them . Just like in the conventional
two-party model, each party knows the protocol in advance and uses its own local mem-
ory during the execution. When the algorithm terminates, the coordinator must hold
the value of f .

THEOREM 3.1 . There is a deterministic algorithm for f that communicates with a total
of 2kok 1 parties and exchanges 2(C1 + [k1 log ko] + 1) (Co + ko(1log(2kok1 )1 + 2)) bits
with each.

Proof. The deterministic algorithm for computing f (xi, . . . , xn ) maintains two sets:
a set of chosen parties, the exposed parties, and a set of candidate 1-certificates from V 1 ,
the current 1-certificates. The algorithm runs in ko + 1 phases and satisfies the following
basic properties .

(i) All communication during a phase occurs only between the coordinator and
exposed parties .

(ii) All information sent by an exposed party to the coordinator is shared with all of
the exposed parties, so that every exposed party can deduce the set of current
1-certificates.

(iii) New parties are exposed only at the end of a phase .
(iv) If the value of the function is 0 then at the beginning of phase j, each 0-certificate

consistent with the input accesses at least j exposed parties .
Each phase discards some 1-certificates that are not consistent with the input vector
x = (x1, . . . , xn), by communicating 0-certificates that cover the input at some exposed
party to all other exposed parties . If it is no longer possible to discard a large fraction
of the 1-certificates in this way with a reduced amount of communication, then we shall
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show that the following property must hold : each 0-certificate t in V° consistent with the
input must be incompatible with at least half of the current 1-certificates at nonexposed
parties . This property implies that such a t must be incompatible with at least a fraction
1/(2k° ) of the current 1-certificates at some nonexposed party (since at most k° parties
are accessed by t) . We then expose all nonexposed parties accessed by a fraction 1/(2k° )
of the current 1-certificates ; this exposes, in particular, at least one more party accessed
by t, for each 0-certificate t in V° consistent with the input . If the set of current 1-
certificates is still nonempty, we proceed to the next phase .

By the time the (k °+ 1)th phase is executed, if all 1-certificates have been discarded,
then the value of f is 0; otherwise k° + 1 parties are accessed by every 0-certificate t in
V° consistent with the input ; this is impossible unless no such certificate exists, in which
case the value off is 1 .

Each phase thus consists of two steps : The first step reduces the number of current
1-certificates. The second step increases the number of exposed parties (and implicitly
the number of exposed parties for 0-certificates consistent with the input) . The two steps
are given below in full detail. Note that, at the beginning of the first phase, step (1) can
be skipped since no exposed parties have been chosen yet, and that step (2) need not be
executed in the (k ° + 1)th and last phase because by that time the value of f is already
determined by whether the set of current 1-certificates is empty or not .

(1) Each exposed party i, in turn, looks for a 0-certificate t in V° such that t covers
the input at party i and t is incompatible at party i with at least 1/(2a) of the
current 1-certificates per bit needed to describe t at party i, for a as specified be-
low. We shall see that the number of bits needed is length(t i ) + [log(2kok 1 )J +2,
sot must be incompatible with at least (length(t i ) + [log(2k 2k1 )1 + 2)/(2a) of
the current 1-certificates at party i. Party i communicates such a certificate, if
found, to the coordinator, in which case each exposed party is told this ti and
updates the set of current 1-certificates accordingly (the 1-certificates incompat-
ible with t at party i are discarded) . The next exposed party is now considered,
in a round-robin fashion .

(2) If no 1-certificates can be discarded as just described, then each 0-certificate
that contains the input will be incompatible with at least half of the current 1-
certificates at nonexposed parties . The coordinator and each exposed party can
recognize this situation, find all the parties accessed by a fraction of at least
1/(2k° ) of the current 1-certificates, and add these parties to the set of exposed
parties . Now each 0-certificate that contains the input has one more accessed
party exposed.

The communication bound is obtained as follows. Since each bit communicated
with a given exposed party discards at least 1/(2a) of the current 1-certificates, 2a bits
must discard more than half of the current 1-certificates . By the bound in the lemma,
this halving can be done at most C1 + [k1 log k° l times before all 1-certificates have been
discarded. Adding another 2a bits to ensure that the description of the last 0-certificate
used to discard 1-certificates is not truncated, we obtain a (C 1 + (k1 log k°l + 1) (2a)
bound on the communication with each exposed party. With a as defined below, we can
check that a is indeed at least as large as the description of a certificate at a party, and
that the communication bound in the statement of the theorem is satisfied .

We shall see below that at most 2k°k 1 parties are exposed at each phase, for a total
of 2ko k l parties over the entire execution of the algorithm (since we need not expose
parties at phase k° + 1) . If this bound is maintained, then a 0-certificate t in V ° at party i
can be described with length(ti ) bits, plus an additional log(2ko k1 ) bits to identify i within
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the set of current exposed parties . In communicating this information to each exposed
party j, two additional bits are used : one bit is used by party j to tell the coordinator
whether, after 1-certificates have been discarded according to t, there is some new 0-
certificate t' that party j can use to discard 1-certificates; and one bit is sent back by the
coordinator to tell party j whether it wants to use this new t' as the next 0-certificate
to discard 1-certificates . Thus the communication of t i to each party costs length(t i) +
[log(2kok1 )j + 2 bits .

We choose a = (Co + ko ([log(2kok 1 )1 + 2)) . If no exposed party i can provide a
0-certificate t in V° that covers the input at party i and is incompatible with a fraction of
at least pi = ( length(ti) + [log(2k 2 k1)l + 2)/(2a) of the current 1-certificates at party
i, then every 0-certificate t in V° consistent with the input is incompatible with at most
Eipi <_ 1/2 of the current 1-certificates at exposed parties, where the sum is over the
parties accessed in t (at most ko of them). Hence every 0-certificate t in V° consistent
with the input must be incompatible with at least half of the current 1-certificates at
nonexposed parties, as claimed.

Since at most k 1 parties are accessed by a single 1-certificate, the sum over all parties
of the fraction of current 1-certificates that access them is k1 , and so the number of
parties accessed by a fraction of at least 1/(2ko ) of these current certificates is at most
2k° k1 . This proves the bound on the number of exposed parties added at each phase,
completing the proof.

	

0

4. Conclusion and open problems . In this paper we studied communication com-
plexity in a multiparty model . The approach is based on the two-party model and the
decision tree model. Some results from the two basic models can be applied to our
model. The main open problems are the existence of lower bounds in this model and
the study of randomization . An intriguing question is whether a quadratic upper bound
with 0 (kok1 ) parties accessed and with polynomial communication can be achieved . The
study of other measures, such as the number of phases [7], [13], and of more general com-
munication networks [18], has a special importance for understanding communication
in distributed systems .
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